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1 Introduction

In the last twenty years, Semidefinite Programming (SDP) has evolved as the most excit-
ing and active research area in optimization. Combinatorial optimization, control theory,
and conventional convex constrained optimization are only a few of the many disciplines
in which SDP has applications. SDP problems arise in several areas of applications such
as economic, social, public planning and nonlinear dynamics and systems (see [2, 18]).
Most of these applications can often be solved pretty efficiently both in theory and in
reality since SDP is solvable through interior-point methods.
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Interior point methods were developed in the sixties by Dikin and Fiacco–McCormick
[7], to solve nonlinear mathematical programs with large dimension.

In order to solve the SDP problems, several algorithms have been proposed. Nesterov
and Nemirovski [16] and Alizadeh [1] are the researchers who developed interior-point
methods (IPMs) for SDP.

To solve SDP, a number of approaches have been put forth, including projective
IPMs and their variants [10, 14], central trajectory methods [19], logarithmic barrier
methods [5].

The determination and calculation of the displacement step provide an obstacle to
establishing an iteration. Unfortunately, computing the displacement step is expensive
and difficult in the case of semidefinite problems (particularly when using line search
methods [12]).

In this paper, we are interested in solving SDP using a barrier logarithmic method
that is simple and effective and is based on new approximate functions (new minorant
and new majorant functions). These approximate functions allow the computation of the
displacement step easily and quickly, and are more efficient than classical line searches.

We focus on the following SDP problem:
min bTx
m∑
i=1

xiAi − C ∈ S+
n ,

x ∈ Rm,

(1)

where b ∈ Rm, the matrices C,Ai, with i = 1, . . . ,m, are the given symmetrical matrices
and S+

n designs the cone of the symmetrical semidefinite positive n× n matrix.
The problem (1) is the dual of the following SDP problem: max⟨C, Y ⟩

⟨Ai, Y ⟩ = bi, ∀i = 1, . . . ,m,
Y ∈ S+

n .
(2)

Recall that ⟨., .⟩ corresponds to an inner product on the space of n× n matrices, where
the trace of the matrix (CTY ) is denoted by ⟨C, Y ⟩ .

Their feasible sets involving a non polyhedral convex cone, of positive semidefinite
matrices, are called linear semidefinite programs. A priori, one of the advantages of the
problem (1) with respect to its dual problem (2) is that the variable of the objective
function is a vector instead of being a matrix in the problem (2). Furthermore, under
certain convenient hypothesis, the resolution of the problem (1) is equivalent to that of
the problem (2) in the sense that the optimal solution of one of the two problems can be
reduced directly from the other through the application of the theorem on complementary
slackness, see for instance [1, 8, 15].

The problem (1) is approximated by the following perturbed problem (SDP )η :{
min fη(x)
x ∈ Rm (SDP )η

with the penalty parameter η > 0 and fη : Rm → ]−∞,+∞] being the barrier function
defined by

fη(x) =

 bTx+ nη ln η − η ln[det(
m∑
i=1

xiAi − C)] if x ∈ X̂,

+∞ if not.
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The problem (SDP )η can be solved via a classical Newton descent method.
The difficulty in line search is the presence of the determinant in the definition of

the logarithmic barrier function which leads to a very high cost in the classical exact or
approximate procedures of line search. In our approach, instead of minimizing fη, along

the descent direction at a current point x, we propose the minorant Ğ and majorant G̃
functions for which the optimal solution of the displacement step α is obtained explicitly.

Let us minimize the function G so that

1

η
[fη(x+ αd)− fη(x)] = G(α) ≥ Ğ(α), ∀α > 0,

1

η
[fη(x+ αd)− fη(x)] = G(α) ≤ G̃(α), ∀α > 0,

with G(0) = Ğ(0) = 0, G′(0) = Ğ′(0) < 0 and G(0) = G̃(0) = 0, G′(0) = G̃′(0) < 0.

The criterion G′′(0) = Ğ′′(0) and G′′ (0) = G̃ (0) guarantees that the approximations

Ğ and G̃ of G are of the highest quality.
This novel strategy’s key idea is to present a unique method for computing the dis-

placement step based on minorant-majorant functions. In contrast to the conventional
methods of line search, we then achieve an explicit approximation that reduces the ob-
jective and is both inexpensive and reliable.

The main advantage of (SDP )η resides in the strict convexity of its objective function
and convexity of its feasible domain. As a result, the prerequisites for optimality are
both necessary and sufficient. This encourages theoretical and numerical research of the
problem.

Six sections make up the remainder of this paper. In Section 2, we briefly recall some
results in linear semidefinite programming and give some preliminary results. The con-
vergence findings of the perturbed problem into the initial one are presented in Section
3. In Section 4, we provide the solution of the associated perturbed problem and the
important crucial result of the paper by introducing new approximate functions (mino-
rant and majorant functions). The effectiveness of the approximations as compared to
classical line-searches is illustrated by numerical tests in Section 5. Section 6 contains
some concluding remarks.

2 Background and Preliminary Results

This section provides the necessary background for the upcoming development. In Sub-
section 2.1, we review some results in linear semidefinite programming. In Subsection
2.2, we review some statistical inequalities.

2.1 Backdrop and brief information on linear semidefinite programming

In what follows, we denote by

1. X = {x ∈ Rm :
∑m

i=1 xiAi − C ∈ S+
n } the set of feasible solutions of (1).

2. X̂ = {x ∈ Rm :
∑m

i=1 xiAi − C ∈ int(S+
n )} the set of strictly feasible solutions of

(1).

3. F = {Y ∈ S+
n : ⟨Ai, Y ⟩ = bi, ∀i = 1, . . . ,m} the set of feasible solutions of (2).
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4. F̂ = {Y ∈ F : Y ∈ int(S+
n )} the set of strictly feasible solutions of (2).

Here, int(S+
n ) is the set of the symmetrical definite positive n× n matrices.

Let us state the following necessary assumptions.

• (A1) The system of equations ⟨Ai, Y ⟩ = bi, i = 1, . . . ,m is of rank m.

• (A2) The sets X̂ and F̂ are non empty.

We know that (see [1, 3])

1. The sets of optimal solutions of problems (2) and (1) are non empty convex and
compact.

2. If x̄ is an optimal solution of (1), then Ȳ is an optimal solution of (2) if and only

if Ȳ ∈ F and

(
m∑
i=1

x̄iAi − C

)
Ȳ = 0.

3. If Ȳ is an optimal solution of (2), then x̄ is an optimal solution of (1) if and only

if x̄ ∈ X and

(
m∑
i=1

x̄iAi − C

)
Ȳ = 0.

According to assumptions (A1) and (A2), the solution of problem (1) permits to give
the solution of problem (2) and vice-versa.

2.2 Preliminary inequalities

The following result is due to H. Wolkowicz et al. [20], see also J. P. Crouzeix et al. [6]
for additional results.

Proposition 2.1 [20]

x̄− σx

√
n− 1 ≤ min

i
xi ≤ x̄− σx√

n− 1
,

x̄+
σx√
n− 1

≤ max
i

xi ≤ x̄+ σx

√
n− 1.

Let us recall that B. Merikhi et al. [5] proposed some useful inequalities related to
the maximum and minimum of xi > 0 for any i = 1, ..., n.

n ln(x̄− σx

√
n− 1) ≤ A ≤

n∑
i=1

ln(xi) ≤ B ≤ n ln(x̄) (7)

with

A = (n− 1) ln(x̄+
σx√
n− 1

) + ln(x̄− σx

√
n− 1),

B = ln(x̄+ σx

√
n− 1) + (n− 1) ln(x̄− σx√

n− 1
)

so that x̄ and σx are respectively, the mean and the standard deviation of a statistical
series {x1, x2, ..., xn} of n real numbers. These quantities are defined as follows:

x̄ =
1

n

n∑
i=1

xi and σ2
x =

1

n

n∑
i=1

x2
i − x̄2 =

1

n

n∑
i=1

(xi − x̄)2.
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The main advantage of (SDP )η resides in the strict convexity of its objective function
and its feasible domain. Consequently, the conditions of optimality are necessary and
sufficient. This fosters theoretical and numerical studies of the problem.

Before this, it is necessary to show that (SDP )η has at least an optimal solution.

3 Theoretical Aspects of Perturbed Problem

3.1 Existence of solution of the perturbed problem

For x ∈ X̂, let us introduce the symmetrical positive definite matrix B(x) of rank m,
and the lower triangular matrix L(x) such that

B(x) =

m∑
i=1

xiAi − C = L(x)LT (x),

and let us define, for i, j = 1, ...,m,

Âi(x) = [L(x)]−1Ai[L
T (x)]−1,

bi(x) = trace(Âi(x)) = trace(AiB
−1(x)),

∆ij(x) = trace(B−1(x)AiB
−1(x)Aj) = trace(Âi(x)Âj(x)).

Thus, b(x) = (bi(x))i=1,...,m is a vector of Rm and ∆(x) = (∆ij(x))i,j=1,...,m is a
symmetrical matrix of rank m.

The previous notation will be used in the expressions of the gradient and the Hessian
H of fη. To show that problem (SDP )η has a solution, it is sufficient to show that fη is
inf-compact.

Theorem 3.1 [5] The function fη is twice continuously differentiable on X̂. Actu-

ally, for all x ∈ X̂, we have
(a) ∇fη(x) = b− ηb(x).
(b) H = ∇2fη(x) = η∆(x).
(c) The matrix ∆(x) is positive definite.

Since fη is strictly convex, (SDP )η has at most one optimal solution.
For the existence of solution of the perturbed problem, firstly, we start with the

following definition.

Definition 3.1 Let f be a function defined from Rm to R ∪ {∞}, f is called inf-
compact if for all η > 0, the set Sη(f) = {x ∈ Rm : f(x) ≤ η} is compact, which implies
its cone of recession is reduced to zero.

As the function fη takes the value +∞ on the boundary of X and is differentiable

on X̂, then it is lower semi-continuous. In order to prove that (SDP )η has one optimal
solution, it suffices to prove that the recession cone of fη

S0

(
(fη)∞

)
= {d ∈ Rm, (fη)∞(d) ≤ 0}

is reduced to zero, i.e., d = 0 if (fη)∞(d) ≤ 0, where (fη)∞ is defined for x ∈ X̂ as

(fη)∞ (d) = lim
α→+∞

[
ξ (α) =

fη (x+ αd)− fη (x)

α

]
.

This leads to the following proposition.
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Proposition 3.1 [5] If bT d ≤ 0 and
m∑
i=1

diAi ∈ X̂, then d = 0.

3.2 Uniqueness of the solution of the perturbed problem

As fη is inf-compact and strictly convex, therefore the problem (SDP )η admits a unique
optimal solution. We denote by x(η) or xη the unique optimal solution of (SDP )η .

3.3 Convergence of perturbed problem to (1)

Proposition 3.2 [5] For η > 0, let xη be an optimal solution of the problem (SDP )η,
then there exists x ∈ X being an optimal solution of (1) such that

lim
η→0

xη = x.

Remark 3.1 We know that if one of the problems (1) and (2) has an optimal solu-
tion, and the values of their objective functions are equal and finite, the other problem
has an optimal solution.

4 The Numerical Aspects of Perturbed Problem

4.1 Newton descent direction

With the presence of the barrier function, the problem (SDP )η can be considered as the
one without constraints. So, one can solve it by a classical slope method. As fη takes the

+∞ value on the boundary of X, then the iterates x are in X̂. Thus, the new proposed
method is an interior point method.

Let x ∈ X̂ be the actual iterate. As a slope direction in x, let us take Newton’s
direction d as a solution of the linear system

∇2fη(x)d = −∇fη(x).

By virtue of Theorem 1, the precedent linear system is equivalent to the system

∆(x)d = b(x)− 1

η
b, (3)

where b(x) and ∆(x) are defined in Subsection 3.1.
The matrix ∆(x) being symmetrical, positive definite, the linear system (3) can be

effectively solved through the Cholesky decomposition.
Evidently, one can admit ∇f(x) ̸= 0 (otherwise, the optimum is reached). It follows

that d ̸= 0. The direction d being calculated, we search ᾱ > 0 giving a significant decrease
to fη over the semi-line x+ αd, α > 0, with the conservation of the positive definiteness
of the matrix B(x+ ᾱd). Then, the next iterate will be taken equal to x+ ᾱd. Thus, we
can consider the function

G(α) =
1

η
[fη(x+ αd)− fη(x)], x+ αd ∈ X̂,

G(α) =
1

η
bT dα− ln det(B(x+ αd)) + ln det(B(x)).
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Since ∇2[fη(x)]d = −∇fη(x), we have

dT∇2fη(x)d = −dT∇fη(x) = dT b(x)− ηdT b.

To simplify the notations, we consider

B = B(x) =

m∑
i=1

xiAi − C and H =

m∑
i=1

diAi,

B being symmetrical and positive definite, there exists a lower triangular matrix L such
that B = LLT .

Next, let us put E = L−1H(L−1)T , since d ̸= 0, the assumption (A1) implies that
H ̸= 0 and then E ̸= 0.

There are two main techniques used for computing the displacement step αk.
1) Line search methods such as the Goldstein-Armijo method, Wolfe method,

Fibonacci method, etc. These methods are based on the minimization of the one-
dimensional function

φ (α) = min
α>0

fη(x+ αd).

Unfortunately, they are very delicate and time consuming.
2) The approximate function (majorant and minorant function) method

is a sophisticated technique introduced by Crouzeix and Merikhi [5] to solve a positive
semidefinite programming problem. The goal of this technique consists in approximating
the function G (α) defined by

G(α) =
1

η
[fη(x+ αd)− fη(x)].

Contrarily to the line search method, the approximate function is simple, and one
can easily compute its minimum. This allows the computation of the displacement step
without complications and in a short time.

In the following proposition, we give a simple form of the function G(α).

Proposition 4.1 [5] With this notation, for any α > 0 such that I +αE is positive
definite,

G(α) = α[trace(E)− trace(E2)]− ln det(I + αE). (4)

Let us denote by λi the eigenvalues of the symmetric matrix E, then the function G can
be written as follows:

G(α) =

n∑
i=1

[α(λi − λ2
i )− ln(1 + αλi)], α ∈ [0, α̂[ , (5)

with
α̂ = sup[α : 1 + αλi > 0 for all i ] = sup[α : x+ αd ∈ X̂]. (6)

Let us observe that α̂ = +∞ if E is positive semidefinite, and 0 < α̂ < ∞ otherwise.
It is clear that G is convex on [0, α̂[ , G(0) = 0 and

0 <
∑
i

λ2
i = G′′(0) = −G′(0).
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Besides, G(α) → +∞ when α → α̂. It follows that there exists a unique point αopt

such that G′(αopt) = 0, where G reaches its minimum at this point.
Unfortunately, there is no an explicit formula that gives αopt, and the resolution

of the equation G′(αopt) = 0 through iterative methods needs at each iteration the
computation of G and G′. These computations are too expensive because the expression
of G in (4) contains the determinant which is difficult to calculate and the expression of
(5) necessitates the knowledge of the eigenvalues of E. It is a numerical problem of large
size. These difficulties make us look for other new alternatives approaches. Once E is
calculated, it is easy to calculate the following quantities:

trace(E) =
∑
i

eii =
∑
i

λi and trace(E2) =
∑
i,j

e2ij =
∑
i

λ2
i .

Based on this proposition, we give, in the following section, new notions of non
expensive approximate functions for G that offer some variable displacement steps to
every iteration with a simple technique. We prove the efficiency of one of them by
numerical experiments that we will present at the end of this work.

Now, we give the crucial result of the paper.

4.2 New minorant and majorant functions of G

Let us go back to the equations (5) and (6), denote by λ̄ and σλ, respectively, the mean
and the standard deviations of λi, and by ∥λ∥ the Euclidean norm of the vector λ. So,

∥λ∥2 = n(λ̄2 + σ2
λ) = G′′(0) = −G′(0),

and

G(α) = nλ̄α− ∥λ∥2α−
n∑

i=1

ln(1 + αλi). (8)

The problem consists in looking for ᾱ ∈ ]0, α̂[ with α̂ = min
λi<0

{
−1
λi

}
to give a sig-

nificant decrease of the convex function G. Let us insist that the best natural choice
ᾱ = αopt,where G′(αopt) = 0, presents numerical complications. However, one can find
approximately ᾱ, but this procedure necessitates, also, too many computations of G and
G′. However, if we use a line search, it becomes convenient to know the superior born α̌
of the G domain, which is numerically difficult to solve. Consequently, we will take the
upper borne of α̃ given in Proposition 2.1.

α̌ = sup[α : 1 + αγ > 0] with γ = λ̄+ σλ

√
n− 1,

α̃ = sup[α : 1 + αβ > 0] with β = λ̄+
σλ√
n− 1

.

This strategy consists in minimizing a minorant and majorant approximation Ğ and
G̃ of G instead of minimizing G over [0, α̂[ . To be efficient, this minorant and majorant
approximation needs to be simple and sufficiently near G. In our case, it requires

0 = Ğ(0), ∥λ∥2 = Ğ′′(0) = −Ğ′(0),

0 = G̃(0), ∥λ∥2 = G̃′′(0) = −G̃′(0).

The following lemma introduces two new approximate functions for G.
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Lemma 4.1 For all α ∈ [0, α̂[ ∩ [0, α̌[ , we have

ĞMin (α) ≤ G (α) ,

and for all α ∈ [0, α̂[ ∩ [0, α̃[ , we have

G (α) ≤ G̃Maj (α) ,

where

ĞMin (α) =
∥λ∥2

γ
α− q ln

(
1 +

∥λ∥2

γ
α

)
, ∀α ≥ 0, 0 < q < 1,

and

G̃Maj (α) =
∥λ∥2

β
α− p ln

(
1 +

∥λ∥2

β
α

)
, ∀α ≥ 0, 0 < p < 1.

Proof. 1. We start by proving that ĞMin (α) ≤ G (α) .

We have G(α) = nλ̄α− ∥λ∥2α−
∑n

i=1 ln(1 + αλi). Then we put

H (α) = G (α)− ĞMin (α) .

Then H (0) = H ′ (0) = 0 and we have, for all α > 0,

H ′′ (α) =

n∑
i=1

λ2
i

(1 + αλi)2
− λ2

i(
1 + α ∥λ∥2

γ

)2 ≥ 0.

Because |λi| ≤ ∥λ∥ and γ ≤ ∥λ∥, it gives H (α) ≥ 0, ∀α ≥ 0.

So ĞMin (α) ≤ G (α) .

2. Now we prove that G (α) ≤ G̃Maj (α) . We put: K (α) = G̃Maj (α)−G (α) . Then
K (0) = K ′ (0) = 0 and we have, for all α > 0,

K ′′ (α) =
∥λ∥4

(β + α∥λ∥2)2
+

n∑
i=1

λ2
i

(1 + αλi)2
≥ 0.

This gives K (α) ≥ 0, ∀α ≥ 0. So G (α) ≤ G̃Maj (α) .

We deduce that the functions ĞMin and G̃Maj reach their minimum at one unique
point:

ᾱMin = (q − 1)
γ2

∥λ∥2
, ᾱMaj = (p− 1)

β2

∥λ∥2
.

5 Description of the Algorithm and Numerical Results

In this section, we present the algorithm of our approach to obtain an optimal solution
x̄ of the problem (1) and some numerical results to demonstrate the performance of our
methods.
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5.1 The algorithm

Begin algorithm
Initialization
We have to decide on the strategy of the displacement step. ε > 0 is a given precision,

η > 0, ρ > 0 and σ ∈ ]0, 1[ are fixed parameters. Start with xk ∈ X̂ and k = 0.
Iteration

1. Take B = B(xk) =
m∑
i=1

xk
iAi − C and L such that B = LLT .

2. Compute{
Âi(x

k) = [L(xk)]−1Ai[L
T (xk)]−1, b(xk) = trace(Âi(x

k)),

∆ij(x
k) = trace(Âi(x

k)Âj(x
k)), H = η∆(xk).

3. Solve the linear system Hd = ηb(x)− b.

4. Calculate E = L−1H(L−1)T , trace(E) and trace(E2).

5. Take the new iterate xk+1 = xk + ᾱd such that ᾱ is obtained by the use of the
displacement step strategy of Ği, i = 1, ..., 3.

6. If nη > ε, do xk = xk+1, η = ση and go to (1) .

7. If |bTxk+1 − bTxk| > nρη, do xk = xk+1 and go to (1) .

8. Take k = k + 1.

9. Stop: xk+1 is an approximate solution of the problem (1).

End algorithm
We know that the optimal solution of (SDP )η is an approximation of the solution

of problem (1). The closer η is to zero, the better the approximation. Unfortunately,
when η approaches zero; the problem (SDP )η becomes ill-conditioned. For this reason,
we use at the beginning of the iteration the values of η that are not near to zero, and
verify nη < ε. We can explain the interpretation of the update η as follows: if x(η) is
an exact solution of (SDP )η, so bTx(η) ∈ [m (0) ,m (0)+nη]. It is then not necessary to
keep on the calculus of the iterates when |bTxk+1 − bTxk| ≤ nρη.

The displacement step ᾱ will be determined by the classical line search of Armijo-
Goldstein-Price type or by one of three following strategies St i, by minimizing the
majorant function G̃ and the minorant function Ğ.

In the next subsection, we present comparative numerical tests to prove the effective-
ness of our approach over the line search method.

5.2 Numerical tests

The following examples are taken from the literature, see for instance [4, 5, 9], and im-
plemented in MATLAB. We have taken ε = 1.0e − 004, σ = 0.125 and two values of ρ,
ρ = 1 or ρ = 2.

In the table of results, (exp (m,n)) represents the size of the example, (Itrat) repre-
sents the number of iterations necessary to obtain an optimal solution, (Time) represents
the time of computation in seconds (s), (LS) represents the classical line search of the
Armijo-Goldstein method and (St Maj) and (St Min) represent the strategies which use

the minorant functions Ğ and the majorant function G̃, respectively.
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5.2.1 Examples with fixed size

In the following examples, diag(x) is the n× n diagonal matrix with the components of
x as the diagonal entries.

Example 1: m = 2, n = 3,

C =

 1 −1 1
−1 2 −2
1 −2 2

 , A1 =

 1 −1 1
−1 0 0
1 0 0

 , A2 =

 1 0 0
0 1 0
0 0 1

 , b = (0, 1)t.

Example 2: m = 3, n = 5,

C =


−4 0 0 0 0
0 −5 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , A1 =


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



A2 =


1 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 , A3 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , b = (8, 7, 3)t.

Example 3: m = 3, n = 6,

C =


3 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , A1 =


2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0



A2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 , A3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , b = (0, 0, 1)t.

Example 4: m = 6, n = 12,

C = diag(−4,−5,−1,−3, 5,−8, 0, 0, 0, 0, 0, 0)t,

A1 = diag(1, 0,−4, 3, 1, 1, 1, 0, 0, 0, 0, 0)t,

A2 = diag(5, 3, 1, 0,−1, 3, 0, 1, 0, 0, 0, 0)t, A3 = diag(4, 5,−3, 3,−4, 1, 0, 0, 1, 0, 0, 0, )t,

A4 = diag(0,−1, 0, 2, , 1,−5, 0, 0, 0, 1, 0, 0)t, A5 = diag(−2, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 0)t,

A6 = diag(2,−3, 2,−1, 4, 5, 0, 0, 0, 0, 0, 1)t, b = (1, 4, 4, 5, 7, 5)t.

The obtained results are given in the following table.

exp (m,n) St Min St Maj LS
Itrat Time Itrat Time Itrat Time

exp 1(2, 3) 4 0.032 3 0.024 5 0.25
exp 2(3, 5) 5 0.056 2 0.0022 7 0.36
exp 3(3, 6) 5 0.094 4 0.023 6 0.36
exp 5(6, 12) 3 0.0016 1 0.0002 3 0.087
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5.2.2 Example with variable size

Example 1: (Example Cube)

n = 2m, C is the n× n identity matrix, b = (2, ..., 2)T ∈ Rm, a ∈ R, and the entries
of the n× n matrix Ak, k = 1, . . . ,m, are given by

Ak[i, j] =


1 if i = j = k or i = j = k +m,
a2 if i = j = k + 1 or i = j = k +m+ 1,
−a if i = k, j = k + 1 or i = k +m, j = k +m+ 1,
−a if i = k + 1, j = k or i = k +m+ 1, j = k +m,
0 otherwise.

Test: a = 0 and C = −I.

The following table resumes the obtained results.

Size (m,n) St Min St Maj LS
Itrat Time Itrat Time Itrat Time

(50, 100) 2 102 1 65 dvg
(100, 200) 3 402 2 214 dvg
(200, 400) 3 798 2 685 dvg

dvg means that the algorithm does not terminate within a finite time.

Commentary. We notice that the two strategies converge to the optimal solution.
These tests show clearly that our two strategies offer an optimal solution of (1) and (2) in a
reasonable time and with a small number of iterations. We conclude the proposed method
is more effective than the line search, and it can improve the results obtained by the line
search method. When the instances get larger, this is especially true. Additionally, the
reduction in time is substantial because it is clear that the suggested technique takes at
least twice as long as the line searches method to arrive at the best answer.

6 Conclusion

In order to solve a linear semidefinite problem, a logarithmic barrier technique based
on novel majorant and minorant functions is presented in this study. These two novel
approximations provide displacement steps more quickly, cheaply, and easily than the
line search. The effectiveness of the majorant and minorant function methodology in
comparison to the line search method is demonstrated by numerical data. Our important
result is applicable and very important in different problems of nonlinear dynamics in
practice. As allways, we arrived to problem of optimization after we solve these problems,
then we choose our approach for solving it. The idea of introducing our new majorant and
minorant functions appears to be a topic worth exploring in the future in the nonlinear
dynamics problems and other problems.
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