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Abstract: In this work, we study the 3-D generalized Cauchy problem of the incom-

pressible micropolar fluid system (GMFS) in the critical variable exponent Fourier-

14— 3. _2a
(")

(). We establish the global well-posedness result with the

Besov space FB

4— 32
initial data belonging to ]-'Bp(.)”fl') a, where p = p(-) is a bounded function satisfy-

lngp S [27 ﬁ], (RS (%,1] and q S [17 %]
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1 Introduction and Statement of Main Result

We investigate the generalized incompressible micropolar system in the whole space R3,

du+ (X +v)(=A) " u+u-Vu+ Vi —2xV x w =0, in R® x R,

opw + p(—A)*2w + u - Vw + dyw — kVdivw — 2xV x u =0, in R® x RT, 1
divu =0, in R x RT, (1)
(u, w)]y—g = (1o, wo), in R3.

The unknowns are u = u(z,t),w = w(z,t) and 7 = 7(x,t) representing, respectively,
the linear velocity field, the micro-rotation velocity field and the pressure field of the
fluid. The nonnegative constants k, i, v and x represent the viscosity coefficients, which
determine fluid physical characteristics and aj,as € (%, 1] are two positive constants.
ug and wg represent the initial velocities and we assume that divug = 0. Recall that
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the Riesz potential operator (—A)” is defined as usual through the Fourier transform as
FI(=A)*F1(€) = EP*FL11(€), where FIf](€) := f(§) = mryorz Jps € ** f () da. Without
loss of generality, throughout this paper, we only consider the situation with kK = p =1
and y =v =1/2.

Notice that if @3 = as = 1, then system reduces to the standard micropolar fluid
system

Ou— (x+v)Au+u-Vu+Vr—2xV x w =0, in R® x RT,

0w — pAw + u - Vw + dxyw — kVdivw — 2xV x u =0, in R® x RT,

divu =0, in R? x RT, (2)
(uvw)ltzo = (anwO)a in R3,

which was created by A.C. Eringen [9] in 1996. It is an essential modification to the
classical Navier-Stokes equations in order to better characterize the motion of real-world
fluids made up of rigid but randomly oriented particles (such as blood) by investigating
the effect of micro-rotation of particles suspended in a viscous medium.

There is a lot of literature devoted to the mathematical theory of the micropolar fluid
system. The first result on the existence and uniqueness of solutions of the standard
micropolar fluid system was obtained by Galdi and Rionero in [10]. Chen and Miao [5]
proved the global existence for the problem with small initial data in the Besov spaces

3
B;j*? when p € [1,6) and ¢ = co. Inspired by the work of Cannone and Karch [6] on
the incompressible Navier-Stokes equations, V.-Roa and Ferreira [8] showed the existence
of the solution for the generalized micropolar fluid system in the pseudo-measure space
PM7™ which is defined by

PMT™ = {f €S'(R™): f €L (R"), Ifllparr = ess supeern [€]7|F(€)] < 00}~
Our main result can be stated as follows.

Theorem 1.1 Let 3 < o = min(aq, ) = ay < 1, p(-) € C°8 (R") NP (R") such

that 2 < p(+) < 5_64a, 1<p<xoandl1l <qg< Then there exists a small €9 such

3 .
B L o )
that for any (ug,wo) € FB, ), *O satisfying V-ug = 0 with || (ug, wo)|| -0 3 < €0,
; - -
p(-),q

the problem admits a unique global mild solution (u,w) in

42— 3.4 2o L2245 —2a I -5 —2a
£9(10,00), FBo 2 7T 0y £o([0,00), FBy PN 1 220, 00), FBS, ),
such that
u,w —2a— 2 2% 2& 490 _9q 5_
It )Hm([o,oo),fs;iq CoN )ﬂ[:f’([O,oo),}'B;{Jqug Lo ([0,00), FBZ %)

< H(UO’ 'LUO)H .472&—% .
BP(-),q

Remark 1.1 Notice that the result of Theorem is correct only if the bounded

function p # 1, and then the case (p,«) = (1,1), which corresponds to ]-'B;;, is not
included. It is proved in [13] that if (p,a) = (1, 1), then the standard micropolar fluid

system (SMFS) is well-posed in F. Bl_;, where 1 < ¢ < 2, and ill-posed in these spaces

—1
for 2 < ¢ < oo, which means that the space B, , is optimal. Furthermore, our result
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is a generalization of the works [4,/12] in which the authorb proved that the problem

is globally well-posed in the Fourier-Besov spaces fB g “forae ( 1,1 <p < o0,
1 < ¢ < oo and the initial data being small. The aim of this work is to establish this
result in the case of variable exponent.

Throughout the paper, we denote o = min(ay, ). Let X, Y be the Banach spaces.
We use (a,b) € X to denote (a,b) € X x X, ||(a,b)||x to denote ||(a,b)|xxx and we
denote ||-|lxny = |I'llx + |||y The notation a < b means that there exists a positive
constant C such that a < Cb.

2 Preliminaries

In this section, we review the Littlewood-Paley theory and some of the used function
spaces and the related properties, we state the microlpolar semigroup and the notion of
mild solutions for the system , we recall the Banach fixed point theorem which we will
apply for proving the existence of a unique mild solution and we present the definition
of the Chemin-Lerner type homogeneous Fourier-Besov spaces.

2.1 Littlewood-Paley theory and Fourier-Besov spaces with variable expo-
nent

Let us present some basic properties of the Littlewood-Paley theory and Fourier-Besov
spaces with variable exponent.

Let § € S(R™) be a radial positive function such that 0 < 6 < 1, supp(d) C
{¢eR": 3 <|¢| < 8} and

Y 0(277¢) =1, forall £#0.

JEZ
Put _
0;(6)=0(277¢), wi©)= D (&)

k<j—1
and
g(x) = F'0(z), h(z)=F ‘o).

Now, we present some frequency localization operators

n

Aju = F 1 (0;F(u)) = 2" / 9 (27y) u(z — y)dy,

> Af = F i Fw) =2 [ h(2y)uls - )

k<j—1

where Aj = Sj —8;_; is a frequency projection to the annulus {|¢| ~ 27} and Sj is a
frequency to the ball {|¢| < 27}.
By using the definition of A; and S, we easily prove that

AjAf =0, if|j—k >2,
A (Sk1fARf) =0, i [j— k| > 5.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (3) (2023) 341

The following Bony para-product decomposition will be applied around the paper:
wv = Tyv + Tyu + R(u,v),
where T\,v = Yjez Si_1uljv, R(u,v) = Yjez Ajulju and Aju = Dol —jl<1 Ajv.

We define the variable exponent Lebesgue spaces LP().

Definition 2.1 ([2]) Let P(R™) denote the set of all measurable functions p(-) :
R™ — (0, co) such that

0 < p_ =ess inf p(x), ess sup p(z) =ps < 0.
x€ERn xERR

The variable exponent Lebesgue space is defined by

Lp(')(R”) = {f :R" - Ris measurable,/ |f(a?)|p(”)dx < oo}

n

equipped with the Luxemburg-Nakano norm

1l = mf{a >0: [ ey, < 1}.

The space LP()(R") is a Banach space.

Since the LP() does not have the same desired properties as L? (R™), we propose the
following standard conditions to prove that the Hardy-Littlewood maximal operator M
is bounded on LPC)(R™):

i) We say that p : R® — R is locally log-Holder continuous, p € Cllgf (R™), if there
exists a constant cjog > 0 with

Clog

lp(x) —p(y)| < ———=—— forall =z,y<€R"andx #y.
log (e + Tiyl)

ii) We say that p is globally log-Holder continuous, p € C'°& (R™), if p € C’llgf (R™) and
there exist a po, € R and a constant c,, > 0 with

C

SR or all x € R™.
og(e + o)

p(#) = pool <
iii) We write p € PI°¢(R") if 0 < p~ < p(x) < p* < co with 1/p € C'°8(R").

Let p, ¢ € P(R"), we denote by £4() (LP(')) the space consisting of all sequences {h;};

of measurable functions on R” such that

0 (1) ((he);) = 3 it {51- > 0lop(, (h/é“) < 1}

i>0

with the convention 6'/°° = 1. Also, the norm is defined as usual:

| (i), ||1zq(')(Lp<»>) := inf {)\ > 0|ng(«>(Lp<.>) (i\ (hi)i) < 1} :
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If ¢t < oo, then

Qpat) (LrO)) ( (hi)i) - Z I |hi|q(.) ”%

i>0

Then we define the variable exponent homogeneous Fourier-Besov space F. B;((',)),q(,).

Definition 2.2 ([3]) Let s(-) € C!°9(R") and p(-), ¢(-) € P(R") N C'*9(R"™) with
0 < p_ < p(-) < oo. The homogeneous Fourier-Besov space with variable exponent
fB;((',))’q(,) is defined by the set of all f € Z'(R™) such that

S (- = {27500, 1 100 1oty < 00.
”f”prE,;,q(,) I{ [ e (L) < 00
The space Z'(R"™) is the dual space of

Z(R™) ={f e SR") : (D*f)(0) = 0, Vo multi-index} .

Next proposition describes some useful assertions we use in this work related to LP(")
spaces and Besov spaces with variable exponent.

Proposition 2.1 ([7]). (1) (Hélder inequality) Let p1(-), p2(-), € P(R™), and define
p € P(R™) by ﬁ = plix) + ﬁ(m). Then there exists a constant C depending only on p_
and py such that

1fgllzecy < Clfllorerlgllecr

holds for every f € LP*C) and g € LP2(),
(2) ([2])) Let po(-), pi(-), q(-) € P(R™), and so(-), s1(-) € L= N C9(R™) with

so(+) > s1(:). If QT(')’ m and so(x) — pOL(I) = s1(x) — pl?z) are locally log-Hélder
continuous, then

5s0(°) 551 (")

Broat) 7 Bri(.aty

The following result deals with the product of two functions in the Chemin-Lerner
space.

Proposition 2.2 ([1]). Let s>0, 1<~ p, p1, p2, P,q,7 < 00 such that% =
L1 andl:%—i—%. Then we have

labllcose . Slallgm e Nbllerasr + bl o Nallcensr.

2.2 Fractional micropolar semigroup and mild solutions

The following system is the corresponding linear system of :

Ou+ (—A)Mu—V xw=0,
Ow + (—A)* 2w+ 2w — Vdivw — V x u =0,
: (3)
divu = 0,
(u, w)|,_g = (uo,wo).

The solution operator of the above problem is denoted by the notation G(t),
i.e., for specified initial data (ug,wo) in suitable function space, if we denote by
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(u, w)T = G(t) (uo, wo)” the unique solution of the problem (3), then

—

(Gt )(E) = e AOf(e)  for f(z) = (fi(), f2(z))",

where | |2 ©
| L B(&
A =1 "By (g +2) 1+ c©)
with
0 & & &2 L& L&
B)=i| =& 0 &1 and C(§) = | &i& &2 &&
& & 0 &€& & &P

Moreover, by applying the Leray projection P to both sides of the first equations of ,
one can eliminate the pressure 7 and we get

Ou+ (=AY u+Pu-Vu) =V x w =0,
ow+ (—A)*?2w+u-Vw+ 2w —Vdivw —V xu =0,
i (4)
divu =0,
(va)\t:o = (uo, wo),

where P = I+ V(—~A)™! div is the 3 x 3 matrix pseudo-differential operator in R® with

3
the symbol (6”» — 5‘2‘52”) iy We denote
ij=

and
~ o U1 X Ug -~ ~ o PV. (Ul ® UQ)
U,@U; = ( U1 ® Wo ) , PV. (U1®U2) = ( V- (u1 @ ws) .

Solving system can be reduced to finding a solution U to the following integral
equations:

U(t) = G(t)Uy — /0 t Gt —7)PV - (U@ U)(r)dr. (5)

A solution of 18 called a mild solution of . Now, we present a property of the
semigroup G(-).

Lemma 2.1 (/§]) Let § < o < 1. Then for |£| # 0 and t > 0, there exists C' =
C(an,2) >0 (independent of &) such that

I if el < 1
—ta) < BT flE <,
a0y < { o BT 0

In particular, if « = aq, then

le 4@ < € for all |¢] > 0. (7)
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2.3 Banach fixed point theorem and Chemin-Lerner type homogeneous
Fourier-Besov spaces

We recall an existence and uniqueness result for an abstract operator equation in a
Banach space, which will be used to prove the main result.

Lemma 2.2 ([13]) Let E be a Banach space with the norm ||-|| and B : E — E
be a bilinear operator such that for any x1,x2 € E, |B(z1,22)|| < nllz1||||z2], then for

1
any y € E such that ||y| < e the equation v = y + B(x,x) has a solution x € E. In

1
particular, the solution is such that ||z|| < 2||y|| and it is the only one such that ||z|| < o
n

Let us observe that if y = G(¢)Up and
t ~
BUU) =~ [ Gt~ 1BV (U s V)()dr
0

then the integral equation has the form U =y + B(U, U) required in Lemma
Now, we give the definition of the Chemin-Lerner type homogeneous Fourier-Besov
spaces with variable exponent.

Definition 2.3 ([11]) Let s(-) € C'°9(R"™), p(-), q(-) € P(R")NCYI(R™), T € [0, 0)

and 1 < ¢, p < 0o. We define the Chemin-Lerner type homogeneous Fourier-Besov space

with variable exponent £#([0,7"); F B;(()) ) by

CsC) oy ny.
& (01578 ) = {0 € ZE: lall ooy ra ) <0

with the norm

Q=

”9”5»([0771);]:82%}) 2 = Z ”2Js(')ajg”qu([o,T);me)
’ JEZ

3 A Priori Estimates

Thanks to Lemma the key to the proof of Theorem [I.1]is to make a priori estimates
for . In the lemma given below, we prove the linear estimate for equation .

Lemma 3.1 (Linear estimate) Let % <a=a <1,1 < pqg < 400 and

4—200— =3+

p(),p1(-) € P(R") such that pi() < p(-). Assume that Uy € FB, *O and

p1 € [p, +00], then the following inequality holds:

o__3 < 3 .
||G(t>UOH o1 ,4—2a+f,—1—p1"(_> ~ HUOH B}—M—ﬁ)
T p1(-).q p(-),q
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Proof. Thanks to Holder’s inequality, Lemma and the hypothesis p1(-) < p(+),
we have

i(4—2a— 3422 _ —~
o P | 7 PPN 1
£e ([0, OO)]: Pr1(),q )
. . .20 3 __3
Z ||23(4—2a—m)€jU0”Lp(.>||2J(p1 +p/1<,> p/(.))ej_‘rke_t‘_‘za” s ||€q
k=031 Le1([0,00),LPOI-P1TT )
5 ||U0|| A 2a7(7)
r(-),q

Consequently, one obtains

IG@)Uol| e g+ 3E S 1ol gimtm oy (8)

FTIONE ()
£21([0,00), ‘FBm()q ! p(),q

For the bilinear estimate, we have the following lemma.

Lemma 3.2 (Bilinear estimate) Let % <a=a <1, p € PR" such that

() < 5= 4 , 1 <p<ooand py € [p,00]. Then we have the following inequality:

t ~

||/ G(t — )PV - (Uy @ Uy)(7)dr | e sae
0 £01([0,00), pr e N

< U @ 0‘ -5 —2«

S 1”1:»([0,00) ) H 2||£oo([O R

U- U 5 .

S T S VS,

Proof. Thanks to Holder’s inequality, Hausdorf-Young’s inequality, and Young’s
inequality, we have

t ~
H/ Gt —7)PV - (U @ Us)(7)dr|| C9a__3 42
0

£1([0,00), ]:Bp e p1() " Pl )

b (4o 3 120 )
S II/ (12 ”1““1)93'6(”)A(g)dIV(U@Uz) dTHLﬂl([O,oo)’L”l('))qu
0

b (490 3 120 20 | T
S ||A 2J(4 2 Pl(')+P1)0je_(t_T)H le(U1®U2) dTHL"l([O,OO),Lpl('))Héq

N

t j(5_2a_i+2ia) —(t=7)| >
/nz A B I o RS

6—(5—4a L 5—4a

< ||2J(Ta+§—2‘l)||A (U1 ® U2)||L4a+1 Il e [0, oo))H

Consequently, by using Proposition 2.2 we obtain the result

B(U; @ U e 22 S ||UL @ U 2015 54
( ! 2)||£p1([0’00)’]:5'i% p13<4>+?)1) H ! 2||Lp([0,oo),5'2p6+g 2 )
1().q TaFT ?
< U S _924 e U S _924
L LLoc PN
+ 11Uz 20428 ||U1H

.3 _2q -+
£7([0,00), fza;q ), FB3, ")
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4 Proof of Theorem [I.1]

In the following, we consider the Banach space
4—2aq— 3. 422 .5 _9n4 2a .
TR0 (RP)) M Lr([0,00), FBs, T (RP))

€ =Lr([0,00), FB, .
00 ~%—2o¢
NL>®([0,00), FB3, " (R?)),

and define mappings as O(U) = G(t)Uy + B(U,U). Then, to solve (), it suffices to find
the fixed point of the mapping 6. First, from Lemma we have
(9)

1G()Volle < CrllUoll  saa- -
FB P

r().q

By Lemma [3.2] we obtain

< ||U U
72(1*%#»27&) ~ ” 1“[:9([0,00),_7-'82%;2a+27a)” 2”[)00([0,00),]-'8'22,;2&)

|B(Ur® Us) 4
£0(10,00),FB, )

b

+ ||U: —oar2a ||U .5 _2a
H 2”&9([0,00),]-'623’(12 +% )” 1||£°°([0,oo),]-'622,q2 )

U.
)H 2||L°°([O,oo),FB§;2a)

SI, e

) o([0,00).F B2,

B(U; @ U
IBO DU, 0

U
,m%“)n 1”m<[o,oo>,f83§2a)7

+ 0|l 5
£e([0,00),FBZ

@

and
20 ||U.
(x+2p )H 2”[,"0([0,00),}'8231(12 )

—2a+22 S ||U1||

|1B(U1 & Us)| 3 32
£o([0,00), FBZ 7)) £e([0,00),FB3

—+|U: 5 _par2a ||U 5 _on -
| 2Hﬁp([o,oo),fz%;ﬂ2 e )H 1”£°°([0,oo)f822,q2 )

Consequently,
[B(Ui @ U2)|le < CallUn]lel|Uz]le- (10)

Combining @ and , we get
t ~ o~
10U)]le < IGH)Volle + II/ Gt =PV - (U U)dr|e
0

< GOl + IBU R U)|le
< CillUoll _ ae a5 -2 + Col[U]ll|U]|e-
r(-),q
Then, f U B0 5 by L 2.2
en, for any Uy € F (). it ||Uo| _4(_)%_2@ < 10y y Lemma we
r(-),q
conclude that the problem admits a unique global mild solution U € £ such that

1Ulle < 55
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5 Conclusion

In this paper, we considered the 3-D generalized micropolar fluid system which can
describe many phenomena that occur in a large number of complex fluids, including
animal blood and liquid crystals. By using the Littlewood-Paley decomposition theory
and Fourier localization technique, we prove the global existence for the system in
variable exponent Fourier-Besov spaces and our result can be seen as a complement to
the corresponding result of Zhu and Zhao [12].
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