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Abstract: Indonesia is one of tropical countries where dengue fever disease can
spread through Aedes aegypti mosquitoes and sometimes cause deaths. There are
many control strategies to bound the spread of dengue fever: vaccination for control-
ling susceptible humans, treatment for controlling infected humans, and abateseae
(larvacides for killing the mosquito larvae). Optimal control is used for minimizing
the number of infected humans, larvae, infected mosquitoes, the cost of vaccination,
the cost of treatment, and the cost of abateseae. Due to the cost of the objective
function depending on weights, in this research, we will apply the Firefly Algorithm
(FA) to optimize the weights minimizing the cost of the objective function. The FA
is based on the behavior of flashing characteristics of fireflies. Simulations have been
applied and we can obtain the comparison of the number of humans and mosquitoes
with and without control. In addition, we also obtain the optimal weight related
to the number of infected humans, the number of larvae, the number of infected
mosquitoes, the cost of vaccination, the cost of treatment, and the cost of abateseae,
respectively.

Keywords: dengue fever; optimal control; firefly algorithm; vaccination; treatment;
abateseae.
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1 Introduction

Indonesia is one of tropical countries where dengue fever disease can spread through Aedes
aegypti mosquitoes and sometimes cause deaths. Based on the data of the Directorate
of Animal Disease Control Source, Ministry of Health Department of the Republic of
Indonesia, in 2011, there were 126,908 cases of dengue with 1,125 deaths [14].

Dengue fever disease is caused by Aedes aegypti mosquitoes. The mosquitoes have 4
life stages: egg, larva, pupa and adult (mosquito). Mosquitoes can live and reproduce
inside and outside the home. The mosquitoes are most frequently found in tropical and
subtropical areas of the world. Aedes aegypti historically is considered to be a primary
vector of viral diseases such as dengue fever, chikungunya and yellow fever. Generally,
the habitats of Aedes aegypti are the areas lacking piped water systems and depend on
water storage containers to lay their eggs. Male and female mosquitoes feed on nectar
of plants. However, female mosquitoes need blood in order to produce eggs, and they
are active in the daytime. Aedes aegypti prefers biting people but it also bites dogs and
other domestic animals, mostly mammals. Only female mosquitoes bite to obtain blood
for laying eggs.

The purpose of modelling epidemics is to provide policies designed to control the
spread of the disease [7]. There are many control strategies to bound the spread of dengue
fever: vaccination for controlling susceptible humans, treatment for controlling infected
humans, and abateseae (larvacides for killing the mosquito larvae). Optimal control is
used for minimizing the number of infected humans, larvae, infected mosquitoes, the cost
of vaccination, the cost of treatment, and the cost of abateseae [6].

From the previous researches, a mathematical model to look for stability of the disease
or for controlling the disease has been contructed [13]. In [16], the dengue fever control has
been applied by vaccination to control the number of susceptible humans to be recovered
humans. However, in Indonesia, dengue fever controls have been applied by vaccination
to control the number of susceptible humans to be recovered humans, and fogging for
devastating the mosquitoes [17]. In this paper, we construct a mathematical model for
controlling dengue fever by vaccination for controlling susceptible humans, treatment for
controlling infected humans, and abateseae (larvacides for killing the mosquito larvae)
for controlling larvae.

In the earlier research from Michalewicz, by heuristic optimization like the Genetic
Algorithm (GA), we can determine an optimal control minimizing the objective function
based on the natural selection of chromosomes [5]. In this research, the Firefly Algorithm
(FA) will be used. The FA was discovered by Xin-She Yang in 2008. It is based on the
behavior of flashing characteristics of fireflies. These insects communicate, search for a
prey, and find mates using bioluminescence with varying flaying patterns. One of the
characteristics of fireflies is the less bright one will move toward the brighter one. A
brighter firefly indicates a better objective function as a fitness function [4].

In the optimal control problem, weight selection is applied by trial and error [2].
Due to the cost of the objective function depending on weights [8], [11], in this research,
we will apply the Firefly Algorithm to optimize the weights minimizing the cost of the
objective function. In the previous research, the Ant Colony Optimization (ACO) has
been applied for SEIR contagious disease [6], [9], [10]. The artificial Bee Colony (ABC)
has been applied for influenza disease [7].

Simulations have been applied and we can obtain the comparison of the number of
humans and mosquitoes with and without control. In addition, we also obtain optimal
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weights related to the number of infected humans, the number of larvae, the number
of infected mosquitoes, the cost of vaccination, the cost of treatment, and the cost of
abateseae, respectively.

2 Optimal Control Dengue Fever Model

Generally, the disease can be modeled as a SIR (Susceptible, Infected, Recovered) epi-
demic model [6]. In the SIR epidemic model, there are three compartments of individuals:
susceptible, infected, and recovered. A susceptible individual can be an infected individ-
ual after making contact with an infected individual based on disease transmission rate.
An infected individual can be a recovered individual when the symptoms of the disease
have gone based on recovery rate [1], [12].

2.1 Mathematical model of dengue fever

The dengue fever model is the development of a standard SIR epidemic model. In the
dengue fever model, there are two different populations such as mosquito as a vector and
human as a host. The compartments of the dengue fever model can be seen in Figure
1 where in the mosquito as a vector one, there are larvae (mosquitoes in aquatic phase)
Am, susceptible mosquitoes Sm, and infected mosquitoes Im, while in the human as a
host one, there are susceptible humans Sh, infected humans Ih, and recovered humans
Rh. The mathematical model of dengue fever can be constructed in equations (1) - (8):

Figure 1: Compartments of the Dengue Fever Model.

dSh

dt
= Λ−Bβmh

Im
Nh

Sh − µhSh − u1Sh, (1)

dIh
dt

= Bβmh
Im
Nh

Sh − ηhIh − µhIh − αhIh − u2Ih, (2)

dRh

dt
= ηhIh + u1Sh + u2Ih − µhRh, (3)

dAm

dt
= φ

(
1− Am

kNh

)
(Sm + Im)− ηAAm − µAAm − u3Am, (4)

dSm

dt
= ηAAm −Bβhm

Ih
Nh

Sm − µmSm, (5)
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dIm
dt

= Bβhm
Ih
Nh

Sm − µmIm, (6)

Nh(t) = Sh(t) + Ih(t) +Rh(t), (7)

Nm(t) = Sm(t) + Im(t), (8)

with the positive solutions

Sh(t) ≥ 0, Ih(t) ≥ 0, Rh(t) ≥ 0, Am(t) ≥ 0, Sm(t) ≥ 0, Im(t) ≥ 0.

The parameters used in the model above are:
Λ : The recruitment rate (birth or immigration) of the human population.
µh : The natural death rate of humans.
µm : The natural death rate of mosquitoes (adult phase).
µA : The natural death rate of mosquitoes (aquatic phase).
B : The average daily biting (per day) of the mosquito.
βmh : The transmission probability (per bite) from infected mosquitoes to humans.
βhm : The transmission probability (per bite) from infected humans to mosquitoes.
φ : The number of eggs at each deposit per capita (per day).
ηh : The recovery rate of the human population.
ηA : The maturation rate from larvae to adult mosquitoes (per day).
αh : The death by the disease rate of humans.

In the human population, the model can be explained as follows. At the suscepti-
ble compartment, the recruitment rate (birth or immigration) can increase the number
of susceptible. However, the disease transmission rate due to the contact with infected
mosquitoes through bitings and the natural death rate can decrease the number of sus-
ceptible. At the infected compartment, the disease transmission rate due to the contact
with infected mosquitoes through bitings can increase the number of infected. How-
ever, the natural death rate, death by the disease rate, and recovery rate can decrease
the number of infected. At the recovered compartment, the recovery rate can increase
the number of recovered. However, the natural death rate can decrease the number of
recovered.

In the mosquito population including larva in aqua phase, the model can be explained
as follows. At the larvae compartment, the recruitment rate can increase the number of
larvae. However, the maturation rate and natural death rate can decrease the number of
larvae. At the susceptible compartment, the maturation rate of larvae can increase the
number of susceptible. However, the disease transmission rate due to the contact with
infected humans through bitings and the natural death rate can decrease the number of
susceptible. At the infected compartment, the disease transmission rate due to the con-
tact with infected humans through bitings can increase the number of infected. However,
the natural death rate can decrease the number of infected.

In addition, there are the control function of susceptible humans vaccinated, u1, the
control function of infected humans treated, u2, and the control function of larvae killed
by abateseae, u3. The effectiveness range of u1, u2 and u3 is [0, 1], where the value 0
means the control functions fail or are not applied, and the value 1 means the control
functions are successful or applied entirely.
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The objective function which will be minimized is

J(u, v)=

∫ tf

0

(
W1Ih(t)

2 +W2Am(t)2 +W3Im(t)2 +W4u1(t)
2 +W5u2(t)

2 +W6u3(t)
2
)
dt

(9)
with the weights W1 > 0,W2 > 0,W3 > 0,W4 > 0,W5 > 0,W6 > 0. From the model,
we want to minimize the number of infected humans, the number of larvae, the number
of infected mosquitoes, the cost of vaccination, the cost of treatment, and the cost of
abateseae.

The goal is finding u∗
1, u

∗
2, u

∗
3 such that

J(u∗
1, u

∗
2, u

∗
3) = min(J(u1, u2, u3)). (10)

2.2 Pontryagin’s maximum principle

If u∗
1, u

∗
2, u

∗
3 are the optimal control, there exist the adjoint variables(

λ1 λ2 λ3 λ4 λ5 λ6

)
which satisfy the following [3]:

dλ1

dt
= − ∂H

∂Sh
= λ1Bβmh

Im
Nh

+ λ1µh + λ1u1 − λ2Bβmh
Im
Nh
− λ3u1, (11)

dλ2

dt
= −∂H

∂Ih
= λ2ηh + λ2µh + λ2αh + λ2u2 − λ3ηh − λ3u2 +

λ5Bβhm
Sm

Nh
− λ6Bβhm

Sm

Nh
− 2W1Ih, (12)

dλ3

dt
= − ∂H

∂Rh
= λ3µh, (13)

dλ4

dt
= − ∂H

∂Am
= λ4φ

Sm + Im
kNh

+ λ4ηA + λ4µA + λ4u3 − λ5ηA − 2W2Am, (14)

dλ5

dt
= − ∂H

∂Sm
= −λ4φ+ λ4φ

Am

kNh
+ λ5Bβhm

Ih
Nh

+ λ5µm − λ6Bβhm
Ih
Nh

, (15)

dλ6

dt
= − ∂H

∂Im
= λ1Bβmh

Sh

Nh
− λ2Bβmh

Sh

Nh
− λ4φ+

λ4φ
Am

kNh
+ λ6µm − 2W3Im, (16)

with the final conditions λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = 0, where
the Hamiltonian is

H = W1Ih(t)
2 +W2Am(t)2 +W3Im(t)2 +W4u1(t)

2 +W5u2(t)
2 +W6u3(t)

2

λ1

(
Λ−Bβmh

Im
Nh

Sh − µhSh − u1Sh

)
+

λ2

(
Bβmh

Im
Nh

Sh − ηhIh − µhIh − αhIh − u2Ih

)
+

λ3 (ηhIh + u1Sh + u2Ih − µhRh)+
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λ4

(
φ

(
1− Am

kNh

)
(Sm + Im)− ηAAm − µAAm − u3Am

)
+

λ5

(
ηAAm −Bβhm

Ih
Nh

Sm − µmSm

)
+ λ6

(
Bβhm

Ih
Nh

Sm − µmIm

)
. (17)

Furthermore, we can find the optimal control u∗
1, u

∗
2, u

∗
3 :

∂H

∂u1
= 0,

2W4u1 − λ1Sh + λ3Sh = 0,

u1 = min

(
1,max

(
0,

(λ1 − λ3)Sh

2W4

))
,

∂H

∂u2
= 0,

2W5u2 − λ2Ih + λ3Ih = 0,

u2 = min

(
1,max

(
0,

(λ2 − λ3) Ih
2W5

))
,

∂H

∂u3
= 0,

2W6u3 − λ4Am = 0,

u3 = min

(
1,max

(
0,

λ4Am

2W6

))
. (18)

2.3 Forward-backward sweep method

The forward backward sweep method applied to the optimal control dengue fever model
can be designed as follows [3]. Suppose the state variables and the adjoint variables are

f1 =
dSh

dt
, f2 =

dIh
dt

, f3 =
dRh

dt
, f4 =

dAm

dt
, f5 =

dSm

dt
, f6 =

dIm
dt

,

g1 =
dλ1

dt
, g2 =

dλ2

dt
, g3 =

dλ3

dt
, g4 =

dλ4

dt
, g5 =

dλ5

dt
, g6 =

dλ6

dt
.

The algorithm to compute the objective function as the fitness function with the param-
eter weights W1 > 0,W2 > 0,W3 > 0,W4 > 0,W5 > 0,W6 > 0 is:
control dengue(W1,W2,W3,W4,W5,W6) while (process has not converged yet) uold = 0.

1. Compute the solution of state variables forward with the initial condition
x(0) = (Sh(0), Ih(0), Rh(0), Am(0), Sm(0), Im(0)) using the Runge-Kutta fourth-
order method:

k1i = fi (t, xi(t), u1(t), u2(t), u3(t)) , i = 1, 2, . . . , 6,

k2i = fi

(
t+

h

2
, xi(t) +

h

2
k1i,

u1(t) + u1(t+ h)

2
,

u2(t) + u2(t+ h)

2
,
u3(t) + u3(t+ h)

2

)
, i = 1, 2, . . . , 6,
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k3i = fi

(
t+

h

2
, xi(t) +

h

2
k2i,

u1(t) + u1(t+ h)

2
,

u2(t) + u2(t+ h)

2
,
u3(t) + u3(t+ h)

2

)
, i = 1, 2, . . . , 6,

k4i = f (t+ h, xi(t) + hk3i, u1(t+ h), u2(t+ h), u3(t+ h)) , i = 1, 2, . . . , 6,

xi(t+ h) = xi(t) +
h

6
(k1i + 2k2i + 2k3i + k4i) , i = 1, 2, . . . , 6.

2. Compute the solution of adjoint variables backward with the final condition
λ(0) = (λ1(T ), λ2(T ), λ3(T ), λ4(T ), λ5(T ), λ6(T )) using the Runge-Kutta fourth
order method:

k1i = gi (t, xi(t), λ1(t), u2(t), u3(t)) , i = 1, 2, . . . , 6,

k2i = gi

(
t− h

2
,
xi(t) + xi(t− h)

2
, λi(t)−

h

2
k1i,

u1(t) + u1(t− h)

2
,

u2(t) + u2(t− h)

2
,
u3(t) + u3(t− h)

2

)
, i = 1, 2, . . . , 6,

k3i = gi

(
t− h

2
,
xi(t) + xi(t− h)

2
, λi(t)−

h

2
k2i,

u1(t) + u1(t− h)

2
,

u2(t) + u2(t− h)

2
,
u3(t) + u3(t− h)

2

)
, i = 1, 2, . . . , 6,

k4i=gi (t− h, xi(t− h), λi(t)− hk3i, u1(t− h), u2(t− h), u3(t− h)) , i = 1, 2, . . . , 6.

λi(t− h) = λi(t) +
h

6
(k1i + 2k2i + 2k3i + k4i) , i = 1, 2, . . . , 6.

3. Compute the optimal control u∗
1, u

∗
2, u

∗
3 using equations (18).

4. Update the optimal control

u1 ←
u1 + u1,old

2
, u2 ←

u2 + u2,old

2
, u3 ←

u3 + u3,old

2
(19)

End

5. Compute the objective function as the fitness function

J(u1, u2, u3) =

T−1∑
k=0

(
W1Ih(k)

2 +W2Am(k)2 +W3Im(k)2 +W4u1(k)
2+

W5u2(k)
2 +W6u3(t)

2
)
. (20)
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3 Firefly Algorithm

The Firefly Algorithm (FA) was discovered by Xin-She Yang in 2008. It is based on the
behavior of flashing characteristics of fireflies. These insects communicate, search for a
prey, and find mates using bioluminescence with varying flaying patterns. The FA is
based on the rules [4]:

1. All fireflies are unisex so they attract one another.

2. Attractiveness is proportional to firefly brightness. For any couple of flashing fire-
flies, the less bright one will move toward the brighter one. Attractiveness is pro-
portional to brightness and they both decrease as their distance increases. If there
is no a brighter one than a particular firefly, it will move randomly.

The brightness of a firefly is affected or determined by the landscape of the objective
function. In the FA, the attractiveness of a firefly is assumed to be determined by
its brightness which is related to the objective function. The brightness of a firefly at
a particular location x can be chosen as f(x), where f(x) is the objective function.
However, if the attractiveness β is relative, it should be judged by the other fireflies.
Thus, it will vary with the distance rij between the firefly i and the firefly j.

In this algorithm, the weights used are W1,W2,W3,W4,W5,W6 related to the number
of infected humans, the number of larvae, the number of infected mosquitoes, the cost of
vaccination, the cost of treatment, and the cost of abateseae, respectively.

The overall algorithm for optimizing the weights W1,W2,W3,W4,W5,W6 using the
FA is as follows:

1. Generate the initial population position of fireflies xi =(
W i

1,W
i
2,W

i
3,W

i
4,W

i
5,W

i
6

)
, i = 1, 2, . . . ,max pop, and compute the fitness

value

f(xi) = control dengue
(
W i

1,W
i
2,W

i
3,W

i
4,W

i
5,W

i
6

)
i = 1, 2, . . . ,max pop.

2. Determine the best firefly in the population with its position

imin ← argmin
i

(
f(xi), i = 1, 2, . . . ,max pop

)
, (21)

ximin

← argmin
xi

(
f(xi), i = 1, 2, . . . ,max pop

)
. (22)

3. Do the iteration as follows:
for i = 1 : max pop
for j = 1 : max pop
if (f(x)j < f(xi)).

a. Compute the distance between the firefly i and the firefly j

rij =
∥∥xi − xj

∥∥ =

√√√√ T∑
t=1

(
xi
t − xj

t

)2

.

b. Compute the attractiveness function of a firefly β ← β0e
−γrij .

c. Generate ui = α
(
rand− 1

2

)
, with rand ∼ U(0, 1).
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d. Update the movement of the firefly i

xi ← (1− β)xi + βxj + ui

end
end
end
Generate uimin = α

(
rand− 1

2

)
, with rand ∼ U(0, 1).

Update the movement of the best firefly

ximin

← ximin

+ uimin .

4. Repeat step 3 until stopping criteria is achieved.

4 Simulation Results

Parameters used in the FA simulations are β0 = 1, γ = 5, α = 0.1 with the number of
fireflies being 10 and maximum iterations being 50. Parameters used in the dengue fever
model are [15], [16]:

Parameters Value
The recruitment rate (birth or immigration) of the human population Λ 3
The natural death rate of humans µh

1
(70×365)

The natural death rate of mosquitoes (adult phase) µm 0.0741
The natural death rate of mosquitoes (aquatic phase) µA 0.2
The average daily biting (per day) of the mosquito B 0.5
The transmission probability (per bite) from infected mosquitoes
to humans βmh 0.38
The transmission probability (per bite) from infected humans
to mosquitoes βhm 0.38
The number of eggs at each deposit per capita (per day) φ 3
The recovery rate of the human population ηh 0.17
The maturation rate from larvae to adult mosquitoes (per day) ηA 0.0541
The death by the disease rate of humans αh 0.000457

Table 1: Parameters of the Dengue Fever Model.

The simulations of the optimal control dengue fever model can be seen in Figures 3-5,
while Figure 2 is the FA simulation.

Figure 2 shows the optimization process of the FA. At the first iteration, the positions
of fireflies are random. In the optimization process, we update the brightness of fireflies
so that the fireflies move toward the brighter firefly with the minimum fitness function.
Optimal weights obtained are W1 = 0.641,W2 = 0.110,W3 = 6.040,W4 = 5.581,W5 =
7.443,W6 = 1.990 with the minimum fitness being 4.529× 1012.

Figure 3 shows the numerical solution for larvae with and without control. The
number of larvae with control is lower than that without control because of the abateseae
effect which decreases the number of larvae. The decreasement of larvae will cause the
decrease of the number of susceptible mosquitoes and infected mosquitoes.
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Initial Value Value
Susceptible humans Sh(0) 39850
Infected humans Ih(0) 50
Recovered humans Rh(0) 100
Larvae Am(0) 50
Susceptible mosquitoes Sm(0) 1500
Infected mosquitoes Im(0) 100

Table 2: Initial Value of Dengue Fever Model.

Figure 2: The FA Optimization Process.

Figure 3: Numerical Solutions for Mosquitoes as a Vector. (a) Larvae. (b) Susceptible
Mosquitoes. (c) Infected Mosquitoes.

Figure 4(a) shows the numerical solution for susceptible humans with and without
control. The number of susceptible humans with control is lower than that without
control because of the vaccination effect which decreases the number of susceptible hu-
mans. Figure 4(b) shows the numerical solution for infected humans with and without
control. The number of infected humans with control is lower than that without control
because of the treatment effect which decreases the number of infected humans. Figure
4(c) shows the numerical solution for recovered humans with and without control. The
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number of recovered humans with control is higher than that without control because of
the vaccination and treatment effect which increases the number of recovered humans.

Figure 4: Numerical Solutions for Humans as a Host. (a) Susceptible Humans. (b) Infected
Humans. (c) Recovered Humans.

Figure 5 shows the control function of vaccination, the control function of treatment
and the control function of abateseae. Each of the control functions has the range of
effectiveness between 0 to 1, where the value 0 means the control functions fail or are not
applied and the value 1 means the control functions are successfull or applied entirely.

Figure 5: Control Function Solutions. (a) Vaccination. (b) Treatment. (c) Abateseae.

5 Conclusion

The FA can optimize the weights of the optimal control dengue fever model. From the
simulations, the positions of fireflies are random. In the optimization process, we update
the brightness of fireflies so that the fireflies move toward the brighter firefly with the
minimum fitness function. When the FA has obtained optimal weights related to the
number of infected humans, the number of larvae, the number of infected mosquitoes,
the cost of vaccination, the cost of treatment, and the cost of abateseae, respectively,
the optimal weights are applied in dengue fever simulation. Based on the parameters of
the dengue fever model, we can compare the numerical solutions for larvae, susceptible
mosquitoes, infected mosquitoes in the mosquito population and the susceptible humans,
infected humans, and recovered human in the human population when the vaccination,
treatment, and abateseae controls are applied.
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Abstract: The solvability of the semilinear parabolic problem with integral overde-
termination condition for an inverse problem is investigated in this work. Accord-
ingly, we solve the generated direct problem by using the so-called “energy inequality”
method and then the inverse problem is handled with the use of the fixed point tech-
nique.
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1 Introduction

The goal of this research was to investigate the solvability of a pair of functions {y, f}
that satisfy the following semilinear parabolic problem:

yt − a
∂2y

dx2
+ by + cy3 = f(t)h(x, t), (x, t) ∈ Ω× (0, T ), (1)

with the initial condition
y(x, 0) = φ(x), x ∈ Ω, (2)

the boundary condition

y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (3)
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and the nonlocal overdetermination condition∫
Ω

y(x, t)v(x)dx = E(t), t ∈ (0, T ), (4)

where Ω is a bounded domain of Rn with smooth boundary ∂Ω, the functions g, φ,
and E are well-known and β is a positive constant. In this case, supplementary or
additional information about the solution of the main problem comes in the form of
integral condition (4).

Inverse boundary value problems exist in a variety of domains, including seismology,
biology and physics [1,2]. Inverse problems for parabolic equations satisfying the nonlocal
overdetermination condition were first investigated in [3–5], whereas the references [6–8]
discussed this subject for equations with time-independent coefficient under first and
third-order boundary conditions. Several solvability investigations of the inverse problem
and others were carried out in [9–12]. The theory of the existence and uniqueness of the
inverse problem has been examined by many authors, see [13–17] and also [18–20]. In
the present work, a new study for the inverse problem of a semilinear parabolic equation
is presented. The existence and uniqueness of the classical solution to problem (1)-(4)
are analysed by a fixed point technique.

2 Preliminaries

Let us now give certain notations and rules that we will use:

g∗(t) =

∫
Ω

v(x)h(x, t)dx, Q = Ω× (0, T ).

We use also the well-known inequality (Cauchy’s ε-inequality)

2|ab| ≤ εa2 +
1

ε
b2, a, b ∈ R.

Lemma 2.1 (Gronwall’s Lemma) Let f ∈ L∞(0, T ), g ∈ L1(0, T ) and
f(t) ≥ 0, g(t) ≥ 0. If we have

f(t) ≤ c+

∫ τ

0

f(s)g(s)ds,

then

f(t) ≤ cexp(

∫ τ

0

g(s)ds).

Lemma 2.2 (Poincare Inequality) If Ω is bounded in at least one direction, then
there exists a constant c = cΩ,p > 0 such that∫

Ω

|u|pdx ≤ c(

n∑
i=1

∫
Ω

| ∂u
∂xi

|pdx),

or, what is equivalent,

∥u∥Lp(Ω) ≤ c′∥∇u∥(Lp(Ω))n ,∀u ∈ W 1,p
0 (Ω),

where c′ is a constant dependant on c given by

c′ = c
1
p .
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3 Existence and Uniqueness of the Solution to the Direct Problem

3.1 Setting of the problem

In the rectangle Q = (0, 1)× (0, T ) = Ω× (0, T ), with T < ∞, we consider the semilinear
parabolic problem

(P )


yt − a

∂2y

dx2
+ by + cy3 = f(x, t), (x, t) ∈ Ω× (0, T ),

y(x, 0) = φ(x), x ∈ Ω,

y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

Ly = yt − a
∂2y

dx2
+ by + cy3 = f(x, t), (5)

with the initial condition

ly = y(x, 0) = φ(x), x ∈ Ω, (6)

and the Dirichlet boundary condition

y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (7)

where the functions f(x, t) and y0(x) are known functions and a, b, c are also given con-
stants that verify the following hypothesis:

A1 : a ≥ 0, b ≥ 0, c ≥ 0.

The operator L is defined from E to F , where E is the Banach space, which contains all
functions y(x, t) with finite norms

∥y|2E = ∥y∥2L∞(0,T,L2(Ω)) + ∥∂y
∂x

∥2L2(Q) + ∥y∥2L2(Q) + ∥y∥4L4(Q).

Besides, F represents the Hilbert space, which includes all elements F = (f, φ) for which
the norm

∥F∥2F = ∥f∥2L2(Q) + ∥φ∥2L2(Ω)

is finite.

3.1.1 A priori estimate

Theorem 3.1 Let condition A1 be satisfied. Then for any function y ∈ D(L), we
have the inequality

∥y∥E ≤ C∥Ly∥F ,

where C is a positive constant independent of y and D(L) denotes the domain of definition
of the operator L, which can be defined by

D(L) = {y \ y, yt,
∂y

∂x
,
∂2y

∂x2
∈ L2(Q), y ∈ L4(Q)}.
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Proof. Taking the scalar product in L2(Q) of (5) and My = y, we have

< Ly,My >L2(Q) =<yt, y>L2(Q) −a <
∂2y

dx2
, y>L2(Q) +b <y, y>L2(Q) +c <y3, y>L2(Q)

=< f, y >L2(Q) .
(8)

Integrating (3.1.1) and applying Cauchy’s ε-inequality yield

1

2
∥y(., τ)∥2L2(Ω) + a∥∂y

∂x
∥2L2(Q) + b∥y∥2L2(Q) + c∥y∥4L4(Q)

≤ 1

2ε
∥f∥2L2(Q) +

1

2
∥φ∥2L2(Ω) +

ε

2

∫ T

0

∥y∥2L2(Ω)dt.

Using Gronwall’s lemma and the fact that the right-hand side is not related to τ , we
substitute the left-hand side with its upper bound with respect to τ from 0 to T to
obtain

∥y∥2L∞(0,T,L2(Ω)) + ∥∂y
∂x

∥2L2(Q) + ∥y∥2L2(Q) + ∥y∥4L4(Q) ≤ C(∥f∥2L2(Q) + ∥φ∥2L2(Ω)),

where

C =
max(

c′

2
,
c′

2ε
)

min(
1

2
, a, b, c)

and c′ = exp(
εT

2
).

Consequently, we have
∥y∥E ≤ C∥Ly∥F . (9)

Proposition 3.1 The operator L from E to F has a closure.

Proof. Let (yn)n∈N ⊂ D(L) be a sequence such that

yn −→ 0 in E

and
Lyn −→ (f, φ) in F. (10)

Herein, we should prove that

f ≡ 0, φ ≡ 0 in F.

The convergence of yn to 0 in E entails that

yn −→ 0 in D′(Q). (11)

According to the continuity of the derivation of D′(Q) and the continuity distribution
of the function y2, relation (11) involves

Lyn −→ 0 in D′(Q). (12)

Also, the convergence of Lyn to f in L2(Q) gives

Lyn −→ f in D′(Q). (13)
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By means of the uniqueness of the limit in D′(Q), we can deduce from (12) and (13) that
f ≡ 0. Therefore, it can be generated from (10) that

lyn −→ φ in L2(Ω).

On the other hand, we have

∥yn∥E ≥ ∥yn∥2L∞(0,T,L2(Ω)),

i.e.,

∥yn∥E ≥ ∥φ∥2L2(Ω).

Immediately, we have

yn −→ 0 in E,

which implies

∥yn∥2E −→ 0 in R.

So, we get φ ≡ 0, and as a result, the operator L is closable.

Definition 3.1 Let L be the closure of L and D(L) be the definition domain of L.
The solution of the equation

Ly = F

is called a strong solution to problem (5)-(7). Then a priori estimate (9) can be extended
to the strong solution, i.e., we have the following inequality:

∥y∥E ≤ C∥Ly∥F ,∀y ∈ D(L). (14)

Corollary 3.1 The range R(L) of the operator L is closed in F and equal to the
closure R(L) of R(L).

Proof. First, we prove the uniqueness of the solution if it exists. Let y1 and y2 be
two different solutions. If we put η = y1 − y2, then η satisfies

(P ′)


ηt − a

∂2η

∂x2
+ c(y31 − y32) + bη = 0, (x, t) ∈ Q,

η(x, 0) = 0, x ∈ Ω,

η(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

(15)

ηt − a
∂2η

∂x2
+ c(y31 − y32) + bη = 0, (x, t) ∈ Q. (16)

By multiplying (16) by η and integrating the result over Ω, we get∫
Ω

ηt(x, t).η(x, t)dx− a

∫
Ω

∂2η

∂x2
.η(x, t)dx+ c

∫
Ω

(y31 − y32)(y1 − y2)dx+ b

∫
Ω

η2(x, t)dx = 0.

Consequently, we can get

1

2

d

dt
∥η∥2L2(Ω) + a∥∂η

∂x
∥2L2(Ω) + b∥η∥2L2(Ω) + c

∫
Ω

(y31 − y32)(y1 − y2)dx = 0. (17)
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As the function λ3 is a monotone function over Ω, we can conclude that the last term of
the left-hand side of (17) is positive, so it follows that

d

dt
∥η∥2L2(Ω) ≤ 0,

which implies that for all t ∈ (0, T ), we have y1(t) = y2(t) in E. Now, we will return to
the proof of Corollary 3.1. To this end, we let z ∈ R(L). Then there exists a Cauchy
sequence (zn)n∈N in R(L) such that

lim
n−→+∞

zn = z.

So, there exists a corresponding sequence (yn)n∈N in D(L) such that Lyn = zn. Now, let
ε, n ≥ n0 and m,m′ ∈ N such that m ≥ m′ and ym, ym′ are two solutions, i.e.,

Lym = f and Lym′ = f.

We put ϕ = ym − ym′ and we apply to ϕ the same procedure that we used to
demonstrate the uniqueness of the solution in the previous step. This yields ϕ = 0. It
means that for all t ∈ (0, T ), we have

0 ≤ ∥ym(t)− ym′(t)∥E ≤ 0 (18)

↔ ∀ε ≥ 0, ∃n0 ∈ N\∀m,m′ ≥ n0 : ∥ym(t)− ym′(t)∥E ≤ ε.

As a result, (yn)n is a Cauchy sequence in the Banach space E. So, there is y ∈ E such
that

lim
n−→+∞

yn = y.

By virtue of the definition of L (i.e., limn−→+∞ yn = y if limn−→+∞ Lyn =
limn−→+∞ zn = z, and so limn−→+∞ Lyn = z as L is closed, which implies that Ly = z),
the function y verifies

y ∈ D(L), Ly = z.

Thus z ∈ R(L), and so R(L) ⊂ R(L). In the same regard, we can also deduce that
R(L) is closed because it is a Banach space. It remains to prove the reverse inclusion.
For this purpose, we observe that z ∈ R(L), and then there exists a sequence of (zn)n in
F consisting of the elements of the set R(L) such that

lim
n−→+∞

zn = z.

As a result, there exists a corresponding sequence (vn)n ⊂ D(L) such that

lim
n−→+∞

Lvn = zn.

On the other hand, we have (vn)n is a Cauchy sequence in F . So, there is v ∈ E such
that

lim
n−→+∞

vn = v, v ∈ E.

This implies
lim

n−→+∞
Lvn = z.

Consequently, z ∈ R(L), and hence we conclude that R(L) ⊂ R(L).
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3.1.2 Solvability of the direct problem

To prove the existence of the solution, we must prove that R(L) is dense in F for all
y ∈ E and for arbitrary F = (f, φ) ∈ F.

Theorem 3.2 Suppose that A1 is satisfied. Then for each F = (f, φ) ∈ F , there is
a unique strong solution y = L−1F = L−1F to problem (P).

Proof. First, we prove that R(L) is dense in F for all y ∈ D(L) for the exceptional
case when D(L) is reduced to D0(L), where

D0(L) = {y, y ∈ D(L) : ly = 0}.

Proposition 3.2 Let the conditions of Theorem 3.2 be satisfied. If for w ∈ L2(Q)
and for each y ∈ D0(L), we have ∫

Q

Ly.wdxdt = 0, (19)

then w vanishes almost everywhere in Q.

Proof. The scalar product of F is defined as follows:

(Ly,W )F =

∫
Q

Ly.wdxdt,W = (w, 0) ∈ D(L). (20)

If we put y = w, the equality (19) can be written as follows:∫
Q

yt(t, x).y(t, x)dxdt− a

∫
Q

∂2y

∂x2
.y(t, x)dxdt+ b

∫
Q

y2(t, x)dxdt+ c

∫
Q

y4(t, x)dxdt = 0.

(21)
Integrating (21) by parts yields

a∥∂y
∂x

∥2L2(Q) + b∥y∥2L2(Q) + c∥y∥4L4(Q) =
−1

2
∥y∥2L2(Ω).

So, we can deduce that ∥y∥2L2(Q) ≤ 0, i.e., y ≡ 0 in Q, and hence w ≡ 0. Now, we return

to the proof of Theorem 3.2. To this end, we suppose that W = (w,w1) ∈ R⊥(L). This
implies

(Ly,W )F =

∫
Q

Ly.wdxdt+
∫
Ω

ly.w1dx = 0,∀y ∈ D(L). (22)

By means of the last proposition and by putting y ∈ D0(L), we obtain w ≡ 0. Thus,
(22) becomes ∫

Ω

ly.w1dx = 0, ∀y ∈ D(L). (23)

The range of the trace operator l is dense in the Hilbert space F , then the equality (23)
implies that w1 = 0. As a result, we can conclude that W = 0, and this completes the
proof of Theorem 3.2.
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4 Existence and Uniqueness of Solution of the Inverse Problem

In this section, we will suppose that the functions appearing in the problem data are
measurable and satisfy the following conditions:

(H)


h ∈ C(0, T, L2(Ω)), v ∈ V = {v, ∂v

∂x
∈ L2(Ω), v ∈ L4(Ω)}, E ∈ W 2

2 (0, T ),

∥h(x, t)∥ ≤ m; |g∗(t)| ≥ r > 0, for r ∈ R, (x, t) ∈ Q,

φ(x) ∈ W 1
2 (Ω).

.

The relation between f and y is given by the following linear operator:

A : L2(0, T ) −→ L2(0, T ), (24)

with the value

Af(t) =
1

g∗
{a
∫
Ω

∂y

∂x

∂v

∂x
dx+ c

∫
Ω

y3(t, x)v(x)dx}. (25)

As a result, the preceding relationship between f and y may be expressed as a second-
order linear equation for the function f over L2(0, T ) such that

f = Af + µ, (26)

where

µ =
E′ + bE

g∗
. (27)

Theorem 4.1 Assume that the input of data of the inverse problem (1)-(4) verifies
condition (H). Then the following statements are equivalent:

• If the inverse problem (1)-(4) is solved, then so is equation (26).

• If equation (26) has a solution and the compatibility condition E(0) =∫
Ω
φ(x)v(x)dx is true, then the inverse problem (1)-(4) has also a solution.

Proof.

• Assume that the inverse problem (1)-(4) is solved. We denote its solution by {y, f}.
Now, multiplying (1) by v and then integrating the result over Ω yield

d

dt

∫
Ω

y(t, x)v(x)dx+ a

∫
Ω

∂y

∂x

∂v

∂x
dx+ b

∫
Ω

y(x, t)v(x)dx+ c

∫
Ω

y3(t, x)v(x)dx

= f(t)g∗(t).
(28)

Using (4) and (24) implies

E′ + bE

g∗
+Af = f.

This gives that f solves equation (26).
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• According to the assumption, the equation (25) has a solution, say f . By substi-
tuting f into equation (1), the resulting relationships (1)-(3) can be then treated
as a direct problem with a unique solution. It is yet up to us to show that y verifies
the integral overdetermination (4). By the equation (28), the function y is subject
to the following relation:

E′ + bE + a

∫
Ω

∂y

∂x

∂v

∂x
dx+ c

∫
Ω

y3(t, x)v(x)dx = f(t)g∗(t). (29)

Subtracting equation (28) from (29) yields

d

dt

∫
Ω

y(t, x)v(x)dx+ b

∫
Ω

y(x, t)v(x)dx = E′ + bE. (30)

Now, integrating the above differential equation and using the compatibility con-
dition E(0) =

∫
Ω
φ(x)v(x)dx lead us to the conclusion that y satisfies the integral

condition (4). As a result, we can conclude that {y, f} is the solution of the inverse
problem (1)-(4).

In what follows, we aim to introduce some properties connected to the operator A.

Lemma 4.1 If (H1) holds, then there exists a positive δ for which the operator A is
a contracting operator in L2(0, T ).

Proof. We obtain from (25) the following estimate:

|Af(t)|2 ≤ 2

r2
[a2∥∂y

∂x
∥2L2(Ω)∥

∂v

∂x
∥2L2(Ω) + γ∥v∥2L4(Ω)∥y∥

4
L4(Ω)],

where γ = ∥y∥2L∞(0,T,L4(Ω)) ≥ 0. Now, integrating the above equality over (0, T ) yields∫ T

0

|Af(t)|2 ≤ 2

r2
max(a2∥∂v

∂x
∥2L2(Ω), γ∥v∥

2
L4(Ω))

∫ T

0

(∥∂y
∂x

∥2L2(Ω) + ∥y∥4L4(Ω))dt. (31)

So, we get

∥Af∥L2(0,T ) ≤ K(

∫ T

0

(∥∂y
∂x

∥2L2(Ω) + ∥y∥4L4(Ω))dt)

1

2 ,

where

K =
1

r

√
2max(a2∥∂v

∂x
∥2L2(Ω), γ∥v∥

2
L4(Ω)).

By multiplying both sides of (1) by y in L2(Q) and then by integrating the resulting
expression by parts with the use of Cauchy’s ε-inequality and the Poincare inequality,
we get

1

2
∥y∥2L2(Ω) + (a− c′′ε

2
)∥∂y

∂x
∥2L2(Q) + b∥y∥2L2(Q) + c∥y∥4L4(Q) ≤

m2

2ε
∥f∥2L2(0,T ) +

1

2
∥φ∥2L2(Ω),

(32)

with a− c′′ε

2
> 0. With the help of passing to the maximum and omitting some terms,

we get ∫ T

0

(∥∂y
∂x

∥2L2(Ω) + ∥y∥4L4(Ω))dt ≤ M ′∥f∥2L2(0,T ), (33)
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where

M ′ =

m2

2ε

min(a− c′′ε

2
, c)

.

It means that

(∫ T

0

(∥∂y
∂x

∥2L2(Ω) + ∥y∥4L4(Ω))dt

)1

2
≤ M ′′∥f∥L2(0,T ), (34)

where M ′′ =
√
M ′. Consequently, we get

∥Af∥L2(0,T ) ≤ δ∥f∥L2(0,T ), (35)

with δ = KM ′′. It is obvious from the above assertion that there exists a positive δ
such that δ ≤ 1. Thus, inequality (35) demonstrates that the operator A is a contracting
mapping in L2(0, T ).

Theorem 4.2 Let the compatibility condition E(0) =
∫
Ω
φ(x)v(x)dx and the condi-

tion (H) hold. Then the following statements are correct:

• With any initial iteration f0 ∈ L2(0, T ), the following approximations are correct:

fn+1 = Afn, (36)

which converge to f in the L2(0, T, L2(0, T ))-norm.

• The inverse problem (1)-(4) has a unique solution {y, f}.

Proof.

• We have the following operator A : L2(0, T ) −→ L2(0, T, L2(0, T )), which is defined
by

Af = Af +
E′ + bE

g∗
, (37)

where the operator A and the function g∗ come from (25). As a result of (36),
relation (26) can be expressed as

f = Af. (38)

As a result, it is sufficient to show that the operator A has a fixed point in the
space L2(0, T, L2(0, T )). Accordingly, we can have

Af1 −Af2 = Af1 −Af2 = A(f1 − f2).

From estimate (35), we can deduce that

∥Af1 −Af2∥L2(0,T ) ≤ δ∥f1 − f2∥L2(0,T,L2(0,T )). (39)

Based on (38), A is a contracting mapping on L2(0, T, L2(0, T )). As a result, A
has a unique fixed point f in L2(0, T, L2(0, T )) and the successive approximations
(36) converge to f in L2(0, T, L2(0, T ))-norm, which is independent of the initial
iteration f0 ∈ L2(0, T, L2(0, T )).
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• This demonstrates that equations (38) and (26) have a unique solution f in
L2(0, T, L2(0, T )). The existence of a solution to the main problem is proved by
Theorem 4.1, but it has to be proven that this solution is unique. Using the
demonstration by contradiction, we assume that there are two distinct solutions
{y1, f1} and {y2, f2} to problem (1)-(4). First, we claim that f1 ̸= f2 almost ev-
erywhere on (0, T ). If f1 = f2, then by applying the uniqueness theorem to the
related direct problem (5)-(7), we find y1 = y2 almost everywhere in Q. Given that
both pairs have verified (28), we infer that the functions f1 and f2 are two distinct
solutions to equation (38), which contradicts the uniqueness of the functions.

Corollary 4.1 If the conditions of Theorem 4.2 are satisfied, then the solution f
varies continuously with respect to the data µ of the equation (26).

Proof. Let µ and ϑ be two sets of data that satisfy the assumptions of Theorem
4.2 and let f and g be two solutions of the equation (26), which correspond to µ and ϑ,
respectively. As a result of (26), we have

f = Af + µ, g = Ag + ϑ.

By calculating the difference f − g and by using (35), we can have:

∥f − g∥L2(0,T,L2(0,T )) ≤
1

1− δ
∥µ− ϑ∥L2(0,T ).

Therefore, the proof of this corollary is completed.

5 Conclusion

The novel contribution of this manuscript has been successfully made by investigating
the solvability of the semilinear parabolic problem with the integral overdetermination
condition for an inverse problem. In addition, we have solved the direct problem by using
the ”energy inequality” method and accordingly, we have dealt with the inverse problem
by using the fixed point technique.
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Abstract: In the present paper, some new explicit bounds on solutions to a class of
new nonlinear retarded integral inequalities of Volterra-Fredholm type for the func-
tions of n-independent variables are established, which generalize some known integral
inequalities. The derived results can be used as useful tools in the study of certain
integral and differential equations of Volterra-Fredholm type. An application is given
to illustrate the usefulness of our results.
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1 Introduction

It is well known that the Gronwall-Bellman integral inequality [3,8] and its various gener-
alizations which provide explicit bounds on unknown functions have played an important
role in the study of existence, uniqueness, boundedness, and other qualitative proper-
ties of solutions of differential equations, integral equations and have been applied in
the stability analysis of solutions to dynamic equations on time scale [1, 12]. Recently,
many authors have further improved more general forms of this inequality [2,4,6]. In the
past few decades, many such new interesting retarded integral inequalities of Volterra-
Fredholm type were established [10,15].
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In [13] and [14], respectively, Pachpatte has established the following useful linear
Volterra-Fredholm type integral inequalities with delay:

u(t) ≤ k +

∫ α(t)

α(t0)

a(t, s)

[
f(s)u(s) +

∫ s

α(t0)

c(s, τ)u(τ)dτ

]
ds+

∫ α(T )

α(t0)

b(t, s)u(s)ds, (1)

u(x, y) ≤ c+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

a(x, y, s, t)u(s, t)dtds+

∫ α(M)

α(x0)

∫ β(N)

β(y0)

b(x, y, s, t)u(s, t)dtds.

(2)
In [11], Ma and Pečarić discussed the following nonlinear retarded Volterra-Fredholm
integral inequality:

u(x, y) ≤ k +

∫ ∫ α(x)

α(x0)

∫ β(x)

β(x0)

σ1(s, t)
[
f(s, t)ω (u(s, t))

+

∫ s

α(x0)

∫ t

β(x0)

σ2(τ, ξ)ω (u(τ, ξ)) dξdτ

]
dtds

+

∫ α(M)

α(x0)

∫ β(M)

β(x0)

σ1(s, t)
[
f(s, t)ω (u(s, t))

+

∫ s

α(x0)

∫ t

β(x0)

σ2(τ, ξ)ω (u(τ, ξ)) dξdτ

]
dtds. (3)

El-Deeb and Ahmed [5] have established the following useful Volterra-Fredholm type
integral inequality with delay which generalizes some results obtained in [9]:

ωp(t) ≤ c(t) +

∫ α(t)

a

g(s)ω(s)ds+

∫ b

a

f(s)ωp(s)ds. (4)

However, in certain situations such as some classes of delay differential or integral equa-
tions of Volterra-Fredholm type, it is desirable to find some new delay inequalities in
order to achieve a diversity of desired goals. In this paper, we discuss a class of retarded
integral inequalities of Volterra-Fredholm type. We use some analysis techniques to get
the explicit estimations of the unknown function in the inequality. Finally, we give an
application to illustrate the usefulness of our results.

2 Main Results

Throughout this paper, we use the following notations: I = [x0, T ] = I1 × ... × In,
where Ii = [x0i , Ti], i = 1, ..., n, and x0 =

(
x01, ..., x

0
n

)
, T = (T1, ..., Tn) ∈ Rn, ∆ ={

(x, s) ∈ I2 : x0 ≤ s ≤ x ≤ T
}
. If x = (x1, ..., xn) and y = (y1, ..., yn) belong to Rn, we

write x ≤ y (x < y) if and only if xi ≤ yi (xi < yi), i = 1, ..., n. We also adopt the
notation x = (x1, x2, ..., xn) = (x1, x

1), where x1 = (x2, ..., xn), (x
0)1 =

(
x02, ..., x

0
n

)
, and

• Di =
∂
∂xi

, i = 1, ..., n,

• dx1 = dxn...dx2,

•
∫ x
x0 ...ds =

∫ x1

x0
1
...
∫ xn

x0
n
....dsn...ds1 =

∫ x1

x0
1

∫ x1

(x0)1
....ds1ds1,
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•
∫ α(x)
α(x0)

...ds =
∫ α1(x1)

α(x0
1)

...
∫ αn(xn)

α(x0
n)

...dsn...ds1.

In the following, we establish some new generalized Volterra-Fredholm type integral
inequalities in n-independent variables.

Theorem 2.1 Let u(x) ∈ C (I,R+), f(x, s), γ1(x, s), γ2(x, s) ∈ C (∆,R+) and
f, γ1, γ2 be nondecreasing in x for each s ∈ I, α(x) = (α1(x1), ..., αn(xn)) ∈ C1 (I, I),
where αi(xi) ∈ C1 (Ii, Ii) are nondecreasing functions on Ii with αi(xi) ≤ xi, i = 1, ..., n.
Let ψ, ω, ω1 ∈ C(R+,R+) be nondecreasing with {ψ, ω, ω1} (u) > 0 for u > 0, and
lim

u→+∞
ψ(u) = +∞ and F1(v) =

∫ v
v0

ds
ω(ψ−1(s))ω1(ψ−1(s)) , v ≥ v0 > 0, F1(+∞) = +∞.

If u(x) satisfies

ψ (u(x)) ≤ u0 +

∫ α(x)

α(x0)

γ1(x, s)ω(u(s))

[
f(x, s)ω1(u(s)) +

∫ s

α(x0)

γ2(s, τ)ω1(u(τ))dτ

]
ds

+

∫ α(T )

α(x0)

γ1(x, s)ω(u(s))
[
f(x, s)ω1(u(s))

+

∫ s

α(x0)

γ2(s, τ)ω1(u(τ))dτ

]
ds (5)

for x ∈ I, where u0 ≥ 0 is a constant and

H1(t) = F1(2t− u0)− F1(t) (6)

is increasing for t ≥ u0, then

u(x) ≤ ψ−1

{
F−1
1

(
F1

[
H−1

1

(∫ α(T )

α(x0)

γ1(x, s)

[
f(x, s) +

∫ s

α(x0)

γ2(s, τ)dτ

]
ds

)]

+

∫ α(x)

α(x0)

γ1(x, s)

[
f(x, s) +

∫ s

α(x0)

γ2(s, τ)dτ

]
ds

)}
(7)

for x ∈ I, F−1
1 and H−1

1 are the inverse functions of F1 and H1, respectively.

Proof. Let u0 > 0 and fix any arbitrary X = (X1, ..., Xn) ∈ I, then for x0 ≤ x ≤
X ≤ T , we define a positive and nondecreasing function z(x) on I by the right-hand side
of (5) for x ∈ I, so we have

u(x) ≤ ψ−1 (z(x)) , (8)

and

D1...Dnz(x) ≤ γ1(X,α(x))ω(ψ
−1 (z(α(x))))

[
f(X,α(x))ω1(ψ

−1 (z(α(x))))

+

∫ α(x)

α(x0)

γ2(α(x), τ)ω1(ψ
−1 (z(τ)))dτ

]
α′(x)

≤ γ1(X,α1(x1), ..., αn(xn))(ωω1)(ψ
−1 (z(α1(x1), ..., αn(xn))))[

f(X,α1(x1), ..., αn(xn)) +

∫ α1(x1)

α1(x0
1)

...

∫ αn(xn)

αn(x0
n)

γ2(α(x), τ1, ..., τn)

dτn...dτ1

]
α′
1(x1)...α

′
n(xn).
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So

D1...Dnz(x)

(ωω1)(ψ−1(z(x)))
≤ γ1(X,α1(x1), ..., αn(xn))

[
f(X,α1(x1), ..., αn(xn)) +∫ α1(x1)

α1(x0
1)

...

∫ αn(xn)

αn(x0
n)

γ2(α(x), ..., αn(xn), τ1, ..., τn)dτn...dτ1

]
α′
1(x1)× ...× α′

n(xn),

then

Dn

(
D1...Dn−1z(x)

(ωω1)(ψ−1(z(x)))

)
≤ γ1(X,α1(x1), ..., αn(xn))

[
f(X,α1(x1), ..., αn(xn)) +∫ α1(x1)

α1(x0
1)

...

∫ αn(xn)

αn(x0
n)

γ2(α1(x1), ..., αn(xn), τ1, ..., τn)

dτn...dτ1

]
α′
1(x1)× ...× α′

n(xn). (9)

Keeping x1, ..., xn−1 fixed in (9), setting xn = sn and integrating with respect to sn from
x0n to xn, we get

D1...Dn−1z(x)

(ωω1)(ψ−1(z(x)))
≤

∫ αn(xn)

αn(x0
n)

γ1(X,α1(x1), ...., αn−1(xn−1), sn)[
f(X,α1(x1), ...., αn−1(xn−1), sn) +∫ α1(x1)

α1(x0
1)

...

∫ sn

αn(x0
n)

γ2(α1(x1), ..., αn−1(xn−1), sn, τ1, ..., τn)

dτn...dτ1

]
α′
1(x1)× ...× α′

n−1(xn−1)dsn.

Repeating this, we find (after n− 1 steps)

D1z(x)

ωω1(ψ−1(z(x)))
≤

∫ α2(x2)

α2(x0
2)

...

∫ αn(xn)

αn(x0
n)

γ1(X,α1(x1), s2, ..., sn)
[
f(X,α1(x1), s2, ..., sn)

+

∫ α1(x1)

α1(x0
1)

∫ s2

α2(x0
2)

...

∫ sn

αn(x0
n)

γ2(α1(x1), s2, ..., sn, τ1, ..., τn)

dτn...dτ1

]
α′
1(x1)dsn...ds2. (10)

Keeping x1 = (x2, ..., xn) fixed in (10), replacing x1 by s1 and then integrating with
respect to s1 from x01 to x1, we obtain

z(x) ≤ F−1
1

(
F1(z(x

0
1, x

1)) +

∫ α(x)

α(x0)

γ1(X, s)

[
f(X, s) +

∫ s

α(x0)

γ2(s, τ)dτ

]
ds

)
(11)

for x ∈ I. From the equation

z(x01, x
1) = u0+

∫ α(T )

α(x0)

γ1(X, s)ω(u(s))

[
f(X, s)ω1(u(s)) +

∫ s

α(x0)

γ2(s, τ)ω1(u(τ))dτ

]
ds,
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we observe that

z(T ) = 2z(x01, x
1)− u0 = u0 + 2

∫ α(T )

α(x0)

γ1(X, s)ω(u(s))
[
f(X, s)ω1(u(s))

+

∫ s

α(x0)

γ2(s, τ)ω1(u(τ))dτ

]
ds.

Using (11), we get

2z(x01, x
1)−u0 ≤ F−1

1

(
F1(z(x

0
1, x

1)) +

∫ α(T )

α(x0)

γ1(X, s)

[
f(X, s) +

∫ s

α(x0)

γ2(s, τ)dτ

]
ds

)
,

or

F1

(
2z(x01, x

1)− u0
)
− F1(z(x

0
1, x

1)) ≤
∫ α(T )

α(x0)

γ1(X, s)

[
f(X, s) +

∫ s

α(x0)

γ2(s, τ)dτ

]
ds,

(12)

thenH1

(
z(x01, x

1)
)
≤
∫ α(T )

α(x0)
γ1(X, s)

[
f(X, s) +

∫ s
α(x0)

γ2(s, τ)dτ
]
ds. SinceH1 is increas-

ing, for t ≥ u0, we get

z(x01, x
1) ≤ H−1

1

(∫ α(T )

α(x0)

γ1(X, s)

[
f(X, s) +

∫ s

α(x0)

γ2(s, τ)dτ

]
ds

)
. (13)

Since X ∈ I is chosen arbitrary, now substituting (13) into (11) and from (8), we obtain
the desired inequality (7). If u0 = 0, we carry out the above procedure with ε > 0 instead
of u0 and subsequently let ε→ 0. 2

Remark 2.1 For γ1 = 1, γ2 = 0, ψ(u) = ω1(u) = u, ω(u) = 1 and x2 = (x3, ..., xn)
fixed, inequality (5) reduces to inequality (2).

Remark 2.2 For ψ(u) = u, γ1(x, s) = γ1(s), γ2(s, τ) = γ2(τ), f(x, s) = f(s), ω(u) =
1 and x1 fixed, (5) reduces to (3). Further, for ψ(u) = u, γ1(x, s) = γ1(s), γ2(s, τ) =
γ2(τ), f(x, s) = f(s), ω(u) = 1 and x2 fixed, Theorem 2.1 reduces to Theorem 3.1 in [11].

Theorem 2.2 Let u, f, g, h ∈ C (I,R+) and α(x) = (α1(x1), ..., αn(xn)) ∈ C1 (I, I),
where αi(xi) ∈ C1 (Ii , Ii) are nondecreasing functions on Ii with αi(xi) ≤ xi, i = 1, ..., n.
Let ω1, ω2, ω3,

ω3

ω2
∈ C(R+,R+) be nondecreasing with ωi(u) > 0 (i = 1, 2, 3) for u > 0,

and

G1(r) =

∫ r

r0

ds

ω1ω2(s)
, G2(r) =

∫ r

r0

ω2

(
G−1

1 (s)
)
ds

ω3

(
G−1

1 (s)
) , r ≥ r0 > 0, G1(∞) = G2(∞) = ∞,

(14)

H1(u) = G2 (G1 (2u− u0))−G2

(
G1(u) +

∫ α(T )

α(x0)

f(s)g(s)ds

)

−
∫ α(T )

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds (15)
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is increasing, and H1(u) = 0 has a solution c for u ≥ u0. If u(x) satisfies

u(x) ≤ u0 +

∫ α(x)

α(x0)

f(s)ω1(u(s))

[
g(s)ω2 (u(s)) +

∫ s

α(x0)

h(τ)ω3(u(τ))dτ

]
ds

+

∫ α(T )

α(x0)

f(s)ω1(u(s))

[
g(s)ω2 (u(s)) +

∫ s

α(x0)

h(τ)ω3(u(τ))dτ

]
ds, (16)

then

u(x) ≤ G−1
1

{
G−1

2

[
G2

(
G1(c) +

∫ α(x)

α(x0)

f(s)g(s)ds

)
+

∫ α(x)

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds

]}
(17)

for x ∈ I, where G−1
1 , G−1

2 are the inverse functions of G1, G2, respectively.

Proof. Let u0 > 0 and z(x) denote the function on the right-hand side of (16), which
is positive and nondecreasing function on I. Then we have

u(x) ≤ z(x), (18)

and

z
(
x01, x

1
)
= u0 +

∫ α(T )

α(x0)

f(s)ω1(u(s))

[
g(s)ω2 (u(s)) +

∫ s

α(x0)

h(τ)ω3(u(τ))dτ

]
ds.

Differentiating z(x) with respect to x, using (18), we have

D1...Dnz(x) ≤ α′(x)f (α(x))ω1(z(α(x)))

[
g(α(x))ω2 (z(α(x))) +

∫ α(x)

α(x0)

h(τ)ω3(z(τ))dτ

]
by the monotonicity of ω1, ω2, and z and the property of α. From the above inequality,
we have

D1...Dnz(x)

(ω1ω2)(z(x))
≤ α′(x)f (α(x))

[
g(α(x)) +

∫ α(x)

α(x0)

h(τ)
ω3(z(τ))

ω2 (z(τ))
dτ

]
,

or

Dn

(
D1...Dn−1z(x)

ω1ω2(z(x))

)
≤ α′

1(x1)...α
′
n(xn)f (α1(x1), ..., αn(xn))

[
g(α1(x1), ..., αn(xn))

+

∫ α1(x1)

α1(x0
1)

...

∫ αn(xn)

αn(x0
n)

h(τ1, ..., τn)
ω3(z(τ1, ..., τn))

ω2 (z(τ1, ..., τn))
dτn...dτ1

]
.

Keeping x1, ..., xn−1 fixed, integrating both sides of the above inequality from x0n to xn,
we obtain

D1..Dn−1z(x)

ω1ω2(z(x))
≤

∫ αn(xn)

αn(x0
n)

f (α1(x1), ..., αn−1(xn−1), sn)
[
g(α1(x1)..., αn−1(xn−1), sn)

+

∫ α1(x1)

α1(x0
1)

...

∫ αn−1(xn−1)

αn−1(x0
n−1)

∫ sn

αn(x0
n)

h(τ1, ..., τn)
ω3(z(τ1, ..., τn))

ω2 (z(τ1, ..., τn))

dτn...dτ1

]
α′
1(x1)× ...× α′

n−1(xn−1)dsn.
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Continuing this process, we obtain (after n− 1 steps)

D1z(x)

ω1ω2(z(x))
≤

∫ α2(x2)

α2(x0
2)

...

∫ αn(xn)

αn(x0
n)

f (α1(x1), s2, ..., sn)
[
g(α1(x1), s2, ..., sn) +∫ α1(x1)

α1(x0
1)

∫ s2

α2(x0
2)

...

∫ sn

αn(x0
n)

h(τ1, ..., τn)
ω3(z(τ1, ..., τn))

ω2 (z(τ1, ..., τn))
dτn...dτ1

]
α′
1(x1)ds

1.

Integrating the above inequality from x01 to x1, using (14), we obtain

G1 (z(x)) ≤ G1

(
z(x01, x

1)
)
+

∫ α(x)

α(x0)

f(s)

[
g(s) +

∫ s

α(x0)

h(τ1, ..., τn)
ω3(z(τ))

ω2 (z(τ))
dτ

]
ds

≤ G1

(
z(x01, x

1)
)
+

∫ α(X)

α(x0)

f(s)g(s)ds

+

∫ α(x)

α(x0)

f(s)

(∫ s

α(x0)

h(τ1, ..., τn)
ω3(z(τ))

ω2 (z(τ))
dτ

)
ds (19)

for all x ∈ [x0, X], X ∈ I, andX is chosen arbitrarily. Let v(x) denote the function on the
right-hand side of (19), which is positive and nondecreasing in each variable x ∈ [x0, X].

From (19), we have

z(x) ≤ G−1
1 (v(x)) , ∀x ∈ [x0, X], (20)

v(x01, x
1) = G1

(
z(x01, x

1)
)
+

∫ α(X)

α(x0)

f(s)g(s)ds.

Differentiating v(x) with respect to x, by the monotonicity of v,G−1
1 , and ω3

ω2
, the property

of α, and (20), we have

D1...Dnv(x) ≤ α′(x)f (α(x))
ω3(G

−1
1 (v(x)))

ω2

(
G−1

1 (v(x))
) ∫ α(x)

α(x0)

h(τ1, ..., τn)dτ

for all x ∈ [x0, X]. Then we have

ω2

(
G−1

1 (v(x))
)
D1...Dnv(x)

ω3(G
−1
1 (v(x)))

≤ α′(x)f (α(x))

∫ α(x)

α(x0)

h(τ1, ..., τn)dτ,

Dn

(
ω2

(
G−1

1 (v(x))
)
D1...Dn−1v(x)

ω3(G
−1
1 (v(x)))

)
≤ α′(x)f (α(x))

∫ α(x)

α(x0)

h(τ1, ..., τn)dτ.

Keeping x1 fixed, integrating both sides of the above inequality with respect to x2, ..., xn,
respectively, we obtain (after n− 1 steps)

ω2

(
G−1

1 (v(x))
)
D1v(x)

ω3(G
−1
1 (v(x)))

≤
∫ α2(x2)

α2(x0
2)

...

∫ αn(xn)

αn(x0
n)

f (α1(x1), s2, ..., sn)×(∫ α1(x1)

α1(x0
1)

∫ s2

α2(x0
2)

...

∫ sn

αn(x0
n)

h(τ1, ..., τn)dτn...dτ1

)
ds1α′

1(x).
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Integrating both sides of the above inquality from x01 to x1, using (14), we obtain

G2 (v(x)) ≤ G2

(
v(x01, x

1)
)
+

∫ α(x)

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds,

or

v(x) ≤ G−1
2

[
G2

(
v(x01, x

1)
)
+

∫ α(x)

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds

]
, ∀x ∈ [x0, X]. (21)

From (20) and (21), we have

z(x) ≤ G−1
1 (v(x)) ≤ G−1

1

{
G−1

2

[
G2

(
v(x01, x

1)
)
+

∫ α(x)

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds

]}
.

Substituting v(x01, x
1) into the above inequality, and since X is chosen arbitrarily, we

have

z(x) ≤ G−1
1

{
G−1

2

[
G2

(
G1

(
z(x01, x

1)
)
+

∫ α(x)

α(x0)

f(s)g(s)ds

)

+

∫ α(x)

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds

]}
. (22)

By the definition of z and the expression of z
(
x01, x

1
)
, we have 2z

(
x01, x

1
)
− u0 = z(T ).

From (22), we have

2z
(
x01, x

1
)
− u0 ≤ G−1

1

{
G−1

2

[
G2

(
G1

(
z(x01, x

1)
)
+

∫ α(T )

α(x0)

f(s)g(s)ds

)

+

∫ α(T )

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds

]}
, or

G2

(
G1

(
2z
(
x01, x

1
)
− u0

))
≤ G2

(
G1

(
z(x01, x

1)
)
+

∫ α(T )

α(x0)

f(s)g(s)ds

)

+

∫ α(T )

α(x0)

f(s)

(∫ s

α(x0)

h(τ)dτ

)
ds. (23)

By the definition of H1, the assumption of Theorem 2.2, and (23), we observe that

H1

(
z(x01, x

1)
)
≤ 0 = H1 (c) . (24)

Since H1 is increasing, from (18), (22), and (24), we have the desired estimation (17). If
u0 = 0, we carry out the above procedure with ε > 0 instead of u0 and subsequently let
ε→ 0. 2

Remark 2.3 If ω2 = ω3, and for x2 = (x3, ..., xn) fixed, G2(u) = u − u0, and
G−1

2 (u) = u+ u0, (17) is equivalent to

u(x) ≤ G−1
1

{
G1(c) +

∫ α(x)

α(x0)

f(s)

[
g(s) +

∫ s

α(x0)

h(τ)dτ

]
ds

}
.

Theorem 2.2 reduces to Theorem 3.1 in [11].
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Theorem 2.3 Let u, f, α, u0 be as in Theorem 2.1, a(x, s), b(x, s), c(x, s), g(x, s),
d(x, s) be the functions of C (∆,R+) nondecreasing in x for each s ∈ I, and 0 < p < 1
be a constant. If u(x) satisfies

u(x) ≤ u0 +

∫ α(x)

α(x0)

a(x, s)

[
f(x, s)u(s) +

∫ s

α(x0)

b(s, τ)u(τ)dτ

]
ds

+

∫ α(T )

α(x0)

c(x, s)

[
g(x, s)up(s) +

∫ s

α(x0)

d(s, τ)up(τ)dτ

]
ds (25)

for x ∈ I, and

exp

(∫ α(T )

α(x0)

γ∗1(x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2(s, τ)dτ

]
ds

)
< 2, (26)

then

u(x) ≤

{(
1 + (c)

1−p
)
exp

(
(1− p)

∫ α(x)

α(x0)

γ∗1(x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2(s, τ)dτ

]
ds

)

−1
} 1

1−p

(27)

for x ∈ I, where c is the solution of the equation

H2(t) =
1

1− p
ln

1 + (2t− u0)
1−p

1 + t1−p
−
∫ α(T )

α(x0)

γ∗1(x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2(s, τ)dτ

]
ds = 0

(28)
for t ≥ u0, where γ

∗
1(x, s) = max {a(x, s), c(x, s)}, f∗(x, s) = max {f(x, s), g(x, s)}, and

γ∗2 (x, s)) = max {b(x, s), d(x, s)}.

Proof. Let W ∈ C(R+,R+) so that W (u) = u+up is nondecreasing, so it is obvious
that u, up ≤W (u). From (25) and the assumptions, we get

u(x) ≤ u0 +

∫ α(x)

α(x0)

γ∗1(x, s)

[
f∗(x, s)W (u(s)) +

∫ s

α(x0)

γ∗2 (s, τ)W (u(τ)) dτ

]
ds

+

∫ α(T )

α(x0)

γ∗1 (x, s)

[
f∗(x, s)W (u(s)) +

∫ s

α(x0)

γ∗2 (s, τ)W (u(τ)) dτ

]
ds.

Fix any arbitrary X = (X1, ..., Xn) ∈ I, then for x0 ≤ x ≤ X ≤ T , define a positive and
nondecreasing function z(x) on I by

z(x) = u0 +

∫ α(x)

α(x0)

γ∗1(X, s)

[
f∗(X, s)W (u(s)) +

∫ s

α(x0)

γ∗2 (s, τ)W (u(τ)) dτ

]
ds

+

∫ α(T )

α(x0)

γ∗1 (X, s)

[
f∗(X, s)W (u(s)) +

∫ s

α(x0)

γ∗2(s, τ)W (u(τ)) dτ

]
ds,

so we have u(x) ≤ z(x), by the same steps as in the proof of Theorem 2.1, we obtain

z(x) ≤ F−1
2

(
F2(z(x

0
1, x

1)) +

∫ α(x)

α(x0)

γ∗1 (x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2 (s, τ)dτ

]
ds

)
, (29)
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where

F2(v) =

∫ v

v0

ds

W (s)
=

∫ v

v0

ds

s+ sp
=

1

1− p
ln

1 + v1−p

1 + v1−p0

, v ≥ v0 > 0, (30)

then

F−1
2 (v) =

[(
1 + v1−p0

)
exp ((1− p) v)− 1

] 1
1−p

. (31)

We have

H2(t) = F2 (2t− u0)− F2(t)−
∫ α(T )

α(x0)

γ∗1(x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2 (s, τ)dτ

]
ds,

so

H2(t) =
1

1− p
ln

1 + (2t− u0)
1−p

1 + t1−p
−
∫ α(T )

α(x0)

γ∗1 (x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2(s, τ)dτ

]
ds,

so we have

H2
′(t) =

u0 + 2tp − (2t− u0)
p

[2t− u0 + (2t− u0)
p
] (t+ tp)

> 0 (32)

for t ≥ u0 and

H2(u0) = −
∫ α(T )

α(x0)

γ∗1 (x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2(s, τ)dτ

]
ds < 0, (33)

and from (26), we get

lim
t→+∞

H2(t) = ln 2−
∫ α(T )

α(x0)

γ∗1 (x, s)

[
f∗(x, s) +

∫ s

α(x0)

γ∗2 (s, τ)dτ

]
ds > 0. (34)

By (32)-(34), we obtain that (28) has a unique solution c > u0. Now by (29), (30) and
(31), we get (27). 2

3 Application

In this section, we apply our results to obtain the estimate of the solution of the retarded
Volterra-Fredholm integral equation with delay in n-independent variables.

Example 3.1. Consider the following differential boundary value problem system in
n-independent variables{

D1...Dnz(x) = D1...Dnf(x) +A (x, s, z (s− β(s))) +B (x, s, z (s− β(s))) ,
z(x1, ..., xn−1, x

0
n) = f(x1, ..., xn−1, x

0
n), ..., z(x

0
1, ..., xn) = f(x01, ..., xn),

(35)

where z, f ∈ C1 (I,R) , A,B ∈ C(∆× R,R), I =
[
x0, T

]
⊂ Rn,

∆ =
{
(x, s) ∈ I2 : x0 ≤ s ≤ x ≤ T

}
⊂ Rn and β ∈ C1(I, I) is nonincreasing on I such

that β(x) = (β1(x1), ..., βn(xn)), xi − βi(xi) ≥ 0, β′
i(xi) < 1, and βi(x

0
i ) = 0 for i =

1, ..., n, x = (x1, ..., xn), x
0 =

(
x01, ..., x

0
n

)
∈ Rn. Integrating both sides of (35) with

respect to x1, ..., xn, respectively, we obtain (after n steps)

z(x) = f(x) +

∫ x

x0

A (x, s, z (s− β(s))) ds+

∫ T

x0

B (x, s, z (s− β(s))) ds. (36)
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Theorem 3.1 Assume that the functions f,A,B in (36) satisfy the conditions

|f(x)| ≤ u0, (37)

|A(x, s, z)| ≤ a(x, s) |z| , (38)

|B(x, s, z)| ≤ b(x, s) |z|p , (39)

where u0, a(x, s), b(x, s) are as in Theorem 2.3, 0 < p < 1 is a constant. Let

Mi = max
xi∈Ii

1

1− β′
i(xi)

, i = 1, ..., n, (40)

and

exp

(
M

∫ α(T )

α(x0)

γ(x, s)ds

)
< 2, (41)

where M =M1 × ...×Mn, α(x) = x− β(x) ∈ C1(I, I) is increasing on I,
γ(x, s) = max

{
a(x, α−1(s)), b(x, α−1(s))

}
. If z(x) is a solution of (35) on I, then

|z(x)| ≤

{(
1 + (c3)

1−p
)
exp

(
(1− p)M

∫ α(x)

α(x0)

γ(x, s)ds

)
− 1

} 1
1−p

(42)

for x ∈ I, where c3 is the solution of the equation

−
H3(t) =

1

1− p
ln

1 + (2t− u0)
1−p

1 + t1−p
−M

∫ α(T )

α(x0)

γ(x, s)ds = 0, t ≥ u0.

Proof. Using the conditions (37)-(39) for (36), we have

|z(x)| ≤ u0 +

∫ x

x0

a(x, s) |z(s− β(s))| ds+
∫ T

x0

b(x, s) |z(s− β(s))|p ds

≤ u0 +

∫ x

x0

a(x, s) |z(α(s))| ds+
∫ T

x0

b(x, s) |z(α(s))|p ds,

with a suitable change of variables and using (40), we get

|z(x)| ≤ u0 +M

∫ α(x)

α(x0)

a(x, α−1(s)) |z(s)| ds+M

∫ T

x0

b(x, α−1(s)) |z(s)|p ds

≤ u0 +M

∫ α(x)

α(x0)

γ(x, s) |z(s)| ds+M

∫ T

x0

γ(x, s) |z(s)|p ds (43)

for x ∈ I. The application of Theorem 2.3, with f = g = 1, b = d = 0, to (43) yields
(42). 2

Remark 3.1 In (35), if we replace R by any time scale T, we obtain a dynamic
boundary value problem system as follows:{

z∆1...∆n(x) = f∆1...∆n(x) +A (x, s, z(s)) +B (x, s, z(s)) ,
z(x1, ..., xn−1, x

0
n) = f(x1, ..., xn−1, x

0
n), ..., z(x

0
1, ..., xn) = f(x01, ..., xn),

(44)

(44) can be restated as follows:

z(x) = f(x) +

∫ x

x0

A (x, s, z (s))∆s+

∫ T

x0

B (x, s, z (s))∆s,

which can be applied in the dynamic analysis of stability of solutions to dynamic Volterra-
Fredholm integral equations on time scales.
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4 Conclusion

Some new generalized Gronwall-Bellman-Volterra-Fredholm type nonlinear integral in-
equalities with delay have been established in this paper, which extend some known
results obtained in [11,14]. In the last section, to illustrate the usefulness of our results,
we give an application to the research of boundedness of solutions of certain Volterra-
Fredholm integral equations in n-independent variables.
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Abstract: In this paper, a chaotic strategy based on a 2-D chaotic application is
proposed. This method reduces the search space of optimized variables and improves
the search precision, which has higher search efficiency. In order to solve the problem
between fast convergence and low steady-state, a suitable step size control is proposed.
The simulation results show that the new algorithm has faster convergence.
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1 Introduction

Chaos is one of the few concepts in mathematics that cannot usually be defined in
a word or statement. The study of chaos has been rapidly developed since Lorenz’s
influential book [7], and Li and York’s pioneer paper [8]. R. L. Devaney has been provided
one of the most popular and accepted definitions of chaos, in which chaotic systems
exhibit a sensitive dependence on the initial conditions, topological transitivity, and
dense periodic orbits [2]. Recently, there has been an increasing interest in controlling
and utilizing chaos, particularly among the physicists, mathematicians, engineering and
technological communities. The noun “chaos” and the adjective “chaotic” are used to
describe the time behavior of a system when this behavior is a sensitive dependence on
the initial conditions, aperiodic (it never exactly repeats), and apparently random or
“noisy”. The key word here is apparently. Underlying this apparent chaotic randomness
is an order determined, in some sense, by the equation describing the system [7–9,11]. The
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combination of optimization methods and fundamentals of chaotic systems has attracted
an increased interest in various fields in recent years. The chaos optimization algorithm
is a new global optimization, which used chaotic variables directly in the search for the
optimal solution. Referring to the properties of chaotic systems, it is clear that the
ergodicity, self-similarity, regularity, and intrinsic stochastic property of chaos make it
more possible to obtain the global optimal solution by the chaos optimization than by
the method adopted before. It can more easily escape from local minima than other
stochastic algorithms. The optimization algorithms based on the chaos theory are search
methodologies that differ from any of the existing traditional stochastic optimization
techniques [2–4, 13]. So, the chaos optimization algorithm (COA) is used to greatly
reduce computational cost and select the optimal threshold value, and finally, to enhance
segmentation performance [5, 6, 12]. The paper is organized as follows: in the next
section, we introduce the proposed approach with a new strategy based on two phases
of global/local chaotic search using the Gingerbreadman map. In Section 2, illustrative
examples with the discussion of the results are presented and conclusions are offerred.

2 The Principal of Chaos Optimization

Non-linear systems with complex dynamics have lately been the subject of intense re-
search and exploration, giving birth to chaos theory. Chaotic systems are deterministic
systems that exhibit irregular behavior and sensitive dependence on the initial conditions.
Chaos theory studies the behavior of systems that follow deterministic laws but appear
random and unpredictable, i.e., dynamical systems. Chaotic variables can go through
all states in certain ranges according to their own regularity without repetition [8]. A
chaotic map is a map that exhibits some type of chaotic behavior. In this work, we
applied a chaotic map that is common in the literature, namely, the Gingerbreadman
map. The mathematical form of a chaotic two-dimensional map, which maps the unit
square I × I, where I = [0, 1], onto itself in a one-to-one manner, is chosen.
Later on, we will use this map in the chaotic searches.

2.1 Chaos model

In most COA methods [3], chaos variables are generated by the logistic map [1, 2]. It is
possible to change the form of this map to obtain other chaotic attractors, but in this
paper, we assume a Gingerbreadman two-dimensional discrete map can generate chaos
variables. The Gingerbreadman map is a discrete-time dynamical system [9–11]. It is
one of the most studied examples of dynamical systems that exhibit chaotic behavior.
The Gingerbreadman map takes a point (xn, yn) on the plane and maps it to a new point{

y1(k) = 1− a(y1(k − 1))2 + by(k − 1),

y(k) = y1(k − 1),
(1)

where k is the iteration number. In this work, the values of y are normalized in the range
[0, 1] to each decision variable in the uni-dimensional space of the optimization problem.
This transformation is given by

zi(k) =
(xi(k)− Li)

(Ui − Li)
.
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Figure 1: A chaotic Gingerbreadman attractor obtained for a = 1 and b = 1.

The parameters used in this work are a = 1 and b = 1, these values are suggested by
(1). An example of the evolution of a new map is shown in Fig.1. The properties of
stochastic sensitivity to the initial value and ergodicity of the two-dimensional map (1)
are expressed in Fig.1 by iterating 1000 times.

3 Design of the Algorithm

Recently, the idea of using chaotic sequences instead of random sequences has been
noticed in the research field such as chaos optimization. Li and Jiang [3] presented
a chaos optimization algorithm (COA) that can solve complex optimization problems.
The most important advantages of the COA are summarized as: easy implementation,
short execution time, and speed-up of the search. Observations, however, reveal that the
COA also has some problems including: (i) the COA is effective only for small decision
spaces; (ii) the COA easily converges in the early stages of the search process [8]. Figure
2 shows the flowchart of the proposed algorithm.

Consider the following optimization problem on the minimum of functions. If the
target function f(xi) is continuous and differentiable, the object problem to be optimized
is find xi to minimize f(xi);xi ∈ [Li, Ui]; i = 1, 2, ..., n.

The main procedures of this algorithm are shown as follows:

Input :
Mg : maximum number of iterations of the global search.
Ml : maximum number of iterations of the local search.
Ml +Mg : stopping criterion of the chaotic optimization method in iterations.
λ : step size in the chaotic local search.

Output :
X∗ : best solution from the current run of the chaotic search.
f∗ : best objective function (minimization problem).
Then the basic steps of the chaos optimization algorithm based on the chaos variable
from chaos map (1) are expressed as follows [2]:
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Figure 2: Diagram of the COA.

3.1 Step-size control

It is well-established that the convergence of a chaos optimization algorithm directly
depends on how it controls the step size. Moreover, the step-size control influences to a
large extent the rate at which a chaos optimization algorithm approaches the optimum.
The step-size adaptation mechanisms are all based on the idea that the smaller the step
size, the higher the probability of sampling good solutions.

4 Numerical Results

In order to verify the typical function of this paper to optimize the effectiveness of the
algorithm, the 4-target function expression is as follows [14,15]:
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1. F1 is the Rosenbrock function,

F1 = 100(x2
1 − x2)

2 + (1− x1)
2. (2)

• Search domain : −2.048 ≤ xi ≤ 2.048, i = 1, 2.

• Number of local minima : no local minima except the global one.

• The global minima : x̄ = (1, 1), f(x̄) = 0.

Figure 3: The Rosenbrock function.
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2. F2 is the Goldstein-Price function,

F2 = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))
(30 + (2x1 − 3x2)

2(18− 32x1 + 12x12 + 48x2 − 36x1x2 + 27x2
2)).

(3)

• Search domain : −2 ≤ xi ≤ 2, i = 1, 2.

• Number of local minima: several local minima.

• The global minima : x̄ = (0, 1), f(x̄) = 3.

Figure 4: The Goldstein-Price function.

3. F3 is the Easom function,

F3 = −cos(x1)cos(x2)exp(−(x1 − pi)2 − (x2 − pi)2). (4)

• Search domain : −10 ≤ xi ≤ 10, i = 1, 2.
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• Number of local minima : several local minima.

• The global minima : x̄ = (π, π), f(x̄) = −1.

Figure 5: The Easom function

4. F4 is the Schaffer function,

F4 = −0.5 + (
((sin

√
(x2

1 + x2
2))

2 − 0.5)

(1 + .001(x2
1 + x2

2))
2

). (5)

• Search domain : −4 ≤ xi ≤ 4, i = 1, 2.

• Number of local maxima : infinite local maxima.

• The global maximum: x̄ = (0, 0), f(x̄) = −1.
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Figure 6: The Schaffer function.

Function F1 is the Rosenbrock function, which has global minima x̄ = (1, 1), and
optimal objective function value F1(x̄) = 0. The function F2 is the Goldstein-Price
function, which has infinite local minima and one global minimum x̄ = (0, 1);F2(x̄) = 3.
The function F3 is the Easom function, which has many local minima and one global
minimum x̄ = (−π, π) and F3(x̄) = −1. The function F4 is the Schaffer function, which
has infinite local maxima and one global maximum x̄ = (0, 0), and F4(x̄) = −1. These
four nonlinear multimodal functions are often used to test the convergence, efficiency,
and accuracy of the optimization algorithms [3].

During the chaotic local search, the step size λ is an important parameter in the
convergence behavior of the optimization method, which adjusts small ergodic ranges
around. The step size λ is employed to control the impact of the current best solution on
the generating of a new trial solution. A small λ tends to perform exploitation to refine
results by local search, while a large one tends to facilitate a global exploration of search
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space [2,13]. A suitable value for the step size λ usually provides a balance between global
and local exploration abilities and consequently, a reduction of the number of iterations
required to locate the optimum solution.

In this work, using the same number of function evaluations : Mg +Ml, we perform
50 runs with different initial conditions for the mapping of the tested values of step size in
the chaotic optimization method based on the Gingerbreadman map which are described
as follows:

• λ = 0.1;Mg = 2200;Ml = 300.

Best Value Mean Value Std. Dev (x̄1, x̄2) Time
F1 0.0000 0.0003 0.0003 (0.9913, 0.9831) 33.9249s
F2 3.0031 3.0031 0.0000 (0.0032, -0.9978) 34.4000s
F3 -0.9961 -0.9961 0.0000 ( 3.1364 , 3.0906) 37.6054s
F4 -0.9993 -0.9989 0.0001 (-0.0310, 0.0080) 35.6340s

Table 1: The COA based on the Gingerbreadman map.

• λ = 0.001;Mg = 2200;Ml = 300.

Best Value Mean Value Std. Dev (x̄1, x̄2) Time
F1 0.0000 0.0000 0.0000 (1.0001, 1.0002) 33.8875s
F2 3.0000 3.0000 0.0000 (-0.0001, -1.0001) 33.9260s
F3 -1.0000 -0.9997 0.0001 (3.1438 , 3.1411) 37.1161s
F4 -0.9999 -0.9998 0.0001 (-0.0006, -0.0017) 35.7883s

Table 2: The COA based on the Gingerbreadman map.

• 0.001 ≤ λ ≤ 0.1;Mg = 2200;Ml = 300.

Best Value Mean Value Std. Dev (x̄1, x̄2) Time
F1 0.0000 0.0001 0.0001 (1.0044, 1.0088) 35.2739s
F2 3.0000 3.0027 0.0010 ( 0.0024, -0.9985) 35.4629s
F3 -0.9994 -0.9963 0.0008 ( 3.1374 , 3.0952) 38.2361s
F4 -0.9996 -0.9989 0.0001 (-0.0290 , 0.0063) 36.9733s

Table 3: The COA based on the Gingerbreadman map.

5 Conclution

The chaos optimization method based on the Gingerbreadman map (COGM methodolo-
gies) was successfully validated for testing four different cost functions. From the case
studies and comparison of the results through three tested COGM approaches it has
been shown that the parameter of step size λ is essential for the good convergence pro-
file. In this context, the parameter λ regulates the trade-off between the global and local
exploration abilities of the chaotic local search. However, the future works will include a
detailed study of self-adaptive heuristics for the step size design.
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Abstract: This paper reports on a novel chaotic system with three nonlinearities.
Firsltly, some properties of the system are studied including equilibrium points and
their stability, the Lyapunov exponent and Kaplan-Yorke dimension. Also, the sys-
tem dynamics are studied by numerical mathematical tools, namely, the Lyapunov
exponent spectrum, bifurcation diagrams and 0-1 test. Also, we have studied a type
of synchronization, a full-state hybrid projective synchronization (FSHPS), between
master and slave chaotic systems. We design suitable controllers to achieve this type
of synchronization by using the Lyapunov stability criteria of the integer-order linear
system. Finally, the effectiveness of the proposed scheme for this type of synchroniza-
tion is demonstrated by an illustrative example with numerical simulation in Matlab.
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1 Introduction

In the fields of nonlinear systems dynamics and Chaos theory, a chaotic system is a non-
linear deterministic system that displays a complex, unpredictable behavior and extreme
sensitivity to initial conditions. Chaotic systems are applied in many disciplines such as
biology, ecology, economics, science and engineering [1-4], etc. They have many different
and common application areas such as neural networks, image and sound encryption,
robotics, cryptography and secure communication [5-13]. In 1963, Lorenz discovered the
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first 3-d chaotic system [14]. After that, several chaotic systems have been designed by
many researchers, they are: the Rossler, Chen, Zhou, Vaidyanathan, Yu-Wang, Han-
nachi systems [15-20], etc. After the work done by Pecora and Carroll [21], the chaos
synchronization between chaotic systems has been extensively studied by different the-
oretical and experimental methods and due to the powerful and multiple applications
of synchronization using chaotic systems in various fields such as secure communication,
telecommunication, cryptography and encryption [22-26], the study of chaos and syn-
chronization in dynamical systems has attracted a considerable attention, and an intense
competition has begun among researchers for finding new chaotic systems and developing
different types and methods of synchronization for those systems. The synchronization
of chaotic systems has been presented in diverse works, where different techniques were
employed to synchronize two chaotic systems. In recent years, we find that diverse types
and methods of synchronization have been developed, among them there are the active
control [27-28], sliding mode control [29-31], backstepping control [32], adaptive control
[33-36], function projective synchronization [37], modified projective synchronization [38],
hyprid projective synchronization [39], full state hybrid projective synchronization [40],
inverse full state hybrid projective synchronization [41]. In this work, a new 3-D chaotic
system with three nonlinearities is introduced. Basic dynamical properties of this new
chaotic system are studied, namely, the equilibrium points and their stability, dissipa-
tivity and Lyapunov exponent, Lyapunov exponent spectrum, Kaplan-Yorke dimension,
bifurcations. Also, we have studied a type of synchronization, a full-state hybrid pro-
jective synchronization (FSHPS), using the new systems. We design suitable controllers
to achieve this type of synchronization by using the Lyapunov stability criteria of the
integer-order linear system. Finally, the effectiveness of the proposed scheme for this type
of synchronization is demonstrated by an illustrative example with numerical simulation
in Matlab.

This paper is organized as follows. In Section 2, a description of the novel chaotic
system is given. In Sections 3, the FSHP synchronization using the new chaotic sys-
tem is investigated. The new system and another new system are used in Section 4 to
demonstrate the effectiveness of the proposed method. Finally, the conclusion is given
in Section 4.

1.1 Description of the novel chaotic system

A novel 3-D autonomous chaotic system is expressed as follows:
dx
dt = a(y − x),
dy
dt = cx− y − xz,
dz
dt = exy − y2 − bz,

(1)

where x, y, z are the state variables and a, b, c are the positive real parameters.

There are eight terms on the right-hand side but it mainly relies on three nonlineari-
ties, namely, exy, y2 and xz, respectively.

System (1) can generate a new double scroll strange attractor for the parameters
a = 10, b = 3, c = 35 with the initial conditions [1, 1, 1] as displayed in Figs.2-3. We
note the new chaotic attractor is different from that of the Lorenz system or any existing
systems.
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1.2 Basic properties

In this section, some basic properties of the system (1) are given. We start with the
equilibrium points of the system and check their stability at the initial values of the
parameters a, b, c.

1.3 Equilibrium points

Put the equations of the system (1) equal to zero, i.e., a(y − x) = 0,
cx− y − xz = 0,
exy − y2 − bz = 0.

(2)

A simple calculation yields the unique equilibrium point

p1 =

(
0, 0,

1

3

)
. (3)

1.4 Stability

In order to check the stability of the equilibrium points, we derive the Jacobian matrix
at a point p (x, y, z) of the system (1):

J(p) =

 −a a 0
c− z −1 −x
yexy −2y + xexy −b

 . (4)

For p1, we obtain three eigenvalues:

λ1 =
1

6

√
3
√
4403− 11

2
, λ2 = −1

6

√
3
√
4403− 11

2
, λ3 = −3. (5)

Since all the eigenvalues are real, the Hartma-Grobman theorem implies that p1 is a
saddle point which is unstable according to the Lyapunov theorem on stability.

1.4.1 Lyapunov exponents and Kaplan-Yorke dimension

For the chosen parameter values of a, b, c, the Lyapunov exponents of the novel chaotic
system (1) are obtained using Matlab with the initial conditions (x (0) , y (0) , z (0)) =
(1, 1, 1) as

L1 = 0.955333, L2 = −0.00158345, L3 = −14.9537. (6)

Since the spectrum of Lyapunov exponents (6) has a maximal positive value L1, it
follows that the 3-D novel system (1) is a chaotic system. Moreover, the sum of all
the Lyapunouv exponents is negative, which implies that the system is dissipative. The
Kaplan-Yorke dimension of system (1) is calculated as

DKL = 2 +
L1 + L2

|L3|
= 2.0638. (7)

The Lyapunov exponents spectrum and the chaotic attractor of system (1) in 2-D and
3-D are shown in Figs.1-3.
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Figure 1: Lyapunov exponents spectrum.
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2 Dynamics of the System

In this section, we investigate numerically the dynamical behavior of the system (1) using
the largest Lyapunov exponents spectrum and bifurcation diagrams.

Figs.4-6 show the largest Lyapunov exponents spectrum and the bifurcation diagrams
of system (1) with respect to the parameters a, b, c, respectively. Obviously, when a ∈
[0, 20], b ∈ [0, 10], c ∈ [20, 40], the behavior of system (1) is either chaotic, periodic or con-
verges to an equilibrium. When a ∈]1.07, 1.3]∪]4, 8.7[∪]9.3, 11.2[, b ∈ [2.6, 3.2] ∪ [3.5, 10],
c ∈ [22.23, 22.6]∪[23, 40], the maximum Lyapunov exponent is positive, implying that the
new system (1) is chaotic in this range of parameters. For a ∈ [11.47, 20], b ∈ [1.25, 2.5],
c ∈ [20, 21.9], the maximum Lyapunov exponent almost always equals zero, imply-
ing that the new system (1) has a periodic orbit. The maximum Lyapunov expo-
nent is negative when a ∈ [0, 1.06] ∪ [1.43, 4[∪]11.2, 11.46[, b ∈ [2.3267697, 2.3886929] ∪



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (3) (2023) 283–294 287

[3.2490194, 3.2743673] ∪ [3.3644489, 3.437006] ∪ [3.4626194, 3.4800358], c ∈]21.9, 22] ∪
[22.8, 22.87], which means that the trajectories of the new system (1) is fall to converge
to equilibria. Figs.7 shows the different behavior of system (1): for a = 3.02 converging
to an equilbrium, for c = 32 chaotic, for c = 21.9 and b = 1.75 periodic.
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2.1 0-1 test for system (1)

The 0-1 test was proposed by Gottwald and Melbourne, it is a test approach for distin-
guishing regular and chaotic dynamics in deterministic dynamical systems [42]. This test
depends on the rapport kc, if it is close to one, then the system has a chaotic behavior
and if it is close to zero, then the system has a regular behavior.
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In Matlab, we choose the random constant (C ∈ [0;π]), as a result, we find the rapport
kc = 0.9990 which is close to one as shown in Fig.8, moreover, we obtain a Brownian
motion in the (p-q) plane, which means that the novel system (1) has a chaotic behavior
as shown in Fig.8.

3 Master-Slave Synchronization of Non-Identical 3-D Novel Chaotic Sys-
tems Using FSHP Method

We consider the drive system given by

ẋi (t) = fi (X (t)) , i = 1, .., n, (8)

where X (t) = (x1, x2, ..., xn)
T
is the state vector of the system (8) , fi : Rn −→ Rn for

i = 1, .., n are nonlinear functions, and the response system is the system given by

ẏi (t) =

n∑
j=1

bijyj (t) + gi (Y (t)) + ui, i = 1, .., n, (9)

where Y (t) = (y1, y2, ..., yn)
T
is the state vector of the system (9) , gi : Rn −→ Rn for

i = 1, .., n are the nonlinear functions, ui are the controllers to be designed so that the
system (8) and the system (9) are synchronized.

Now, we introduce the definition of FSHPS [40] between master and slave systems.
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Definition 3.1 FSHPS occurs between master and slave systems (8) and (9) when
there are controllers ui, i=1,2,...,n, and given real numbers (αij)1≤i,j≤n such that the
synchronization errors

ei (t) = yi (t)−
n∑

j=1

αijxj (t) , i = 1, .., n, (10)

satisfy limt→+∞ ei (t) = 0.

Full-state hybrid projective synchronization (FSHPS) is one of the most noticeable
types. It has been widely used in the synchronization of chaotic systems. In this type of
synchronization, each slave system state achieves synchronization with the linear combi-
nation of master and system states. The state errors for (8) and (9) are

ei = yi −
n∑

j=1

αijxj , i = 1, .., n. (11)

Consequently, the error dynamic system is given by

ėi =

 n∑
j=1

bijyj (t) + gi (Y (t))

+ Ui −
n∑

j=1

αijfj (X (t)) , i = 1, .., n. (12)

The error system can be described as

ėi =

n∑
j=1

bijej (t) +

 n∑
j=1

bijyj (t)−
n∑

j=1

bijej (t) + gi (Y (t))

+ Ui −
n∑

j=1

αijfj (X (t)) ,

(13)
i = 1, .., n, i.e.,

ėi =

n∑
j=1

bijej (t) +Ri + Ui, i = 1, .., n, (14)

where

Ri =

 n∑
j=1

bijyj (t)−
n∑

j=1

bijej (t) + gi (Y (t))

−
n∑

j=1

αijfj (X (t)) , i = 1, .., n. (15)

Rewrite error system (14) in the compact form

ė = Be+R+ U, (16)

where B = (bij)n×n and e = (e1, e2, ..., en)
T
, R = (Ri)1≤i≤n , U = (Ui)1≤i≤n.

Theorem 3.1 FSHPS between the master system (8) and the slave system (9) will
occur under the following control law:

U = − (R+ Ce) (17)

with C being a feedback gain matrix selected so that B −C is a negative definite matrix.
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Proof. By inserting (17) into (16), we get

.
e = (B − C) e. (18)

If we choose matrix C so that B − C is negative, then all the eigenvalues λi, i = 1, 2, 3,
of (B − C) stay in the left-half plane, i.e., Re (λi) < 0, which ensures, according to the
Lyapunov stability theory, that error system (18) is asymptotically stable. Hence the
synchronization between the sytem (8) and the sytem (9) is achieved.

4 Illustrative Example

In this section, the new system (1) and another new system (19) are used to demonstrate
the effectiveness of the proposed method.

As a driving system, we considier the chaotic system [20] given by
dx1

dt = a(x2 − x1),
dx2

dt = cx1 − x1x3,
dx3

dt = −x1x2 + b(x1 − x3),

(19)

where a = 13, b = 2.5, c = 50, and as a response system, we consider the controlled
system of system (1) given by

dy1

dt = a(y2 − y1) + u1,
dy2

dt = cy1 − y2 − y1y3 + u2,
dy3

dt = ey1y2 − y22 − by3 + u3,

(20)

where a = 10, b = 3, c = 35.
According to the above method, for FSHPS, we have

B =

 −10 10 0
35 −1 0
0 0 −3

 (21)

and the choice of C =

 0 10 0
35 4 0
0 0 −2

 and (αij)1≤i,j≤4 =

 1 8 5
7 2 1
6 0 −3

 yields

 R1 = 10e1 − 10e2 − 399. 5x1 − 13x2 + 12. 5x3 − 10y1 + 10y2 + 5x1x2 + 8x1x3,
R2 = e2 − 35e1 − 11. 5x1 − 91x2 + 2. 5x3 + 35y1 − y2 + x1x2 + 2x1x3 − y1y3,

R3 = 3e3 + 85. 5x1 − 78x2 − 7. 5x3 − 3y3 + ey1y2 − y22 − 3x1x2

(22)
and

(U1, U2, U3)
T

= −
(
R+ C (e1, e2, e3)

T
)

(23)

=


399.5x1 − 10e1 + 13x2 − 12.5x3 + 10y1

−10y2 − 5x1x2 − 8x1x3

11.5x1 − 5e2 + 91x2 − 2.5x3 − 35y1
+y2 − x1x2 − 2x1x3 + y1y3

78x2 − 85.5x1 − e3 + 7.5x3 + 3y3 − ey1y2

+y22 + 3x1x2

 . (24)
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The error system is given by .
e1
.
e2
.
e3

 =

 −10 0 0
0 −5 0
0 0 −1

 e1
e2
e3

 , (25)

then the eigenvalues of the matrix (B − C) are given by λ1 = −10, λ2 = −5, λ3 = −1,
which all are negatives. Hence the error system is asymptotically stable [43] and the
synchronization between the two systems (19) and (20) is achieved.

We used the classical fourth-order Runge-Kutta method with the step size h = 10−6 to
solve the system of differential equations (25). The initial conditions of the drive system
(19) and the response system (20) are chosen as (x1 (0) , x2 (0) , x3 (0)) = (20, 10,−10) ,
(y1 (0) , y2 (0) , y3 (0)) = (−20,−10,−50) , respectivelly. (e1 (0) , e2 (0) , e3 (0)) =

(−70,−160,−200), (z1 (0) , z2 (0) , z3 (0)) = (50, 150, 150) with zi =
3∑

j=1

αijxj , i = 1, 2, 3.

In Fig.10, the time-history of the synchronization errors e1(t); e2(t); e3(t) is depicted.
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Figure 9: Synchronization between zi, yi, i = 1, 2, 3.

5 Conclusion

In this work, a new 3-D chaotic system with three nonlinearities is introduced. Basic dy-
namical properties of this new chaotic system are studied including equilibrium points and
their stability, dissipativity, the Lyapunov exponent, Kaplan-Yorke dimension, Lyapunov
exponent spectrum and bifurcation diagrams. Moreover, the synchronization problem for
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Figure 10: The time-history of the synchronization errors e1(t); e2(t); e3(t).

globally synchronizing the non-identical 3-D chaotic systems is solved using the FSHP
method and Lyapunov stability criteria of the integer-order linear system. Numerical
simulations using MATLAB have been shown to illustrate our results for the new chaotic
system and the considered synchronization scheme.

6 Concluding remarks

The main important points in this work are:

• The new chaotic attractor is different from that of the Lorenz system or any existing
systems.

• The dynamics of the novel system is investigated by means of the largest Lyapunov
exponents spectrum and bifurcation diagrams of the system with respect to the
system parameters.

• We achieved FSHP synchronyzation between non-identical 3-D chaotic systems
using the new system and the Lyapunov stability theory.

The novel system and the obtained results of this work have many applications in many
fields such as secure communication and signal encryption. Therefore, further research
of the system is still important and will be taken into consideration in a future work.
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1 Introduction

Since its applications in numerous industries began to gain traction several decades ago,
fractional-order calculus has made significant stride in many areas such as high-tech in-
dustry [1], spherical tank system for level process [2], heat and mass transfer for the
elliptic inclined plate [3], web transport systems in process industries [4], image encryp-
tion process [5,6], robotic manipulators [7], photovoltaic solar energy [8], manufacturing
industrial natural gas consumption [9], Field-Programmable Gate Array [10], lesser date
moth system [11], magnetic levitation system [12] and spiral-plate heat exchanger [13].

Numerous economic models employ fractional order models of real dynamical objects
and processes. For instance, a business cycle model includes an investment function
and a general liquidity preference function [14], an IS-LM macroeconomic system [15],
a financial risk chaotic system [16,17], an economic growth model [18, 19] and Ivancevic
option pricing model [20].

The Black-Scholes equation (BSE) is among the most important mathematical mod-
els for option pricing. Black and Scholes [21] first introduced the Black-Scholes PDE
employed for calculating the price of European type call and put options, in which the
underlying financial asset is the stock price without dividend payments. The symbol
C = C(S.t) denotes the price of the European call option at time t and the asset price
S. Let E be the exercise price, σ be the price volatility of the asset, T be the maturity
date or time, and r be the rate of interest at which there is no risk of loss. The BSE and
the boundary conditions for pricing European type call options are as follows [22]:

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, (1)

where C is option, σ is the volatility of the underlying asset, r is the risk-free interest
rate, C(0, t) = 0, C(S, t) ∼ S for S → ∞, and C (S, T ) = max {S − E, 0}. It follows that
the diffusion equation is similar to equation (1) but with more parameters. In order to
simplify equation (1), make the following conversion:

S = Eex, t = T − 2τ

σ2
, and C (S, t) = Ev (x, τ) , (2)

which reduces to the following PDE:

∂v

∂τ
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv, (3)

where k = 2r
σ2 and the main criteria becomes v (x, 0) = max {ex − 1, 0}.

Many Black-Scholes PDE for the option pricing model have been studied and solved.
The semidiscretization technique was employed by Company et al. [23] to evaluate the
computational efficiency of the Black-Scholes option pricing PDEs. They found that
when incorporating transaction costs into a model of option pricing, the semidiscretiza-
tion approach provides a highly accurate approximation. Song and Wang [24] explored
the Black-Scholes time-fractional equation-based option pricing problems, where the frac-
tional derivative is referred to as a modified Riemann-Liouville fractional derivative. The
successful use of the finite difference method demonstrates the efficiency of this approach
and the reduction in computational effort needed to solve fractional PDE. Wang [25] in-
vestigated the degenerate Black-Scholes equation, which governs option pricing by using
a novel numerical strategy. The author has employed implicit temporal stepping and
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fitted finite volume spatial discretization. Edeki et al. [26] extended the idea from the
classical Differential Transformation Method (DTM) for the Black–Scholes equation to
define the Projected DTM Method (PDTM) for European Option Valuation. Due to
the fact that the PDTM requires less computing work than the traditional DTM and
other semi-analytical approaches, it is demonstrated that it is more effective, reliable,
and superior. He and Lin [27], using a new two-step solution approach, investigated the
prices of European option using the stochastic volatility finite moment log-stable model.
Additionally, numerical examples are provided to illustrate the efficiency and accuracy
of the newly developed formula. The generalized Black-Scholes PDE, which appears in
European option pricing, can be solved numerically using a method proposed by Mo-
hammadi [28]. The author demonstrates how the numerical outcomes demonstrate the
method’s effectiveness and validate the predicted behavior of the rates of convergence.
Based on the idea of homotopy perturbation, the Sumudu transform, and He’s polynomi-
als, Elbeleze et al. [29] investigated the fractional Black-Scholes equation and presented
an interesting result. They demonstrate how effective and powerful the new approach
is at locating both approximate and numerical solutions. However, to the best of our
knowledge, the Black-Scholes PDE for the option pricing model using the ADM-Kamal
method has not been studied in the above literature.

The key innovation and contribution of this study is the investigation of a combined
approach for solving the Black-Scholes Fractional Partial Differential Equation (FPDE)
for the Option Pricing Model using the Adomian Decomposition Method (ADM) and
the Kamal Integral Transform (KIT).

The rest of the study is as follows. In Section 2, we briefly introduce the basic theories
and theorems related to the modification and development of the ADM merging theorem
with the Kamal Integral Transform. In Section 3, the combined theorem of the ADM
and KIT to find a solution to the Black-Scholes FPDE for the option pricing model is
discussed. Section 4 and 5 present a detailed description of the numerical experiments
and concluding remarks, respectively.

2 Preliminaries

2.1 Kamal Integral Transform (KIT)

Definition 2.1 [30] Based on the set of functions

S =

{
f (x) : ∃M,k1, k2 > 0, |f (x)| < Me

|x|
kj , x ∈ (−1)

j × [0,∞)

}
,

the Kamal transformation of f to x is given as

G [f (x)] = G (v) =

∫ ∞

0

f (x) e−
x
v dx = lim

b→∞

∫ b

0

f (x) e−
x
v dx, x ≥ 0, k1 ≤ v ≤ k2,

where either the integral is unreasonably convergent or the limit value exists and is finite.
The inverse transformation is given as

G−1 [G (v)] = f (x) .x ≥ 0.

According to Definition 2.1, for f (x) = xn with n being non negative integers and
x ≥ 0, the Kamal transformation of f is

G [xn] = n!vn+1. (4)
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If α ∈ R, then equation (4) is rewritten as

G [xα] = Γ (α+ 1) vα+1, (5)

where Γ(x) denotes the gamma function. In addition, according to Definition 2.1, the
Kamal transformation of the derivative of order n is re-written as

G
[
f (n) (x)

]
=

G (v)

vn
−

n−1∑
k=0

f (k) (0)

vn−k−1
.

Definition 2.2 [31] The fundamental Mittag-Leffler function is represented by
Eα (z) for α ∈ R, Re (α) > 0, and α ∈ C, and is defined as

Eα (z) =

∞∑
k=0

zk

Γ (αk + 1)
.

Definition 2.3 [32] The Caputo fractional derivative (CFD) of f with respect to x
and for order α > 0 is defined as

C
a D

α
xf (x) =

1

Γ (n− α)

∫ x

a

(x− s)
n−α−1

f (n) (s) ds, n− 1 < α ≤ n.

Definition 2.4 [33] The Kamal transformation of the CFD is defined as

G
[
C
αD

α

xf (x)
]
=

G (v)

vα
−

n−1∑
k=0

f (k) (0)

vα−k−1
, n− 1 < α ≤ n.

2.2 The ADM-Kamal method

The fractional PDE is given as

GDα
t w (x, t) +Nw (x, t) +Rw (x, t) = g (x, t) . (6)

The defined powerpoint is w (x, 0) = f (x), where w is the function to be determined,
g denotes the function that illustrates the homogeneity of the differential equation, R is a
linear operator, N is a nonlinear operator, and Dα

t is the CFD operator with 0 < α ≤ 1,
then the approximate solution of equation (6) is

w0 =f (x) + G−1 [vαG [g (x, t)]] ,

wn+1 =− G−1 [vαG [An] + vαG [Rwn]] , n = 0, 1, 2, . . . ,
(7)

where

w = lim
k→0

k∑
n=0

wn.

Proof. Equation (6) can be rewritten with Dα
t w (x, t) as the subject,

Dα
t w (x, t) = g (x, t)−Nw (x, t)−Rw (x, t) . (8)

Using the Kamal transformation in equation (8), we obtain

G[Dα
t w (x, t)] = G [g(x, t)−Nw(x, t)−Rw(x, t)] ,
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where α is the order of the CFD, n− 1 < α ≤ n, n ∈ Z+.

w (x, v)

vα
−

n−1∑
k=0

w(k) (x, 0)

vα−k−1
= G [g(x, t)] + G [Nw (x, t)] + G [Rw (x, t)] .

For 0 < α ≤ 1 such that k = 0, it becomes

w (x, v)

vα
− w (x, 0)

vα−1
= G [g (x, t)]− G [Nw (x)] + G [Rw (x)] ,

w (x, v)− vw (x, 0) = vαG [g (x, t)]− vαG [Nw (x, t)] + vαG [Rw (x, t)] ,

w (x, v) = vw (x, 0) + vαG [g (x, t)]− vαG [Nw (x, t)]− vαG [Rw (x, t)] . (9)

We use the inverse Kamal transformation in equation (9) to obtain

w (x, t) = w (x, 0) + G−1 [vαG [g (x, t)]]− G−1 [vαG [Nw (x, t)]]− G−1 [vαG [Rw (x, t)]] .
(10)

The ADM presumes that the function w can be broken down into an infinite series

w =

∞∑
n=0

wn, (11)

where wn is recursively determinable. Additionally, this approach presupposes that the
infinite polynomial series may decompose the nonlinear operator Nw:

Nw =

∞∑
n=0

An, (12)

where An = An (w0, w1, w2, . . . , wn) is the defined Adomian polynomial (AP)

An (w0, w1, w2, . . . , wn) =
1

n!

dn

dλn

[
N

(
n∑

k=0

λkwk

)]
λ=0

;n ≥ 0.

With λ denoting a parameter, the AP An can be parsed as

A0 =
1

0!

d0

dλ0

[
N

(
0∑

k=0

λkwk

)]
λ=0

= N (w0) ,

A1 =
1

1!

d1

dλ1

[
N

(
1∑

k=0

λkwk

)]
λ=0

= w1N ′ (w0) ,

A2 =
1

2!

d2

dλ2

[
N

(
2∑

k=0

λkwk

)]
λ=0

=
w2

1

2!
N ′′ (w0) + w2N

′ (w0) ,

...

We substitute the initial conditions, equations (11) and (12) into equation (10):

∞∑
n=0

wn = f (x) + G−1 [vαG [g (x, t)]]− G−1

[
vαG

[ ∞∑
n=0

An

]
+ vαG

[
R

∞∑
n=0

wn

]]
. (13)
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Describing both sides of (13) gives

w0 =f (x) + G−1 [vαG [g (x, t)]] ,

w1 =− G−1 [vαG [A0] + vαG [Rw0]] ,

w2 =− G−1 [vαG [A1] + vαG [Rw1]] ,

w3 =− G−1 [vαG [A2] + vαG [Rw2]] .

...

The iterative relation derived from the approximate solution to FPDE (6) is generally
defined as

w0 = f (x) + G−1 [vαG [g (x, t)]] ,

wn+1 = 7− G−1 [vαG [An] + vαG [Rwn]] , n = 0, 1, 2, ..,
(14)

where

w = lim
k→0

k∑
n=0

wn.

3 Mean Absolute Error (MAE)

The method that can be used to measure the accuracy of the model in this study
is the Mean Absolute Error (MAE). The MAE value represents the average er-
ror/error/absolute error between the calculation results/estimated model and the actual
value [34]. The MAE formula is defined as

MAE =
1

n

n∑
i=1

|ŷi − yi| , (15)

where n is the number of data, ŷi is the approximate value, and yi is the actual value.

4 Solution of the Black-Scholes FPDE for the Option Pricing Model Using
the Combined ADM-Kamal Method

This study analyzed the performance of the Black-Scholes FPDE via the combined ADM-
Kamal method. The Black-Scholes FPDE defined below follows from (3):

∂αv (x.τ)

∂τα
=

∂2v (x.τ)

∂x2
+ (k − 1)

∂v (x.τ)

∂x
− kv (x.τ) , (16)

where 0 < α ≤ 1 and v (x, 0) = max {ex − 1, 0} represents the initial condition.
Based on the defined algorithm of the Black-Scholes fractional partial differential

equation with the combined ADM-Kamal method, equation (16) can be rewritten as

Dα
τ v (x, τ) = Rv (x, τ) , (17)

where Rv = ∂2v
∂x2 + (k − 1) ∂v

∂x − kv is a linear operator.
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Based on the solution in the form of a recursive relation in equation (14), the solution
of equation (17) is

v0 =max {ex − 1. 0},
vn+1 =G−1 [vαG [Rvn]] , n = 0, 1, 2, . . . .

If the iterative solution is explained, then based on equation (5) and the inverse Kamal
transformation, we obtain

v1 = G−1 [vαG [Rv0]]

= G−1

[
vαG

[
∂2v0
∂x2

+ (k − 1)
∂v0
∂x

− kv0

]]
= G−1 [vαG [kmax {ex, 0} − kmax {ex − 1, 0} ]]

= G−1
[
vα+1 (kmax {ex, 0} − kmax {ex − 1, 0})

]
=

τα

Γ (α+ 1)
(kmax {ex, 0} − kmax {ex − 1, 0}) .

If ∂v1

∂x = τα

Γ(α+1) (kmax {ex, 0} − kmax {ex, 0}) = 0, we get

v1 ==
τ3α

Γ (3α+ 1)

(
k3k3 max {ex, 0} − k3 max {ex − 1, 0}

)
.

Therefore, the approximation solution of the Black-Scholes fractional partial differ-
ential equation (16) is obtained as follows:

v (x.τ) =

∞∑
n=0

vn = max {ex − 1, 0}Eα (−kτα) + max {ex, 0} (1− Eα (−kτα)) , (18)

where Eα (z) is a one-parameter Mittag-Leffler function. Based on Definition 2.2, for
α = 1, equation (18) can be written as

v (x.τ) = max {ex − 1, 0}e−kτ +max {ex, 0}
(
1− e−kτ

)
. (19)

It is obvious that the solution of (19) is similar to the approximate solution of the
classical Black-Scholes PDE for order α = 1, by using the Sumudu decomposition method.
Furthermore, the Black-Scholes PDE defined in (3) has the following exact solution:

v (x.τ) = exN (d1)− e−kτN (d2) , (20)

where

d1 =
x√
2τ

+
1

2
(k + 1)

√
2τ , d2 = d1 −

√
2τ , k =

2r

σ2
,

and N (d) is the cumulative distribution function.

5 Numerical Simulation

This section investigates the solution by the Black-Scholes PDE approach based on the
combined ADM-Kamal method. Table 1 shows the numerical comparison of the Black-
Scholes PDE solution defined in equation (19) for α = 1 with the exact solution (equation
(20)), for k = 0.75, and the magnitude of the error.
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x τ Approach Solution Exact Solution Error
–0.50 0.50 0.189669 0.082462 0.107207
–0.40 1.00 0.353683 0.353395 0.000288
–0.30 1.50 0.500310 0.539833 0.039523
–0.20 2.00 0.636047 0.688686 0.052639
–0.10 2.50 0.766076 0.819751 0.053675
0.00 3.00 0.894601 0.943932 0.049331
0.10 3.50 1.032731 1.068042 0.035311
0.20 4.00 1.171616 1.196726 0.025110
0.30 4.50 1.315641 1.333412 0.017771
0.40 5.00 1.468307 1.480838 0.012531
0.50 5.50 1.632558 1.641369 0.008811

Table 1: Comparison of the numerical solution of the Black-Scholes PDE with the exact solu-
tion.

The example of Table 1 with a caption is given below.

Based on the numerical simulations presented in Table 1, the results of the comparison
of the Black-Scholes PDE solution with the exact solution using equation (15) is 3.66%.

Referring to equation (2), then we get

x = ln

(
S

E

)
τ =

σ2

2
(T − t) v (xτ) =

C (St)

E
k =

2r

σ2
,

where T denotes the time or maturity date, r is the risk-free interest rate, E is the
exercise price, σ is the volatility of the asset price, t is the time, and S is the price of the
asset. Based on (18), the price model for the call option C of fractional order is

C (S.t) = max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) , (21)

where ζ = − 22−αr
σ2−2α (T − t)

α
. Next, the formula for the price of the put option P of

fractional order, which is based on the put-call parity formula, is given as

P (S.t) = max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) + Ee−r(T−t) − S. (22)

Suppose the stock price is represented by the price of asset S in this study. Figure 1
shows the call option price C(S.t) against the stock price S of the Black-Scholes partial
differential equation solution based on the combined ADM-Kamal method, with dissim-
ilar values of α, where the exercise price is E = 5 and the risk-free interest rate (RIR) is
r = 5% for a one-year option contract.

Figure 2 shows the put option price P (S.t) against the stock price variable S from the
Black-Scholes PDE solution based on the combined ADM-Kamal method with dissimilar
values of α, where the exercise price is E = 5 and the RIR is r = 5% for a one-year
contract.

We fix α = {0.2, 0.5, 0.8, 0.9, 1}. In Fig. 1, an increase in α value will lower the
call option price. Meanwhile, in Fig.2, an increase in alpha value will lower the put
option price. We have calculated the price of the call option C in equation (21) which is
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Figure 1: The price C(S.t) with a fractional order of α against the stock price S.

Figure 2: The price P (S.t) with a fractional order of α against the stock price S.

simplified to

C (S.t) =max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ))

= (S − E)Eα (ζ) + S (1− Eα (ζ))

=SEα (ζ)− EEα (ζ) + S − SEα (ζ)

=S − EEα (ζ) .

(23)
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Meanwhile, for the put option price P , the equation (22) becomes

P (S.t) =max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) + Ee−r(T−t) − S

=(S − E)Eα (ζ) + S (1− Eα (ζ)) + Ee−r(T−t) − S

=SEα (ζ)− EEα (ζ) + S − SEα (ζ) + Ee−r(T−t) − S

=E
(
e−r(T−t) − Eα (ζ)

)
.

(24)

The price of P (S.t) for the stock price is higher than the exercise price (S > E) and
is not affected by the stock price S. However, it is only affected by the exercise price E,
e−r(T−t) and ζ is constant. Also, if S > E, then the price of the put option tends to be
constant, regardless of the stock price.

To calculate the price of the call option C, if the share price is less than or equal to
the exercise price (S ≤ E), we obtained

C (S.t) = max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) = S (1− Eα (ζ)) . (25)

The call option price for the stock price is less than or equal to the exercise price (S ≤ E)
and is not affected by the exercise price E, but only influenced by the stock prices S and
ζ is constant.

Meanwhile, we get

P (S.t) =max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) + Ee−r(T−t) − S

=S (1− Eα (ζ)) + Ee−r(T−t) − S

=S − SEα (ζ) + Ee−r(T−t) − S

=Ee−r(T−t) − SEα (ζ) .

(26)

Then, with using Definition 2.2, for α = 1, equations (21) and (22) become

C (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
, (27)

and
C (S.t) = SN (d1)− Ee−r(T−t)N (d2) . (28)

Based on equations (27) and (28), it can be seen that the determination of the price
of buy and sell options, respectively, using the Black-Scholes model with a fractional
order for α = 1 is not affected by the stock price volatility because there is no parameter.
Equations (27) and (28) are equivalent to the formula for the call and put option prices
obtained from the results of the classical Black-Scholes equation (not fractional order)
via the method of the Adomian-Laplace decomposition [35].

Based on equation (20), thus obtained the classical Black-Scholes model (CBLM) for
the call option price is as follows:

P (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S. (29)

d1 =
ln
(
S
E

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.
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Furthermore, we use the put-call parity formula, which is S+P−C = Ee−r(T−t), and
the identity formula for the cumulative distribution function for the normal distribution,
which is N (d)+N–d = 1. So, the CBLM is obtained for the put option price as follows:

P (S.t) = Ee−r(T−t)N (−d2)− SN (−d1) , (30)

where σ is the volatility of the stock price, r is the risk-free interest rate, E is the exercise
price, S is the stock price, and T is the expiration date of the option contract.

Figure 3 shows the C(S.t) against the stock price S of the Black-Scholes model with
a fractional order for α = 1 (see equation (27)) compared to the classical Black-Scholes
model (see equation (29)), where the exercise price E = 5 and the interest rate r = 5%
for a one-year option contract.

Figure 3: Comparison of the fractional order Black-Scholes model for α = 1 with the classical
Black-Scholes model for call option prices over a one-year period.

Furthermore, Figure 4 shows the P (S.t) against the stock price S of the Black-Scholes
model with a fractional order for α = 1 (see equation (28)) compared to the classical
Black-Scholes model (see equation (30)), where the exercise price E = 5 and the interest
rate r = 5% for a one-year option contract.

Based on the numerical simulation presented in Figure 3, the comparison of the
fractional Black-Scholes model for α = 1 with the classical Black-Scholes model for call
options prices over a one-year period is 7.80%. Meanwhile, in Figure 4, the comparison
of the Black-Scholes model with a fractional order for α = 1 with the CBSM for put
option prices over a one-year period is 7.80%.

For the stock price higher than the exercise price (S > E), the Black-Scholes model
has a fractional order with α = 1 and the calcullation of the call option price C in
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Figure 4: Comparison of the fractional order Black-Scholes model for α = 1 with the classic
Black-Scholes model for put option prices over a one-year period.

equation (27) can be simplified to

C (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
= (S − E) e−r(T−t) + S

(
1− e−r(T−t)

)
= Se−r(T−t) − Ee−r(T−t) + S − Se−r(T−t)

= S − Ee−r(T−t).

(31)

Meanwhile, for the put option price P , equation (28) becomes

P (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= (S − E) e−r(T−t) + S
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= Se−r(T−t) − Ee−r(T−t) + S − Se−r(T−t) + Ee−r(T−t) − S

= 0.

(32)

If the stock price is higher than the exercise price (S > E), then the put price P
is equal to 0. This is in accordance with the illustration of the numerical simulation in
Figure 4. For the stock price less than or equal to the exercise price (S ≤ E) and the
Black-Scholes model of fractional order with α = 1, the calculation of the call option
price can be simplified to

C (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
= S

(
1− e−r(T−t)

)
.

(33)
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The call option price for the stock price less than or equal to the exercise price (S ≤ E)
is not affected by the exercise price E, only influenced by the stock price S and e−r(T−t)

which are constant.
Meanwhile, we get

P (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= S
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= (E − S) e−r(T−t).

(34)

The price of put options for the stock prices less than or equal to the exercise price
(S ≤ E) is affected by the difference between the exercise price and the stock price (E–S)
and e−r(T−t) which is constant.

Next, suppose T = t, the option transaction is exercised at maturity, thus equations
(27) and (28) become

C (S, T ) = max {S − E, 0}, (35)

and
P (S, T ) = max {S − E, 0}+ E − S. (36)

Equations (35) and (36) are equivalent to the payoff obtained from buying call and
put options without taking into account the premium.

6 Conclusion

The main finding of this study is the investigation of a combined approach for solving
the Black-Scholes Fractional Partial Differential Equation (FPDE) for the Option Pric-
ing Model using the Adomian Decomposition Method (ADM) and the Kamal Integral
Transform (KIT). In conclusion, the ADM-Kamal method is a very effective and powerful
way to obtain both approximate and numerical solutions.
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Abstract: A novel robust adaptive method, to solve a semidefinite programming
(SDP) problem, is proposed in this study. We are interested in computation of the
direction by Newton’s method and of the displacement step using minorant-majorant
functions instead of line search methods in order to reduce the computation cost. Our
new approach is even more beneficial than classical line search methods. We created
a MATLAB implementation and ran numerical tests on various sizable instances to
validate it. The numerical data gained demonstrate the correctness and effectiveness
of our strategy, and are presented in the last section of this paper.
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1 Introduction

In the last twenty years, Semidefinite Programming (SDP) has evolved as the most excit-
ing and active research area in optimization. Combinatorial optimization, control theory,
and conventional convex constrained optimization are only a few of the many disciplines
in which SDP has applications. SDP problems arise in several areas of applications such
as economic, social, public planning and nonlinear dynamics and systems (see [2, 18]).
Most of these applications can often be solved pretty efficiently both in theory and in
reality since SDP is solvable through interior-point methods.
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Interior point methods were developed in the sixties by Dikin and Fiacco–McCormick
[7], to solve nonlinear mathematical programs with large dimension.

In order to solve the SDP problems, several algorithms have been proposed. Nesterov
and Nemirovski [16] and Alizadeh [1] are the researchers who developed interior-point
methods (IPMs) for SDP.

To solve SDP, a number of approaches have been put forth, including projective
IPMs and their variants [10, 14], central trajectory methods [19], logarithmic barrier
methods [5].

The determination and calculation of the displacement step provide an obstacle to
establishing an iteration. Unfortunately, computing the displacement step is expensive
and difficult in the case of semidefinite problems (particularly when using line search
methods [12]).

In this paper, we are interested in solving SDP using a barrier logarithmic method
that is simple and effective and is based on new approximate functions (new minorant
and new majorant functions). These approximate functions allow the computation of the
displacement step easily and quickly, and are more efficient than classical line searches.

We focus on the following SDP problem:
min bTx
m∑
i=1

xiAi − C ∈ S+
n ,

x ∈ Rm,

(1)

where b ∈ Rm, the matrices C,Ai, with i = 1, . . . ,m, are the given symmetrical matrices
and S+

n designs the cone of the symmetrical semidefinite positive n× n matrix.
The problem (1) is the dual of the following SDP problem: max⟨C, Y ⟩

⟨Ai, Y ⟩ = bi, ∀i = 1, . . . ,m,
Y ∈ S+

n .
(2)

Recall that ⟨., .⟩ corresponds to an inner product on the space of n× n matrices, where
the trace of the matrix (CTY ) is denoted by ⟨C, Y ⟩ .

Their feasible sets involving a non polyhedral convex cone, of positive semidefinite
matrices, are called linear semidefinite programs. A priori, one of the advantages of the
problem (1) with respect to its dual problem (2) is that the variable of the objective
function is a vector instead of being a matrix in the problem (2). Furthermore, under
certain convenient hypothesis, the resolution of the problem (1) is equivalent to that of
the problem (2) in the sense that the optimal solution of one of the two problems can be
reduced directly from the other through the application of the theorem on complementary
slackness, see for instance [1, 8, 15].

The problem (1) is approximated by the following perturbed problem (SDP )η :{
min fη(x)
x ∈ Rm (SDP )η

with the penalty parameter η > 0 and fη : Rm → ]−∞,+∞] being the barrier function
defined by

fη(x) =

 bTx+ nη ln η − η ln[det(
m∑
i=1

xiAi − C)] if x ∈ X̂,

+∞ if not.
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The problem (SDP )η can be solved via a classical Newton descent method.
The difficulty in line search is the presence of the determinant in the definition of

the logarithmic barrier function which leads to a very high cost in the classical exact or
approximate procedures of line search. In our approach, instead of minimizing fη, along

the descent direction at a current point x, we propose the minorant Ğ and majorant G̃
functions for which the optimal solution of the displacement step α is obtained explicitly.

Let us minimize the function G so that

1

η
[fη(x+ αd)− fη(x)] = G(α) ≥ Ğ(α), ∀α > 0,

1

η
[fη(x+ αd)− fη(x)] = G(α) ≤ G̃(α), ∀α > 0,

with G(0) = Ğ(0) = 0, G′(0) = Ğ′(0) < 0 and G(0) = G̃(0) = 0, G′(0) = G̃′(0) < 0.

The criterion G′′(0) = Ğ′′(0) and G′′ (0) = G̃ (0) guarantees that the approximations

Ğ and G̃ of G are of the highest quality.
This novel strategy’s key idea is to present a unique method for computing the dis-

placement step based on minorant-majorant functions. In contrast to the conventional
methods of line search, we then achieve an explicit approximation that reduces the ob-
jective and is both inexpensive and reliable.

The main advantage of (SDP )η resides in the strict convexity of its objective function
and convexity of its feasible domain. As a result, the prerequisites for optimality are
both necessary and sufficient. This encourages theoretical and numerical research of the
problem.

Six sections make up the remainder of this paper. In Section 2, we briefly recall some
results in linear semidefinite programming and give some preliminary results. The con-
vergence findings of the perturbed problem into the initial one are presented in Section
3. In Section 4, we provide the solution of the associated perturbed problem and the
important crucial result of the paper by introducing new approximate functions (mino-
rant and majorant functions). The effectiveness of the approximations as compared to
classical line-searches is illustrated by numerical tests in Section 5. Section 6 contains
some concluding remarks.

2 Background and Preliminary Results

This section provides the necessary background for the upcoming development. In Sub-
section 2.1, we review some results in linear semidefinite programming. In Subsection
2.2, we review some statistical inequalities.

2.1 Backdrop and brief information on linear semidefinite programming

In what follows, we denote by

1. X = {x ∈ Rm :
∑m

i=1 xiAi − C ∈ S+
n } the set of feasible solutions of (1).

2. X̂ = {x ∈ Rm :
∑m

i=1 xiAi − C ∈ int(S+
n )} the set of strictly feasible solutions of

(1).

3. F = {Y ∈ S+
n : ⟨Ai, Y ⟩ = bi, ∀i = 1, . . . ,m} the set of feasible solutions of (2).
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4. F̂ = {Y ∈ F : Y ∈ int(S+
n )} the set of strictly feasible solutions of (2).

Here, int(S+
n ) is the set of the symmetrical definite positive n× n matrices.

Let us state the following necessary assumptions.

• (A1) The system of equations ⟨Ai, Y ⟩ = bi, i = 1, . . . ,m is of rank m.

• (A2) The sets X̂ and F̂ are non empty.

We know that (see [1, 3])

1. The sets of optimal solutions of problems (2) and (1) are non empty convex and
compact.

2. If x̄ is an optimal solution of (1), then Ȳ is an optimal solution of (2) if and only

if Ȳ ∈ F and

(
m∑
i=1

x̄iAi − C

)
Ȳ = 0.

3. If Ȳ is an optimal solution of (2), then x̄ is an optimal solution of (1) if and only

if x̄ ∈ X and

(
m∑
i=1

x̄iAi − C

)
Ȳ = 0.

According to assumptions (A1) and (A2), the solution of problem (1) permits to give
the solution of problem (2) and vice-versa.

2.2 Preliminary inequalities

The following result is due to H. Wolkowicz et al. [20], see also J. P. Crouzeix et al. [6]
for additional results.

Proposition 2.1 [20]

x̄− σx

√
n− 1 ≤ min

i
xi ≤ x̄− σx√

n− 1
,

x̄+
σx√
n− 1

≤ max
i

xi ≤ x̄+ σx

√
n− 1.

Let us recall that B. Merikhi et al. [5] proposed some useful inequalities related to
the maximum and minimum of xi > 0 for any i = 1, ..., n.

n ln(x̄− σx

√
n− 1) ≤ A ≤

n∑
i=1

ln(xi) ≤ B ≤ n ln(x̄) (7)

with

A = (n− 1) ln(x̄+
σx√
n− 1

) + ln(x̄− σx

√
n− 1),

B = ln(x̄+ σx

√
n− 1) + (n− 1) ln(x̄− σx√

n− 1
)

so that x̄ and σx are respectively, the mean and the standard deviation of a statistical
series {x1, x2, ..., xn} of n real numbers. These quantities are defined as follows:

x̄ =
1

n

n∑
i=1

xi and σ2
x =

1

n

n∑
i=1

x2
i − x̄2 =

1

n

n∑
i=1

(xi − x̄)2.
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The main advantage of (SDP )η resides in the strict convexity of its objective function
and its feasible domain. Consequently, the conditions of optimality are necessary and
sufficient. This fosters theoretical and numerical studies of the problem.

Before this, it is necessary to show that (SDP )η has at least an optimal solution.

3 Theoretical Aspects of Perturbed Problem

3.1 Existence of solution of the perturbed problem

For x ∈ X̂, let us introduce the symmetrical positive definite matrix B(x) of rank m,
and the lower triangular matrix L(x) such that

B(x) =

m∑
i=1

xiAi − C = L(x)LT (x),

and let us define, for i, j = 1, ...,m,

Âi(x) = [L(x)]−1Ai[L
T (x)]−1,

bi(x) = trace(Âi(x)) = trace(AiB
−1(x)),

∆ij(x) = trace(B−1(x)AiB
−1(x)Aj) = trace(Âi(x)Âj(x)).

Thus, b(x) = (bi(x))i=1,...,m is a vector of Rm and ∆(x) = (∆ij(x))i,j=1,...,m is a
symmetrical matrix of rank m.

The previous notation will be used in the expressions of the gradient and the Hessian
H of fη. To show that problem (SDP )η has a solution, it is sufficient to show that fη is
inf-compact.

Theorem 3.1 [5] The function fη is twice continuously differentiable on X̂. Actu-

ally, for all x ∈ X̂, we have
(a) ∇fη(x) = b− ηb(x).
(b) H = ∇2fη(x) = η∆(x).
(c) The matrix ∆(x) is positive definite.

Since fη is strictly convex, (SDP )η has at most one optimal solution.
For the existence of solution of the perturbed problem, firstly, we start with the

following definition.

Definition 3.1 Let f be a function defined from Rm to R ∪ {∞}, f is called inf-
compact if for all η > 0, the set Sη(f) = {x ∈ Rm : f(x) ≤ η} is compact, which implies
its cone of recession is reduced to zero.

As the function fη takes the value +∞ on the boundary of X and is differentiable

on X̂, then it is lower semi-continuous. In order to prove that (SDP )η has one optimal
solution, it suffices to prove that the recession cone of fη

S0

(
(fη)∞

)
= {d ∈ Rm, (fη)∞(d) ≤ 0}

is reduced to zero, i.e., d = 0 if (fη)∞(d) ≤ 0, where (fη)∞ is defined for x ∈ X̂ as

(fη)∞ (d) = lim
α→+∞

[
ξ (α) =

fη (x+ αd)− fη (x)

α

]
.

This leads to the following proposition.
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Proposition 3.1 [5] If bT d ≤ 0 and
m∑
i=1

diAi ∈ X̂, then d = 0.

3.2 Uniqueness of the solution of the perturbed problem

As fη is inf-compact and strictly convex, therefore the problem (SDP )η admits a unique
optimal solution. We denote by x(η) or xη the unique optimal solution of (SDP )η .

3.3 Convergence of perturbed problem to (1)

Proposition 3.2 [5] For η > 0, let xη be an optimal solution of the problem (SDP )η,
then there exists x ∈ X being an optimal solution of (1) such that

lim
η→0

xη = x.

Remark 3.1 We know that if one of the problems (1) and (2) has an optimal solu-
tion, and the values of their objective functions are equal and finite, the other problem
has an optimal solution.

4 The Numerical Aspects of Perturbed Problem

4.1 Newton descent direction

With the presence of the barrier function, the problem (SDP )η can be considered as the
one without constraints. So, one can solve it by a classical slope method. As fη takes the

+∞ value on the boundary of X, then the iterates x are in X̂. Thus, the new proposed
method is an interior point method.

Let x ∈ X̂ be the actual iterate. As a slope direction in x, let us take Newton’s
direction d as a solution of the linear system

∇2fη(x)d = −∇fη(x).

By virtue of Theorem 1, the precedent linear system is equivalent to the system

∆(x)d = b(x)− 1

η
b, (3)

where b(x) and ∆(x) are defined in Subsection 3.1.
The matrix ∆(x) being symmetrical, positive definite, the linear system (3) can be

effectively solved through the Cholesky decomposition.
Evidently, one can admit ∇f(x) ̸= 0 (otherwise, the optimum is reached). It follows

that d ̸= 0. The direction d being calculated, we search ᾱ > 0 giving a significant decrease
to fη over the semi-line x+ αd, α > 0, with the conservation of the positive definiteness
of the matrix B(x+ ᾱd). Then, the next iterate will be taken equal to x+ ᾱd. Thus, we
can consider the function

G(α) =
1

η
[fη(x+ αd)− fη(x)], x+ αd ∈ X̂,

G(α) =
1

η
bT dα− ln det(B(x+ αd)) + ln det(B(x)).
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Since ∇2[fη(x)]d = −∇fη(x), we have

dT∇2fη(x)d = −dT∇fη(x) = dT b(x)− ηdT b.

To simplify the notations, we consider

B = B(x) =

m∑
i=1

xiAi − C and H =

m∑
i=1

diAi,

B being symmetrical and positive definite, there exists a lower triangular matrix L such
that B = LLT .

Next, let us put E = L−1H(L−1)T , since d ̸= 0, the assumption (A1) implies that
H ̸= 0 and then E ̸= 0.

There are two main techniques used for computing the displacement step αk.
1) Line search methods such as the Goldstein-Armijo method, Wolfe method,

Fibonacci method, etc. These methods are based on the minimization of the one-
dimensional function

φ (α) = min
α>0

fη(x+ αd).

Unfortunately, they are very delicate and time consuming.
2) The approximate function (majorant and minorant function) method

is a sophisticated technique introduced by Crouzeix and Merikhi [5] to solve a positive
semidefinite programming problem. The goal of this technique consists in approximating
the function G (α) defined by

G(α) =
1

η
[fη(x+ αd)− fη(x)].

Contrarily to the line search method, the approximate function is simple, and one
can easily compute its minimum. This allows the computation of the displacement step
without complications and in a short time.

In the following proposition, we give a simple form of the function G(α).

Proposition 4.1 [5] With this notation, for any α > 0 such that I +αE is positive
definite,

G(α) = α[trace(E)− trace(E2)]− ln det(I + αE). (4)

Let us denote by λi the eigenvalues of the symmetric matrix E, then the function G can
be written as follows:

G(α) =

n∑
i=1

[α(λi − λ2
i )− ln(1 + αλi)], α ∈ [0, α̂[ , (5)

with
α̂ = sup[α : 1 + αλi > 0 for all i ] = sup[α : x+ αd ∈ X̂]. (6)

Let us observe that α̂ = +∞ if E is positive semidefinite, and 0 < α̂ < ∞ otherwise.
It is clear that G is convex on [0, α̂[ , G(0) = 0 and

0 <
∑
i

λ2
i = G′′(0) = −G′(0).
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Besides, G(α) → +∞ when α → α̂. It follows that there exists a unique point αopt

such that G′(αopt) = 0, where G reaches its minimum at this point.
Unfortunately, there is no an explicit formula that gives αopt, and the resolution

of the equation G′(αopt) = 0 through iterative methods needs at each iteration the
computation of G and G′. These computations are too expensive because the expression
of G in (4) contains the determinant which is difficult to calculate and the expression of
(5) necessitates the knowledge of the eigenvalues of E. It is a numerical problem of large
size. These difficulties make us look for other new alternatives approaches. Once E is
calculated, it is easy to calculate the following quantities:

trace(E) =
∑
i

eii =
∑
i

λi and trace(E2) =
∑
i,j

e2ij =
∑
i

λ2
i .

Based on this proposition, we give, in the following section, new notions of non
expensive approximate functions for G that offer some variable displacement steps to
every iteration with a simple technique. We prove the efficiency of one of them by
numerical experiments that we will present at the end of this work.

Now, we give the crucial result of the paper.

4.2 New minorant and majorant functions of G

Let us go back to the equations (5) and (6), denote by λ̄ and σλ, respectively, the mean
and the standard deviations of λi, and by ∥λ∥ the Euclidean norm of the vector λ. So,

∥λ∥2 = n(λ̄2 + σ2
λ) = G′′(0) = −G′(0),

and

G(α) = nλ̄α− ∥λ∥2α−
n∑

i=1

ln(1 + αλi). (8)

The problem consists in looking for ᾱ ∈ ]0, α̂[ with α̂ = min
λi<0

{
−1
λi

}
to give a sig-

nificant decrease of the convex function G. Let us insist that the best natural choice
ᾱ = αopt,where G′(αopt) = 0, presents numerical complications. However, one can find
approximately ᾱ, but this procedure necessitates, also, too many computations of G and
G′. However, if we use a line search, it becomes convenient to know the superior born α̌
of the G domain, which is numerically difficult to solve. Consequently, we will take the
upper borne of α̃ given in Proposition 2.1.

α̌ = sup[α : 1 + αγ > 0] with γ = λ̄+ σλ

√
n− 1,

α̃ = sup[α : 1 + αβ > 0] with β = λ̄+
σλ√
n− 1

.

This strategy consists in minimizing a minorant and majorant approximation Ğ and
G̃ of G instead of minimizing G over [0, α̂[ . To be efficient, this minorant and majorant
approximation needs to be simple and sufficiently near G. In our case, it requires

0 = Ğ(0), ∥λ∥2 = Ğ′′(0) = −Ğ′(0),

0 = G̃(0), ∥λ∥2 = G̃′′(0) = −G̃′(0).

The following lemma introduces two new approximate functions for G.
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Lemma 4.1 For all α ∈ [0, α̂[ ∩ [0, α̌[ , we have

ĞMin (α) ≤ G (α) ,

and for all α ∈ [0, α̂[ ∩ [0, α̃[ , we have

G (α) ≤ G̃Maj (α) ,

where

ĞMin (α) =
∥λ∥2

γ
α− q ln

(
1 +

∥λ∥2

γ
α

)
, ∀α ≥ 0, 0 < q < 1,

and

G̃Maj (α) =
∥λ∥2

β
α− p ln

(
1 +

∥λ∥2

β
α

)
, ∀α ≥ 0, 0 < p < 1.

Proof. 1. We start by proving that ĞMin (α) ≤ G (α) .

We have G(α) = nλ̄α− ∥λ∥2α−
∑n

i=1 ln(1 + αλi). Then we put

H (α) = G (α)− ĞMin (α) .

Then H (0) = H ′ (0) = 0 and we have, for all α > 0,

H ′′ (α) =

n∑
i=1

λ2
i

(1 + αλi)2
− λ2

i(
1 + α ∥λ∥2

γ

)2 ≥ 0.

Because |λi| ≤ ∥λ∥ and γ ≤ ∥λ∥, it gives H (α) ≥ 0, ∀α ≥ 0.

So ĞMin (α) ≤ G (α) .

2. Now we prove that G (α) ≤ G̃Maj (α) . We put: K (α) = G̃Maj (α)−G (α) . Then
K (0) = K ′ (0) = 0 and we have, for all α > 0,

K ′′ (α) =
∥λ∥4

(β + α∥λ∥2)2
+

n∑
i=1

λ2
i

(1 + αλi)2
≥ 0.

This gives K (α) ≥ 0, ∀α ≥ 0. So G (α) ≤ G̃Maj (α) .

We deduce that the functions ĞMin and G̃Maj reach their minimum at one unique
point:

ᾱMin = (q − 1)
γ2

∥λ∥2
, ᾱMaj = (p− 1)

β2

∥λ∥2
.

5 Description of the Algorithm and Numerical Results

In this section, we present the algorithm of our approach to obtain an optimal solution
x̄ of the problem (1) and some numerical results to demonstrate the performance of our
methods.
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5.1 The algorithm

Begin algorithm
Initialization
We have to decide on the strategy of the displacement step. ε > 0 is a given precision,

η > 0, ρ > 0 and σ ∈ ]0, 1[ are fixed parameters. Start with xk ∈ X̂ and k = 0.
Iteration

1. Take B = B(xk) =
m∑
i=1

xk
iAi − C and L such that B = LLT .

2. Compute{
Âi(x

k) = [L(xk)]−1Ai[L
T (xk)]−1, b(xk) = trace(Âi(x

k)),

∆ij(x
k) = trace(Âi(x

k)Âj(x
k)), H = η∆(xk).

3. Solve the linear system Hd = ηb(x)− b.

4. Calculate E = L−1H(L−1)T , trace(E) and trace(E2).

5. Take the new iterate xk+1 = xk + ᾱd such that ᾱ is obtained by the use of the
displacement step strategy of Ği, i = 1, ..., 3.

6. If nη > ε, do xk = xk+1, η = ση and go to (1) .

7. If |bTxk+1 − bTxk| > nρη, do xk = xk+1 and go to (1) .

8. Take k = k + 1.

9. Stop: xk+1 is an approximate solution of the problem (1).

End algorithm
We know that the optimal solution of (SDP )η is an approximation of the solution

of problem (1). The closer η is to zero, the better the approximation. Unfortunately,
when η approaches zero; the problem (SDP )η becomes ill-conditioned. For this reason,
we use at the beginning of the iteration the values of η that are not near to zero, and
verify nη < ε. We can explain the interpretation of the update η as follows: if x(η) is
an exact solution of (SDP )η, so bTx(η) ∈ [m (0) ,m (0)+nη]. It is then not necessary to
keep on the calculus of the iterates when |bTxk+1 − bTxk| ≤ nρη.

The displacement step ᾱ will be determined by the classical line search of Armijo-
Goldstein-Price type or by one of three following strategies St i, by minimizing the
majorant function G̃ and the minorant function Ğ.

In the next subsection, we present comparative numerical tests to prove the effective-
ness of our approach over the line search method.

5.2 Numerical tests

The following examples are taken from the literature, see for instance [4, 5, 9], and im-
plemented in MATLAB. We have taken ε = 1.0e − 004, σ = 0.125 and two values of ρ,
ρ = 1 or ρ = 2.

In the table of results, (exp (m,n)) represents the size of the example, (Itrat) repre-
sents the number of iterations necessary to obtain an optimal solution, (Time) represents
the time of computation in seconds (s), (LS) represents the classical line search of the
Armijo-Goldstein method and (St Maj) and (St Min) represent the strategies which use

the minorant functions Ğ and the majorant function G̃, respectively.
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5.2.1 Examples with fixed size

In the following examples, diag(x) is the n× n diagonal matrix with the components of
x as the diagonal entries.

Example 1: m = 2, n = 3,

C =

 1 −1 1
−1 2 −2
1 −2 2

 , A1 =

 1 −1 1
−1 0 0
1 0 0

 , A2 =

 1 0 0
0 1 0
0 0 1

 , b = (0, 1)t.

Example 2: m = 3, n = 5,

C =


−4 0 0 0 0
0 −5 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , A1 =


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



A2 =


1 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 , A3 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , b = (8, 7, 3)t.

Example 3: m = 3, n = 6,

C =


3 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , A1 =


2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0



A2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 , A3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , b = (0, 0, 1)t.

Example 4: m = 6, n = 12,

C = diag(−4,−5,−1,−3, 5,−8, 0, 0, 0, 0, 0, 0)t,

A1 = diag(1, 0,−4, 3, 1, 1, 1, 0, 0, 0, 0, 0)t,

A2 = diag(5, 3, 1, 0,−1, 3, 0, 1, 0, 0, 0, 0)t, A3 = diag(4, 5,−3, 3,−4, 1, 0, 0, 1, 0, 0, 0, )t,

A4 = diag(0,−1, 0, 2, , 1,−5, 0, 0, 0, 1, 0, 0)t, A5 = diag(−2, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 0)t,

A6 = diag(2,−3, 2,−1, 4, 5, 0, 0, 0, 0, 0, 1)t, b = (1, 4, 4, 5, 7, 5)t.

The obtained results are given in the following table.

exp (m,n) St Min St Maj LS
Itrat Time Itrat Time Itrat Time

exp 1(2, 3) 4 0.032 3 0.024 5 0.25
exp 2(3, 5) 5 0.056 2 0.0022 7 0.36
exp 3(3, 6) 5 0.094 4 0.023 6 0.36
exp 5(6, 12) 3 0.0016 1 0.0002 3 0.087
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5.2.2 Example with variable size

Example 1: (Example Cube)

n = 2m, C is the n× n identity matrix, b = (2, ..., 2)T ∈ Rm, a ∈ R, and the entries
of the n× n matrix Ak, k = 1, . . . ,m, are given by

Ak[i, j] =


1 if i = j = k or i = j = k +m,
a2 if i = j = k + 1 or i = j = k +m+ 1,
−a if i = k, j = k + 1 or i = k +m, j = k +m+ 1,
−a if i = k + 1, j = k or i = k +m+ 1, j = k +m,
0 otherwise.

Test: a = 0 and C = −I.

The following table resumes the obtained results.

Size (m,n) St Min St Maj LS
Itrat Time Itrat Time Itrat Time

(50, 100) 2 102 1 65 dvg
(100, 200) 3 402 2 214 dvg
(200, 400) 3 798 2 685 dvg

dvg means that the algorithm does not terminate within a finite time.

Commentary. We notice that the two strategies converge to the optimal solution.
These tests show clearly that our two strategies offer an optimal solution of (1) and (2) in a
reasonable time and with a small number of iterations. We conclude the proposed method
is more effective than the line search, and it can improve the results obtained by the line
search method. When the instances get larger, this is especially true. Additionally, the
reduction in time is substantial because it is clear that the suggested technique takes at
least twice as long as the line searches method to arrive at the best answer.

6 Conclusion

In order to solve a linear semidefinite problem, a logarithmic barrier technique based
on novel majorant and minorant functions is presented in this study. These two novel
approximations provide displacement steps more quickly, cheaply, and easily than the
line search. The effectiveness of the majorant and minorant function methodology in
comparison to the line search method is demonstrated by numerical data. Our important
result is applicable and very important in different problems of nonlinear dynamics in
practice. As allways, we arrived to problem of optimization after we solve these problems,
then we choose our approach for solving it. The idea of introducing our new majorant and
minorant functions appears to be a topic worth exploring in the future in the nonlinear
dynamics problems and other problems.
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Abstract: Several Electronic Nose (E-nose) studies on coffee classification have been
conducted. The E-nose uses gas sensors to detect the aroma of coffee and generate
signals. Then the signals are classified using machine learning algorithms. In this
study, the E-nose used five gas sensors to classify civet coffee and non-civet coffee,
and the machine learning algorithms used were SVM, KNN and Decision Tree. The
coffee variant used was Arabica coffee with the types of civet coffee (kopi luwak) and
non-civet coffee (kopi non-luwak) originating from Aceh, Arjuno Malang, Bengkulu.
In this study, the mixture of civet coffee and non-luwak coffee was made with a
percentage of 100: 0, 90:10, 10:90, 80:20, 20:80, 75:25, 25:75, 50:50. The accuracy
of the classification of Aceh civet coffee (LA) and Aceh non-civet coffee (NLA) was
90% (SVM), 100% (KNN), 100% (Decision Tree). The accuracy of the classification
of Arjuno civet coffee (LAR) and Arjuno non-civet coffee (NLAR) was 100% (SVM,
KNN, Decision Tree). The accuracy of the classification of Bengkulu civet coffee (LB)
and Bengkulu non-civet (NLB) was 45% (SVM), 100% (KNN, Decision Tree). And
the accuracy of coffee mixture classification (Aceh civet and Aceh non-civet) was 90%
(SVM), 93.75% (KNN), and 95% (Decision Tree). The accuracy level obtained was
affected by the age of coffee storage, the data collection process when detecting the
coffee aroma, and the number of class attributes used.
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1 Introduction

Coffee is a plant that produces fruit that can be extracted into several types of products,
one of the famous and easy-to-find coffee products are beverages. Coffee beans produced
from coffee cherries go through several stages of processing [1]. In Indonesia, there are
two variants of coffee commonly found, that is, arabica coffee and robusta coffee, and
there are also two types of coffee called civet coffee resulted from the civet digestive
process. Coffee beans that have gone through the civet digestion process can reduce
their acid level so that the coffee beans produced become the best quality coffee [2]. In
the process of odor stimulation, the gas-stimulating molecules are small or few in number.
In this process, more decisive is not the amount of all gas entering through the nose but
the number of gas molecules per unit time that touch odor sensitive cells in the nasal
cavity [3]. Smells are usually produced from very low concentrations. The arising of the
aroma of food and drink is caused by the formation of volatile compounds. The aroma
that is released by every food and drink varies [4]. In addition, different cooking methods
will cause different aromas. Likewise, coffee has a distinctive smell after passing through
the roasting process [5].

Based on the raw material of each coffee cultivar, civet coffee has different chemi-
cal characteristics from the others. The chemical compounds contained in coffee beans
greatly influence the taste and aroma of steeping coffee [6]. Therefore, the differences
in chemical characteristics make the taste of Arabica civet coffee better than the taste
of robusta civet coffee [7]. The coffee drink generally smells less when its temperature
decreases because volatile substances will evaporate at high coffee temperatures. The
sharp aroma of coffee can be smelled because coffee has polyphenol compounds [8]. The
air containing volatile substances from a food will flow turbulently through the crevices
of the nasal cavity. The gas molecules in the inhaled air stimulate and touch odor sensi-
tive cells in the nasal cavity. The aroma of coffee can be detected by measuring the gas
contained in it. The electronic nose technology can be used to detect the aroma present
in coffee with the help of digital data from signaling that appears through the Arduino
screen [9].

Classification research for the introduction of the coffee aroma is needed, especially
in the introduction of civet coffee and non-civet coffee. This is followed by the increasing
demand for the best arabica civet coffee from Indonesia, in meeting domestic and foreign
market needs. With the high demand for arabica civet coffee, it is very susceptible to
fraud committed by businessmen who expect greater profits, whereas the price of civet
coffee is higher than the price of non-civet coffee. In this paper, the authors conducted a
study of the types of civet arabica coffee and non-civet arabica coffee from three coffee-
producing regions in Indonesia, namely, Aceh coffee, Malang coffee (Arjuno), Bengkulu
coffee, the three types of coffee from these regions have not previously been studied
simultaneously with arabica civet coffee and arabica non-civet coffee samples from Aceh,
Malang (Arjuno coffee) and Bengkulu. This research detects coffee aroma with a series
of gas sensors called the electronic nose, the E-nose circuit consists of five MQ-type gas
sensors, they are MQ2, MQ3, MQ4, MQ7 and MQ135, from the aroma detection data
shown in the displayed signal by the sensor via a monitor screen in the form of a digital
signal. The data obtained from the detection of coffee aroma will be processed in main
data to find information from the results of coffee aroma detection using the machine
learning algorithm for data to be classified, and analyzed based on the accuracy produced
so that to find the authenticity of arabica civet coffee and arabica non-civet coffee from
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the coffee samples used [10], [11], [12].

2 Research Method

The research aims to design an electronic nose used to detect the aroma of coffee. The
variants used are arabica coffee with civet coffee and non-civet coffee originating from
the three best coffee-producing regions in Indonesia: Aceh, Arjuno and Bengkulu. The
aroma of coffee is detected with an electronic nose which generates digital data. The
detected digital data are processed and tested in the classification process by applying
machine learning classification algorithms by using Weka software.

2.1 Electronic nose design

The electronic nose circuit is designed with five MQ-type gas sensors, Arduino, a USB
cable, a small fan and one tightly closed container. Table 1 shows the sensitivity of each
sensor used in the study [13].

Sensor Sensitivity to
MQ 2 Hydrogen, Methane, Alcohol, Propane, Butane
MQ 3 Alcohol, Methane, Benzine, Hexane, LPG, Carbon Monoxide
MQ 4 Methane, Hydrogen, Carbon Monoxide, Alcohol, Smoke
MQ 7 CO (Carbon Monoxyde)

MQ 135 Air Quality
(SnO2, Ammonia, Gasoline vapor, Sulfide, and other harmful gases)

Table 1: Types and sensitivity of sensors.

These five sensors can detect some of the same gases and what distinguishes them
is the sensitivity level of each sensor to the gas, which can be detected based on sensor
technical data [14]. In order to detect the aroma in coffee, all sensors are arranged in a
circuit called the Electronic nose [15].

2.1.1 Electronic nose (E-nose)

The electronic nose (E-nose) is an instrument used to detect odors or aromas [16]. This
system is built of an array of gas sensors known as the electronic olfactory system be-
cause the Electronic nose has the ability to imitate the work of the human sense of
smell [17]. The output of the Electronic nose system is a signal forming patterns that
represent each scent so that it is applicable for identification, comparison, quantification
and classification based on the aroma [18], [19].

2.2 Coffee

Coffee is one of the largest plantation commodities in Indonesia, spread in the highlands.
Coffee plants growing in the highlands produce the best quality coffee [20]. The regions
producing the best quality coffee being in great demand on the international market
and by domestic consumers include Gayo Arabica coffee from Aceh, Arjuno Arabica
coffee from Malang and Kepahiang Arabica coffee from Bengkulu. The Gayo Highlands,
situated at an altitude of 1200 meters above sea level, make coffee plants grow well, with
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the cool natural conditions of the Gayo Highlands giving an impact on the quality of the
aroma and taste of the coffee produced [21]. Kepahiang is one of the districts in Bengkulu
province with the majority of the population being coffee farmers. The coffee plantations
in Kepahiang, situated at an altitude of 900 to 1300 meters above sea level, were originally
planted with Robusta coffees only. With the increasing demand for Arabica coffee in
the international market, farmers in Bengkulu were getting convinced to plant Arabica
coffee, among them were those farmers in Kepahiang district. Currently, Arabica coffee
in Kepahiang is very popular in the international market, especially on the European
continent [22]. The foot of Mount Arjuna in Malang Regency, East Java, situated at
an altitude of 900 to 1500 meters above sea level, is an ideal site for coffee plantations.
The coffee produced on the slopes of Mount Arjuno in Karangploso sub-district-Malang
Regency often wins the national and even international coffee competitions. Arabica
coffee from the slopes of Mount Arjuno has a soft and fragrant taste due to the effect of
volcanic soil and forest vegetation which is a heterogeneous forest. In addition, another
very influential factor is the smell of sulfur from Mount Wilerang adjacent to Mount
Arjuno so that different aromas and tastes give characteristics to Arjuno Arabica coffee
[23].

2.2.1 Civet coffee and non-civet

Kopi luwak (civet coffee) is one of the typical Indonesian coffee products produced from
the feces of a civet animal (Paradoxurus hermaphroditus) after the animal consumes ripe
coffee cherries [24]. The luwak (civet) selects coffee cherries with an optimum maturity
level based on taste and aroma, eats them by peeling the outer skin, then swallows the
seeds and mucus. In the civet’s digestive system, the coffee beans undergo a natural
fermentation process at an optimal temperature level with the help of microbes and
enzymes present in the civet’s digestion. The fermentation process provides changes in
the chemical composition of the coffee beans, which can improve the quality of the taste
of Luwak coffee to be different from ordinary coffee so that Luwak coffee has a specific
and special taste and aroma. The improvement in the taste quality of Luwak coffee is
caused by the low protein content and high fat content compared to ordinary coffee.
Low protein content can reduce bitter taste, while high fat content can increase body
weight [25].

2.2.2 Data mining

Data mining is a process that uses statistical, mathematical, artificial intelligence, and
machine learning techniques to extract and identify useful information and related knowl-
edge from various databases [26]. The data mining process is done by applying a clas-
sification machine learning algorithm in recognizing information from a data [27]. The
machine learning algorithms applied in this research are Support Vector Machine (SVM),
k-nearest neighbor (KNN) and Decision Tree.

2.2.3 Support vector machine (SVM)

This method uses a two-step classification process. First, a kernel function transforms
low-dimensional features into high-dimensional features [28]. Such transformation trans-
forms non-linearly separable data into linearly separable data of higher dimensions. There
are various kinds of kernels to use such as the Polynomial and Radial Basis Function
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(RBF). The second step is to construct the maximum margin of the hyperplane to deter-
mine the decision limit for each class. The concept of maximum separation prevents mis-
classification of outliers, thus making the SVM a high-accuracy classification method [29].
In classifying the data, the data are divided into two types, that is, the training data
and the test data, the training data set is labeled as T = {(xb, li), i = 1, 2, . . . , L} with

xi ∈ RP and li ∈ {−1, 1}, and the test data as f(x) = sign
∑L

i=1 ai · li · K(xi, x) + b,
where ai is the Lagrange multiplier, b is the limit value, K is the kernel function, so the
SVM is a subset of the training data with ai > 0 [30].

2.2.4 K-nearest neighbor (KNN)

The K-Nearest Neighbor (KNN) is a classification algorithm that will determine the label
(class) of a test data based on many classes from the closest distance to k in the training
data group [31]. The value of k used is 3 and 5 to be used in applying the KNN method,
while the distance calculation uses the Euclidean Distance method [32]. The KNN will
classify the test image into the class with the highest number of members [33]. The
working principle of KNN is to find the shortest distance between the data to be evaluated
and its k-closest neighbors in the training data [34]. The following is the equation for
calculating the distance to the nearest neighbor: D =

√
(x1 − y1)2 + (x2 − y2)2 with x

being the sample data, y being the test data, and D being the distance.

2.2.5 Decision tree (C4.5)

This algorithm has the input in the form of training samples and test samples [35], [36].
The training samples are in the form of sample data to be used to build a tree that has
been tested for its credibility, while the test samples are data fields to be used later as
parameters in classifying data [37]. In general, the C4.5 algorithm builds a decision tree
following the steps as below: 1. Select an attribute as a root. 2. Create a branch for
each value. 3. Divide cases in branches. 4. Repeat the process for each branch until all
cases in the branch have the same class. Select the root attribute based on the highest
gain value of the existing attributes. To calculate the gain, use the formula Gain (S.A) =
Entropy (S), Zi = i Entropy (Si), where S is the set of cases, A is the attribute, N is the
number of partitions of the attribute A, (Si) is the number of cases in the i-th partition,
and |Sr| is the number of cases in S.

2.2.6 Confusion matrix

The confusion matrix is the most common way to show classification results, especially
in multiclass data, to present it in the form of a confusion matrix also known as a
contingency table [38]. For instance, xr,c of the confusion matrix C ∈ N lxl with r
indicating the prediction class and c indicating the correct prediction results, and those
outside the diagonal being the wrong prediction results. Table 2 shows the form of the
matrix to be built in displaying the classification results [39].

3 Results and Analysis

This research aimed to design an Electronic nose and to perform the process of analyzing
data from coffee aroma detection results by applying machine learning algorithms for
recognizing and finding information from the data resulted from the detection of the
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Prediction (r) Original (c)
Class 1 Class 2 . . . Class n

Class 1 X11 X12 . . . X1n

Class 2 X21 X22 . . . X2n

Class n Xn1 Xn2 . . . Xnn

Table 2: Confusion Matrix.

(a) Detailed Hardware Design. (b) Finished Design

Figure 1: Design of the Electonic Nose.

aromas of the civet coffee and non-civet coffee originating from three coffee-producing
regions in Indonesia: Aceh, Arjuno Malang and Bengkulu.

3.1 Hardware design of electonic nose

Five gas sensors (MQ2, MQ3, MQ4, MQ7 and MQ 135) were assembled into one above
the Printed Circuit Board (PCB) and connected to the Arduino device so as to be able
to read the aroma detection of coffee.

The hardware designed to detect the aroma of civet coffee and non-civet coffee is
called the Electronic nose. The Electronic nose was connected to a computer and run on
the Arduino IDE software, and it displayed the results of the coffee aroma detection on
the cooltrem screen. The results of the coffee aroma detection displayed on the cooltrem
screen can be seen in Figure 2.

Each line in Figure 2 displays the value of the detection results from the MQ2, MQ3,
MQ4, MQ7, and MQ135 sensors every 2 seconds. The data collection in each experiment
was done for 15 minutes.

The experiment conducted in this study was to detect the aroma of Arabica coffee
variants with civet and non-civet coffee types from the best three coffee-producing areas:
Aceh, Arjuno Malang, Bengkulu. This study was also conducted for an experimental
mixture of Aceh civet coffee with Aceh non-civet coffee. The Aceh coffee mixture is
divided into eight mixtures with the percentage of each mixture shown in Table 3. The
experiments on each type of mixture, Aceh civet coffee with Aceh non-civet coffee, Arjuno
civet coffee with Arjuno non-civet coffee, Bengkulu civet coffee with Bengkulu non-civet
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Figure 2: Digital data display of coffee aroma detection results.

No. Aceh Civet Aceh Non-civet Class
1 100% 0% L100NL0
2 90% 10% L90NL10
3 10% 90% L10NL90
4 80% 20% L80NL20
5 20% 80% L20NL80
6 75% 25% L75NL25
7 25% 75% L25NL75
8 50% 50% L50NL50

Table 3: Percentage of Aceh Coffee Mixture.

coffee, and coffee mixture (Aceh civet with Aceh non-civet), are conducted as many as
50 times of data collection using the Electronic nose. One-time data collection is carried
out for 15 minutes at room temperature. The coffee used as an experimental material is
ground coffee with an ideal grinding level, from coarse to medium, with a coffee weight of
15 grams per data collection. The output of the coffee aroma detection produces a digital
value from each sensor and is displayed on the cooltrem screen (Figure 2). To classify the
coffee aroma detection data, the digital data will go through the process of calculating
the average value and standard deviation. The calculations are made in each column
based on the sensor name contained in the Electronic nose circuit. The calculation of the
average value and standard deviation is made for all aroma detection results in each data
sampling. The data from the calculation of the average value and standard deviation of
each sensor can be seen in Figure 3, Figure 4, Figure 5, and Figure 6.

Figure 3 displays the results of calculating the average value and standard deviation
of each sensor from the detection of Aceh Arabica coffee aroma. The Aceh Arabica
coffee data are divided into two classes: Aceh civet (LA) and Aceh non-civet (NLA).
Each class has 50 data, with the data range of 1-50 for the Aceh civet class (LA) and of
51-100 data for the Aceh non-civet class (NLA). Aceh Arabica coffee has 10 attributes:
avrMQ2, avrMQ3, avrMQ4, avrMQ7, avrMQ135, stdMQ2, stdMQ3, stdMQ4, stdMQ7,
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Figure 3: Data of Aceh Arabica Coffee Aroma : Civet and Non-Civet.

stdMQ135. The attributes in the aroma data of Aceh Arabica coffee are the values
from the calculation results of the average and standard deviation of five sensors in the
Electronic nose circuit.

Figure 4: Data of Arjuno Arabica Coffee Aroma: Civet and Non-Civet.

The data of Arjuno civet Arabica coffee in Figure 4 has 2 classes and 10 class at-
tributes. Each class has 50 data, 1-50 data for the Arjuno civet class (LAR) and 51-100
data for the Arjuno non-civet class (LAR). There are 10 attributes in Arjuno Arabica
coffee aroma data, that is, avrMQ2, avrMQ3, avrMQ4, avrMQ7, avrMQ135, stdMQ2,
stdMQ3, stdMQ4, stdMQ7, stdMQ135. These attributes are the results of the calculation
of the average and standard deviation of five sensors in the Electronic nose circuit.

Figure 5: Data of Bengkulu Arabica Coffee Aroma : Civet and Non-Civet.

Figure 5 displays the data of Bengkulu Arabica coffee aroma, divided into two classes,
that is, Bengkulu civet (LB) and Bengkulu non-civet (NLB). Each class has 50 data with
the order range of the data as in the table: 1-50 for the Bengkulu civet (LB) class and
51-100 for the Bengkulu non-civet class (NLB). There are 10 data attributes for each
class: avrMQ2, avrMQ3, avrMQ4, avrMQ7, avrMQ135, stdMQ2, stdMQ3, stdMQ4,
stdMQ7, stdMQ135. The class attributes are the result of the calculation of the average
and standard deviation of five sensors in the Electronic nose circuit.

The coffee mixture of Aceh civet coffee and non-civet Aceh coffee, divided into eight
mixture classes, has a total of 400 data. There are 50 data for each coffee mixture class.
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Figure 6: Data of Aceh Arabica Coffee Aroma for 8 Mixtures of Civet and Non-Civet
Coffee.

The data are: for the LA100NLA class, the order range is 1-50; for the LA90NLA10 class,
the order range is 51-100; for the LA10NLA90 class, the order range is 101-150; for the
LA80NLA20 class, the order range is 151-200, for the LA20NLA80 class, the order range
is 201-250; for the LA75NLA25 class, the order range is 251-300; for the LA25NLA75
class, the order range is 301-350; and for the LA50NLA50 class, the order range is 350-
400. Each class has 10 class attributes, that is, avrMQ2, avrMQ3, avrMQ4, avrMQ7,
avrMQ135, StdMQ2, stdMQ3, stdMQ4, stdMQ7, stdMQ135. The class attribute is the
result of the calculation of the average and standard deviation of five sensors in the
Electronic nose circuit. The aroma data from each type of the regional coffee and coffee
mixture were tested in the classification process by the SVM, KNN, and Decision Tree
algorithms. The tests were done based on the attribute values existing in each class. The
test data in the classification process were divided into two types, that is, the training
data and the test data. The percentage distribution of the training data and the test
data is 80% of the training data and 20% of the test data from the total data entered.
The results of the tests carried out on the data for each regional coffee aroma (Aceh,
Arjuno, Bengkulu) and coffee mixture (Aceh civet coffee with Aceh non-civet coffee) are
shown in the tables below.

Target
SVM KNN Decision Tree

Prediction LA NLA LA NLA LA NLA
LA 10 1 11 0 11 0
NLA 1 8 0 9 0 9

Table 4: Confusion Matrix of Aceh Arabika Coffee.

The classification results on testing the aroma data of Aceh civet coffee (LA) with
Aceh non-civet coffee (NLA) by the SVM classification algorithm are: 10 data classified
according to the prediction class and target class and 1 data classified in Aceh non-civet
target class (NLA) based on the prediction of the Aceh civet class (LA). The Aceh non-
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civet prediction class (NLA) classified 1 data in the target class of Aceh civet (LA) and
8 data in the target class of Aceh non-civet (NLA). The results of the classification by
the SVM algorithm based on the prediction of the same class and target class have an
accuracy of 90%. The classification results on testing the aroma data of Aceh civet coffee
(LA) with Aceh non-civet coffee (NLA) by the KNN and Decision Tree algorithms are: 11
data classified in the same prediction class and target class in the Aceh civet class (LA).
The classification according to the prediction of the Aceh non-civet class (NLA) indicates
9 data in the Aceh non-civet target class (NLA). The classification results displayed in the
confusion matrix of the KNN and Decision Tree algorithms represent the data classified
in each prediction class and target class having the same amount of data. The results of
the classification by the KNN and Decision Tree algorithms show the same accuracy in
each algorithm, which is 100%.

Target
SVM KNN Decision Tree

Prediction LAR NLAR LAR NLAR LAR NLAR
LAR 11 0 11 0 11 0
NLAR 0 9 0 9 0 9

Table 5: Confusion Matrix of Arjuno Arabica Coffee.

The results of the classification of Arjuno civet coffee aroma data (LAR) with Arjuno
non-civet coffee (NLAR) by the SVM, KNN, and Decision Tree algorithms represent the
amount of data classified by each algorithm, having the same amount, 11 data classified
in the Arjuno civet target class (LAR) from the Arjuno civet prediction class (LAR), in
the Arjuno non-civet prediction class (NLAR), 9 data classified in the Arjuno non-civet
target class, so the accuracy of these three algorithms is the same, that is, 100%.

Target
SVM KNN Decision Tree

Prediction LB NLB LB NLB LB NLB
LB 0 11 11 0 11 0
NLB 0 9 0 9 0 9

Table 6: Confusion Matrix of Bengkulu Arabica Coffee.

The classification results on testing the Bengkulu civet coffee aroma data with
Bengkulu non-civet coffee by the SVM algorithm show 11 data classified in the Bengkulu
non-civet target class (NLB) from the Bengkulu civet prediction class (LB). The classified
data from the prediction of the Bengkulu non-civet class with the target of the Bengkulu
non-civet class indicate there are 9 data. In the Bengkulu civet prediction class (LB)
with the same target class, there is no data classified in the Bengkulu civet class (LB),
so the accuracy of the SVM algorithm is only 45%. Based on the confusion matrix of the
classification results by the SVM algorithm, it shows that the test data entered in the
classification process do not meet the right target class, this greatly affects the accuracy
obtained from the classification results by the SVM algorithm. The results of testing
data on the aroma of the Bengkulu civet coffee (LB) with the Bengkulu non-civet coffee
(NLB) by the KNN and Decision Tree algorithms show the same amount of classified
data, 11 data classified in the Bengkulu civet target class (LB) from the Bengkulu civet
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prediction class (LB), in the Bengkulu non-civet prediction class (NLB), 9 data classi-
fied, 9 in the Bengkulu non-civet target class (NLB). Thus, the KNN and Decision Tree
algorithms show the same accuracy of 100%.

The classification results for the Aceh coffee mixture with 8 mixture classes and 10
class attributes, tested by the machine learning algorithms are as shown in the following
table. The results of the Aceh coffee mixture classification (Aceh civet coffee and Aceh

Figure 7: Confusion Matrix of the Aceh Coffee Mixture by the SVM Algorithm.

non-civet coffee) show an accuracy of 90% by the SVM algorithm. The data tested were
80 data, and the classification results are presented in the form of a matrix (Table 4).
The matrix formed based on the classification results shows the predicted distribution
of data in each class. The data for the coffee mixture of the LA100NLA0 prediction
class classified 13 data in the target class. In the prediction class of LA90NL10 there
are 7 data classified according to the target class, 2 data classified in the target class of
LA80NLA20 and 1 data classified in the target class of LA75NLA25. In the prediction
class of LA10NLA90 there are 5 data classified according to the target class and 1 data
classified in the target class of LA75NLA25. In the prediction class of LA80NLA20, there
are 8 data classified according to the target class and 3 data classified in the target class
of LA10NLA90. In the LA20NLA80 class there are 12 data classified with the right target
class. In the LA75NLA25 class there are 11 data classified with the same target class.
In the LA25NLA75 class there are 9 data classified according to the target class and 1
incoming data classified in the LA75NLA25 class. The LA50NLA50 class is classified
according to the target class of 7 data. In the LA90NLA10 class classification, there
are 2 data that fall into the LA80NLA20 target class and 1 data into the LA75NLA25
target class, meaning that the detection data among the coffee aromas from three types
of mixtures have similarities in some of the data when detecting the coffee aroma. The
similarity in the aroma detection data makes the data predictable in classes that are
not in accordance with the target class. The mixture of 90% of Aceh civet coffee and
10% of Aceh non-civet coffee and that of 90% of Aceh civet coffee and 20% of Aceh
non-luwak coffee have a similar aroma detected by the Electronic nose. The number of
data samples used for each class can help minimize the occurrence of target class errors
during the classification process.

The results of the coffee mixture classification by using the KNN algorithm are ob-
served. For the prediction class of LA100NLAO, there are 13 data classified, predicted in
accordance with the target class, and for the prediction class of LA90NLA10, there are
7 data classified matching the prediction with the target of the same class, 2 data in the
target class of LA80NLA20 and 1 data in the target class of LA75NLA25. As predicted
in accordance with the target class, 2 data are classified correctly, 2 data are classified
into LA80NLA20 and 1 data is classified into LA75NLA25. LA10NLA90 is classified
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Figure 8: Confusion Matrix of Aceh Coffee Mixture by the KNN Algorithm.

as 6 data correctly. 11 data are classified in LA80NLA20. 12 data are classified in the
LA20NLA80 class. The LA75NLA25 class is classified as 10 data predicted correctly
and 1 data included in the class of LA20NLA80. For LA25NLA75, there are 11 data
classified correctly in accordance with the class, and 1 data is classified in LA20NLA80.
LA50NLA50 has correctly predicted 7 data in accordance with its prediction class, then
the accuracy of the classification by the KNN algorithm is 93.75% of the test input data
amounting to 80 data.

Figure 9: Confusion Matrix of Aceh Coffee Mixture by the Decision Tree Algorithm.

The classification by the Decision Tree algorithm indicates LA100NLA0 classified as
13 data, LA90NLA10 predicted 8 data in accordance with the prediction class, 2 data
predicted in the LA80NLA20 class. For LA10NLA90, 6 data are correctly predicted in
the right class. 11 data are predicted in the LA80NLA20 class. 12 data are classified
in the LA20NLA80 class. For the LA75NLA25 class, 11 data predicted are classified in
accordance with the class. For the LA25NLA75 class, 8 data are classified in the right
class and 2 data fall into the incorrect prediction in the LA75NLA25 class. And for
the LA50NLA50 class, 7 data are classified as correct so that from all the correct class
predictions, an accuracy of 95% is obtained.

After testing the aroma data of the civet and non-civet arabica coffee from each region
(Aceh, Arjuno, Bengkulu) and of the coffee mixture (Aceh civet and Aceh non-civet),
it is suggested that the data can be effectively classified by using the machine learning
algorithms: SVM, KNN, and Decision Tree. During the research, the researcher observed
that in detecting the coffee aroma, it is more effective if the coffee used is ground coffee
with a medium-sized grinding level, thereby, to maximize the aroma detection stage
because at the time of data collection, the coffee aroma lifted by a fan to the lip of the
sensor does not leave coffee powder making it easier for further data collection, and with
this medium size the aroma released by the coffee can be smelled well so that it is detected
optimally. The storage age of coffee, especially ground coffee, greatly affects the level of
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aroma contained in the coffee. The longer the ground coffee is stored, the less the aroma
contained in the coffee, thus reducing the taste of the coffee. During the collection of the
data on the aroma of the civet coffee and non-civet coffee from three coffee producing
regions (Aceh, Arjuno Malang, Bengkulu) and Aceh coffee mixture (Aceh civet and Aceh
non-civet), the room temperature greatly affected the data produced. The time used to
collect coffee aroma data also affects the final results of the data to be used, the longer
the data collection process, the better data provided for classification. In data classifying,
the data used greatly affects the resulting accuracy value, the more attributes used in the
classification process, the higher accuracy value gained. The accuracy of the classification
results greatly affected the number of class attributes used, it is suggested to also use
the calculated values of min, max, mean, range, kurtosis and skewness.

4 Conclusion

In this research, an Electronic nose (E-nose) was developed with five MQ gas sensors
(MQ2, MQ3, MQ4, MQ7 and MQ135) which can detect the aroma of each coffee variant.
The results of the aroma detection were shown by sensor signals displayed in digital data.
For the digital data resulted from each sensor, the average and standard deviations were
calculated. The result of calculating the average and standard deviation of the detection
results of each sensor was named the class attribute. The classification by using the
SVM, KNN, and Decision Tree algorithms was based on the average value and standard
deviation of each coffee variant. The classification results showed an accuracy of above
90% for all the variants of coffee mixtures, and there was still 1 variant having an accuracy
of below 50%, that is, the classification of Bengkulu civet coffee with Bengkulu non-civet
coffee. As seen from the average of all accuracy produced, the classification of the civet
coffee with the non-civet was effectively done with the data resulted from the aroma
detection carried out by the Electronic nose. In classifying data, the data used greatly
affected the resulting accuracy, the more attributes used in the classification process, the
higher accuracy value gained.
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Abstract: In this work, we study the 3-D generalized Cauchy problem of the incom-
pressible micropolar fluid system (GMFS) in the critical variable exponent Fourier-

Besov space FḂ
4− 3

p(·)−2α

p(·),q . We establish the global well-posedness result with the

initial data belonging to FḂ
4− 3

p(·)−2α

p(·),q , where p = p(·) is a bounded function satisfy-

ing p ∈ [2, 6
5−4α

], α ∈ ( 1
2
, 1] and q ∈ [1, 3

2α−1
].

Keywords: global existence; 3-D generalized micropolar fluid system; variable
Fourier-Besov space.

Mathematics Subject Classification (2010): 35B65,35Q35,70K20,76D03.

1 Introduction and Statement of Main Result

We investigate the generalized incompressible micropolar system in the whole space R3,
∂tu+ (χ+ ν)(−∆)α1u+ u · ∇u+∇π − 2χ∇× w = 0, in R3 × R+,
∂tw + µ(−∆)α2w + u · ∇w + 4χw − κ∇ divw − 2χ∇× u = 0, in R3 × R+,
div u = 0, in R3 × R+,
(u,w)|t=0 = (u0, w0) , in R3.

(1)

The unknowns are u = u(x, t), w = w(x, t) and π = π(x, t) representing, respectively,
the linear velocity field, the micro-rotation velocity field and the pressure field of the
fluid. The nonnegative constants κ, µ, ν and χ represent the viscosity coefficients, which
determine fluid physical characteristics and α1, α2 ∈ ( 12 , 1] are two positive constants.
u0 and w0 represent the initial velocities and we assume that div u0 = 0. Recall that
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the Riesz potential operator (−∆)k is defined as usual through the Fourier transform as

F [(−∆)kf ](ξ) := |ξ|2kF [f ](ξ), where F [f ](ξ) := f̂(ξ) = 1
(2π)3/2

∫
R3 e

−ixξf(x)dx. Without

loss of generality, throughout this paper, we only consider the situation with κ = µ = 1
and χ = ν = 1/2.

Notice that if α1 = α2 = 1, then system (1) reduces to the standard micropolar fluid
system

∂tu− (χ+ ν)∆u+ u · ∇u+∇π − 2χ∇× w = 0, in R3 × R+,
∂tw − µ∆w + u · ∇w + 4χw − κ∇divw − 2χ∇× u = 0, in R3 × R+,
div u = 0, in R3 × R+,
(u,w)|t=0 = (u0, w0) , in R3,

(2)

which was created by A.C. Eringen [9] in 1996. It is an essential modification to the
classical Navier-Stokes equations in order to better characterize the motion of real-world
fluids made up of rigid but randomly oriented particles (such as blood) by investigating
the effect of micro-rotation of particles suspended in a viscous medium.
There is a lot of literature devoted to the mathematical theory of the micropolar fluid
system. The first result on the existence and uniqueness of solutions of the standard
micropolar fluid system was obtained by Galdi and Rionero in [10]. Chen and Miao [5]
proved the global existence for the problem (2) with small initial data in the Besov spaces

Ḃ−1+ 3
p

p,q when p ∈ [1, 6) and q = ∞. Inspired by the work of Cannone and Karch [6] on
the incompressible Navier-Stokes equations, V.-Roa and Ferreira [8] showed the existence
of the solution for the generalized micropolar fluid system in the pseudo-measure space
PMτ which is defined by

PMτ =
{
f ∈ S ′(Rn) : f̂ ∈ L1

loc(Rn), ∥f∥PMτ = ess supx∈Rn |ξ|τ |f̂(ξ)| < ∞
}
.

Our main result can be stated as follows.

Theorem 1.1 Let 1
2 < α = min(α1, α2) = α1 ≤ 1, p(·) ∈ C log (Rn) ∩ P (Rn) such

that 2 ≤ p(·) ≤ 6
5−4α , 1 ≤ ρ < ∞ and 1 ≤ q < 3

2α−1 . Then there exists a small ε0 such

that for any (u0, w0) ∈ FḂ
4−2α− 3

p(·)
p(·),q satisfying ∇·u0 = 0 with ∥(u0, w0)∥

FḂ
4−2α− 3

p(·)
p(·),q

< ε0,

the problem (1) admits a unique global mild solution (u,w) in

Lρ([0,∞),FḂ
4−2α− 3

p(·)+
2α
ρ

p(·),q ) ∩ Lρ([0,∞),FḂ
2α
ρ + 5

2−2α

2,q ) ∩ L∞([0,∞),FḂ
5
2−2α

2,q ),

such that

∥(u,w)∥
Lρ([0,∞),FḂ

4−2α− 3
p(·) + 2α

ρ

p(·),q )∩Lρ([0,∞),FḂ
2α
ρ

+5
2
−2α

2,q )∩L∞([0,∞),FḂ
5
2
−2α

2,q )

≤ ∥(u0, w0)∥
FḂ

4−2α− 3
p(·)

p(·),q

.

Remark 1.1 Notice that the result of Theorem 1.1 is correct only if the bounded

function p ̸= 1, and then the case (p, α) = (1, 1), which corresponds to FḂ−1

1,q, is not
included. It is proved in [13] that if (p, α) = (1, 1), then the standard micropolar fluid

system (SMFS) is well-posed in FḂ−1

1,q, where 1 ≤ q ≤ 2, and ill-posed in these spaces

for 2 < q ≤ ∞, which means that the space FḂ−1

1,q is optimal. Furthermore, our result
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is a generalization of the works [4, 12] in which the authors proved that the problem (1)

is globally well-posed in the Fourier-Besov spaces FḂ4− 3
p−2α

p,q for α ∈ ( 12 , 1], 1 < p ≤ ∞,
1 ≤ q ≤ ∞ and the initial data being small. The aim of this work is to establish this
result in the case of variable exponent.

Throughout the paper, we denote α = min(α1, α2). Let X,Y be the Banach spaces.
We use (a, b) ∈ X to denote (a, b) ∈ X × X, ∥(a, b)∥X to denote ∥(a, b)∥X×X and we
denote ∥·∥X∩Y = ∥·∥X + ∥·∥Y . The notation a ≲ b means that there exists a positive
constant C such that a ≤ Cb.

2 Preliminaries

In this section, we review the Littlewood-Paley theory and some of the used function
spaces and the related properties, we state the microlpolar semigroup and the notion of
mild solutions for the system (1), we recall the Banach fixed point theorem which we will
apply for proving the existence of a unique mild solution and we present the definition
of the Chemin-Lerner type homogeneous Fourier-Besov spaces.

2.1 Littlewood-Paley theory and Fourier-Besov spaces with variable expo-
nent

Let us present some basic properties of the Littlewood-Paley theory and Fourier-Besov
spaces with variable exponent.

Let θ ∈ S (Rn) be a radial positive function such that 0 ≤ θ ≤ 1, supp(θ) ⊂{
ξ ∈ Rn : 3

4 ≤ |ξ| ≤ 8
3

}
and∑

j∈Z
θ
(
2−jξ

)
= 1, for all ξ ̸= 0.

Put

θj(ξ) = θ
(
2−jξ

)
, φj(ξ) =

∑
k≤j−1

θk(ξ)

and

g(x) = F−1θ(x), h(x) = F−1φ(x).

Now, we present some frequency localization operators

∆ju := F−1 (θjF(u)) = 2nj
∫
Rn

g
(
2jy

)
u(x− y)dy,

Sju :=
∑

k≤j−1

∆kf = F−1 (φjF(u)) = 2nj
∫
Rn

h
(
2jy

)
u(x− y)dy,

where ∆j = Sj − Sj−1 is a frequency projection to the annulus {|ξ| ∼ 2j} and Sj is a
frequency to the ball {|ξ| ≲ 2j}.

By using the definition of ∆j and Sj , we easily prove that

∆j∆kf = 0, if |j − k| ≥ 2,

∆j (Sk−1f∆kf) = 0, if |j − k| ≥ 5.
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The following Bony para-product decomposition will be applied around the paper:

uv = Ṫuv + Ṫvu+R(u, v),

where Ṫuv =
∑

j∈Z Ṡj−1u∆̇jv, Ṙ(u, v) =
∑

j∈Z ∆̇ju∆̃jv and ∆̃jv =
∑

|j′−j|≤1 ∆̇j′v.

We define the variable exponent Lebesgue spaces Lp(·).

Definition 2.1 ([2]) Let P(Rn) denote the set of all measurable functions p(·) :
Rn → (0, ∞) such that

0 < p− = ess inf
x∈Rn

p(x) , ess sup
x∈Rn

p(x) = p+ < ∞.

The variable exponent Lebesgue space is defined by

Lp(·)(Rn) =

{
f : Rn → R is measurable,

∫
Rn

|f(x)|p(x)dx < ∞
}

equipped with the Luxemburg-Nakano norm

∥f∥Lp(·) = inf

{
δ > 0 :

∫
Rn

(
|f(x)|

δ
)p(x)dx ≤ 1

}
.

The space Lp(·)(Rn) is a Banach space.
Since the Lp(·) does not have the same desired properties as Lp(Rn), we propose the

following standard conditions to prove that the Hardy-Littlewood maximal operator M
is bounded on Lp(·)(Rn):

i) We say that p : Rn → R is locally log-Hölder continuous, p ∈ C log
loc (Rn), if there

exists a constant clog > 0 with

|p(x)− p(y)| ≤ clog

log
(
e+ 1

|x−y|

) for all x, y ∈ Rnand x ̸= y.

ii) We say that p is globally log-Hölder continuous, p ∈ C log (Rn), if p ∈ C log
loc (Rn) and

there exist a p∞ ∈ R and a constant c∞ > 0 with

|p(x)− p∞| ≤ c∞
log(e+ |x|)

for all x ∈ Rn.

iii) We write p ∈ P log(Rn) if 0 < p− ≤ p(x) ≤ p+ ≤ ∞ with 1/p ∈ C log(Rn).

Let p, q ∈ P(Rn), we denote by ℓq(·)
(
Lp(·)) the space consisting of all sequences {hi}i

of measurable functions on Rn such that

ϱℓq(·)(Lp(·))
(
(hi)i

)
:=

∑
i≥0

inf

{
δi > 0|ϱp(·)

(
hi/δ

1
q(·)
i

)
≤ 1

}

with the convention δ1/∞ = 1. Also, the norm is defined as usual:

∥ (hi)i ∥ℓq(·)(Lp(·)) := inf

{
λ > 0|ϱℓq(·)(Lp(·))

(
1

λ
(hi)i

)
⩽ 1

}
.
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If q+ < ∞, then

ϱℓq(·)(Lp(·))
(
(hi)i

)
=

∑
i≥0

∥ |hi|q(·) ∥ p(·)
q(·)

.

Then we define the variable exponent homogeneous Fourier-Besov space FḂs(·)
p(·),q(·).

Definition 2.2 ([3]) Let s(·) ∈ Clog(Rn) and p(·), q(·) ∈ P(Rn) ∩ Clog(Rn) with
0 < p− ≤ p(·) ≤ ∞. The homogeneous Fourier-Besov space with variable exponent

FḂs(·)
p(·),q(·) is defined by the set of all f ∈ Z ′(Rn) such that

∥f∥FḂs(·)
p(·),q(·)

:= ∥{2js(·)θj f̂}∞−∞∥lq(·)(Lp(·)) < ∞.

The space Z ′(Rn) is the dual space of

Z(Rn) = {f ∈ S(Rn) : (Dαf)(0) = 0,∀α multi-index} .

Next proposition describes some useful assertions we use in this work related to Lp(·)

spaces and Besov spaces with variable exponent.

Proposition 2.1 ([7]). (1) (Hölder inequality) Let p1(·), p2(·),∈ P(Rn), and define
p ∈ P(Rn) by 1

p(x) =
1

p1(x)
+ 1

p2(x)
. Then there exists a constant C depending only on p−

and p+ such that
∥fg∥Lp(·) ≤ C∥f∥Lp1(·)∥g∥Lp2(·)

holds for every f ∈ Lp1(·) and g ∈ Lp2(·).
(2) ( [2]) Let p0(·), p1(·), q(·) ∈ P(Rn), and s0(·), s1(·) ∈ L∞ ∩ Clog(Rn) with

s0(·) ≥ s1(·). If
1

q0(·)
,

1

q1(·)
and s0(x) − n

p0(x)
= s1(x) − n

p1(x)
are locally log-Hölder

continuous, then

Ḃs0(·)
p0(·),q(·) ↪→ Ḃs1(·)

p1(·),q(·).

The following result deals with the product of two functions in the Chemin-Lerner
space.

Proposition 2.2 ([1]). Let s > 0, 1 ≤ γ, ρ, ρ1, ρ2, p, q, r ≤ ∞ such that 1
ρ =

1
ρ1

+ 1
ρ2

and 1
γ = 1

r + 1
p . Then we have

∥ab∥LρḂs
γ,q

≲∥a∥Lρ1 Ḃs
γ,q

∥b∥Lρ2Lr + ∥b∥Lρ1 Ḃs
γ,q

∥a∥Lρ2Lr .

2.2 Fractional micropolar semigroup and mild solutions

The following system is the corresponding linear system of (1):
∂tu+ (−∆)α1u−∇× w = 0,
∂tw + (−∆)α2w + 2w −∇ divw −∇× u = 0,
div u = 0,
(u,w)|t=0 = (u0, w0) .

(3)

The solution operator of the above problem is denoted by the notation G(t),
i.e., for specified initial data (u0, w0) in suitable function space, if we denote by
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(u,w)T = G(t) (u0, w0)
T
the unique solution of the problem (3), then

(Ĝ(t)f)(ξ) = e−A(ξ)tf̂(ξ) for f(x) = (f1(x), f2(x))
T
,

where

A(ξ) =

[
|ξ|2α1I B(ξ)
B(ξ)

(
|ξ|2α2 + 2

)
I + C(ξ)

]
with

B(ξ) = i

 0 ξ3 −ξ2
−ξ3 0 ξ1
ξ2 −ξ1 0

 and C(ξ) =

 ξ1
2 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ2
2 ξ2ξ3

ξ1ξ3 ξ2ξ3 ξ3
2

 .

Moreover, by applying the Leray projection P to both sides of the first equations of (1),
one can eliminate the pressure π and we get

∂tu+ (−∆)α1u+P(u · ∇u)−∇× w = 0,
∂tw + (−∆)α2w + u · ∇w + 2w −∇ divw −∇× u = 0,
div u = 0,
(u,w)|t=0 = (u0, w0) ,

(4)

where P = I +∇(−∆)−1 div is the 3× 3 matrix pseudo-differential operator in R3 with

the symbol
(
δij − ξiξj

|ξ|2

)3

i,j=1
. We denote

U(x, t) =

(
u(x, t)
w(x, t)

)
, U0 =

(
u(x, 0)
w(x, 0)

)
=

(
u0

w0

)
,

Ui(x, t) =

(
ui(x, t)
wi(x, t)

)
, i = 1, 2,

and

U1⊗̃U2 =

(
u1 ⊗ u2

u1 ⊗ w2

)
, P̃∇ ·

(
U1⊗̃U2

)
=

(
P∇ · (u1 ⊗ u2)
∇ · (u1 ⊗ w2)

)
.

Solving system (4) can be reduced to finding a solution U to the following integral
equations:

U(t) = G(t)U0 −
∫ t

0

G(t− τ)P̃∇ · (U ⊗ U)(τ)dτ. (5)

A solution of (5) is called a mild solution of (1). Now, we present a property of the
semigroup G(·).

Lemma 2.1 ([8]) Let 1
2 < α ≤ 1. Then for |ξ| ̸= 0 and t ≥ 0, there exists C =

C(α1, α2) > 0 (independent of ξ) such that

|e−tA(ξ)| ≤
{

e−|ξ|α1 t if |ξ| ≤ 1,
e−C|ξ|αt if |ξ| > 1.

(6)

In particular, if α = α1, then

∥e−tA(ξ)∥ ≤ e−|ξ|2αt for all |ξ| > 0. (7)
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2.3 Banach fixed point theorem and Chemin-Lerner type homogeneous
Fourier-Besov spaces

We recall an existence and uniqueness result for an abstract operator equation in a
Banach space, which will be used to prove the main result.

Lemma 2.2 ([13]) Let E be a Banach space with the norm ∥·∥ and B : E −→ E
be a bilinear operator such that for any x1, x2 ∈ E, ∥B(x1, x2)∥ ≤ η∥x1∥∥x2∥, then for

any y ∈ E such that ∥y∥ <
1

4η
, the equation x = y + B(x, x) has a solution x ∈ E. In

particular, the solution is such that ∥x∥ ≤ 2∥y∥ and it is the only one such that ∥x∥ <
1

2η
.

Let us observe that if y = G(t)U0 and

B(U,U) = −
∫ t

0

G(t− τ)P̃∇ · (U ⊗ U)(τ)dτ,

then the integral equation (5) has the form U = y +B(U,U) required in Lemma 2.2.

Now, we give the definition of the Chemin-Lerner type homogeneous Fourier-Besov
spaces with variable exponent.

Definition 2.3 ([11]) Let s(·) ∈ Clog(Rn), p(·), q(·) ∈ P(Rn)∩Clog(Rn), T ∈ [0,∞)
and 1 ≤ q, ρ ≤ ∞. We define the Chemin-Lerner type homogeneous Fourier-Besov space

with variable exponent Lρ([0, T );FḂs(·)
p(·),q) by

Lρ ([0, T );FḂs(·)
p(·),q) =

{
g ∈ Z ′(Rn); ∥g∥Lρ([0,T );·FḂs(.)

p(·),q)
< ∞

}
with the norm

∥g∥Lρ([0,T );FḂs(.)

p(·),q)
=

∑
j∈Z

∥2js(·)θj ĝ∥qLρ([0,T );Lp(·))

 1
q

.

3 A Priori Estimates

Thanks to Lemma 2.2, the key to the proof of Theorem 1.1 is to make a priori estimates
for (1). In the lemma given below, we prove the linear estimate for equation (5).

Lemma 3.1 (Linear estimate) Let 1
2 < α = α1 ≤ 1, 1 ≤ ρ, q ≤ +∞ and

p(·), p1(·) ∈ P (Rn) such that p1(·) ≤ p(·). Assume that U0 ∈ FḂ
4−2α− 3

p(·)
p(·),q and

ρ1 ∈ [ρ,+∞], then the following inequality holds:

∥G(t)U0∥
Lρ1

T FḂ
4−2α+2α

ρ1
− 3

p1(·)
p1(·),q

≲ ∥U0∥
FḂ

4−2α− 3
p(·)

p(·),q

.
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Proof. Thanks to Hölder’s inequality, Lemma 2.1 and the hypothesis p1(·) ≤ p(·),
we have

∥G(t)U0∥
Lρ1 ([0,∞),FḂ

4−2α− 3
p1(·) + 2α

ρ1
p1(·),q )

≤ ∥∥2j
(
4−2α− 3

p1(·)+
2α
ρ1

)
θje

−A(ξ)tÛ0∥Lρ1 ([0,∞),Lp1(·))∥ℓq

≤ ∥
∑

k=0;±1

∥2j(4−2α− 3
p(·) )θjÛ0∥Lp(·)∥2

j( 2α
ρ1

+ 3
p′1(·)−

3
p′(·) )θj+ke

−t|.|2α∥
Lρ1 ([0,∞),L

p(·)p1(·)
p(·)−p1(·) )

∥ℓq

≲ ∥U0∥
FḂ

4−2α− 3
p(·)

p(·),q

.

Consequently, one obtains

∥G(t)U0∥
Lρ1 ([0,∞),FḂ

4−2α− 3
p1(·) + 2α

ρ1
p1(·),q )

≲ ∥U0∥
FḂ

4−2α− 3
p(·)

p(·),q

. (8)

For the bilinear estimate, we have the following lemma.

Lemma 3.2 (Bilinear estimate) Let 1
2 < α = α1 ≤ 1, p1 ∈ P(Rn) such that

p1(·) ≤ 6
5−4α , 1 ≤ ρ ≤ ∞ and ρ1 ∈ [ρ,∞]. Then we have the following inequality:

∥
∫ t

0

G(t− τ)P̃∇ · (U1 ⊗ U2)(τ)dτ∥
Lρ1 ([0,∞),FḂ

4−2α− 3
p1(·) + 2α

ρ1
p1(·),q )

≲ ∥U1∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U2∥
L∞([0,∞),FḂ

5
2
−2α

2,q )

× ∥U2∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U1∥
L∞([0,∞),FḂ

5
2
−2α

2,q )
.

Proof. Thanks to Hölder’s inequality, Hausdorf-Young’s inequality, and Young’s
inequality, we have

∥
∫ t

0

G(t− τ)P̃∇ · (U1 ⊗ U2)(τ)dτ∥
Lρ1 ([0,∞),FḂ

4−2α− 3
p1(·) + 2α

ρ1
p1(·),q )

≲
∥∥∥ ∥

∫ t

0

2
j
(
4−2α− 3

p1(·)+
2α
ρ1

)
θje

−(t−τ)A(ξ) div (̂U1⊗U2

)
dτ∥Lρ1 ([0,∞),Lp1(·))

∥∥∥
ℓq

≲
∥∥∥ ∥

∫ t

0

2
j
(
4−2α− 3

p1(·)+
2α
ρ1

)
θje

−(t−τ)|·|2α div (̂U1⊗U2

)
dτ∥Lρ1 ([0,∞),Lp1(·))

∥∥∥
ℓq

≲
∥∥∥∫ t

0

∥2j
(
5−2α− 3

p1(·)+
2α
ρ1

)
θje

−(t−τ)|·|2α∥
L

6p1(·)
6−(5−4α)p1(·)

∥Û1 ⊗ U2∥
L

6
5−4α

dτ∥Lρ1 ([0,∞))

∥∥∥
ℓq

≲
∥∥∥∥2j( 2α

ρ + 5
2−2α)∥∆̇j(U1 ⊗ U2)∥

L
6

4α+1
∥Lρ([0,∞))

∥∥∥
ℓq
.

Consequently, by using Proposition 2.2, we obtain the result

B(U1 ⊗ U2)∥
Lρ1 ([0,∞),FḂ

4−2α− 3
p1(·) + 2α

ρ1
p1(·),q )

≲ ∥U1 ⊗ U2∥
Lρ([0,∞),Ḃ

2α
ρ

+5
2
−2α

6
4α+1

,q
)

≲ ∥U1∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U2∥
L∞([0,∞),FḂ

5
2
−2α

2,q )

+ ∥U2∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U1∥
L∞([0,∞),FḂ

5
2
−2α

2,q )
.
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4 Proof of Theorem 1.1

In the following, we consider the Banach space

E = Lρ([0,∞) ,FḂ
4−2α− 3

p(·)+
2α
ρ

p(·),q
(
R3

)
) ∩ Lρ([0,∞) ,FḂ

5
2−2α+ 2α

ρ

2,q

(
R3

)
)

∩L∞([0,∞) ,FḂ
5
2−2α

2,q

(
R3

)
),

and define mappings as Θ(U) = G(t)U0 +B(U,U). Then, to solve (1), it suffices to find
the fixed point of the mapping θ. First, from Lemma 3.1, we have

∥G(t)U0∥E ≤ C1∥U0∥
FḂ

4−2α− 3
p(·)

p(·),q

. (9)

By Lemma 3.2, we obtain

∥B(U1 ⊗ U2)∥
Lρ([0,∞),FḂ

4−2α− 3
p(·) + 2α

ρ

p(·),q )
≲ ∥U1∥

Lρ([0,∞),FḂ
5
2
−2α+2α

ρ
2,q )

∥U2∥
L∞([0,∞),FḂ

5
2
−2α

2,q )

+ ∥U2∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U1∥
L∞([0,∞),FḂ

5
2
−2α

2,q )
,

∥B(U1 ⊗ U2)∥
L∞([0,∞),FḂ

5
2
−2α

2,q )
≲ ∥U1∥

Lρ([0,∞),FḂ
5
2
−2α+2α

ρ
2,q )

∥U2∥
L∞([0,∞),FḂ

5
2
−2α

2,q )

+∥U2∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U1∥
L∞([0,∞),FḂ

5
2
−2α

2,q )
,

and

∥B(U1 ⊗ U2)∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

≲ ∥U1∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U2∥
L∞([0,∞),FḂ

5
2
−2α

2,q )

+∥U2∥
Lρ([0,∞),FḂ

5
2
−2α+2α

ρ
2,q )

∥U1∥
L∞([0,∞),FḂ

5
2
−2α

2,q )
.

Consequently,

∥B(U1 ⊗ U2)∥E ≤ C2∥U1∥E∥U2∥E . (10)

Combining (9) and (10), we get

∥Θ(U)∥E ≤ ∥G(t)U0∥E + ∥
∫ t

0

G(t− τ)P̃∇̃ · (U ⊗ U)dτ∥E

≤ ∥G(t)U0∥E + ∥B(U ⊗ U)∥E
≤ C1∥U0∥

FḂ
4− 3

p(·)−2α

p(·),q

+ C2∥U∥E∥U∥E .

Then, for any U0 ∈ FḂ
4− 3

p(·)−2α

p(·),q if ∥U0∥
FḂ

4− 3
p(·)−2α

p(·),q

<
1

4C1C2
, by Lemma 2.2, we

conclude that the problem (1) admits a unique global mild solution U ∈ E such that
∥U∥E ≤ 1

2C2
.
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5 Conclusion

In this paper, we considered the 3-D generalized micropolar fluid system which can
describe many phenomena that occur in a large number of complex fluids, including
animal blood and liquid crystals. By using the Littlewood-Paley decomposition theory
and Fourier localization technique, we prove the global existence for the system (1) in
variable exponent Fourier-Besov spaces and our result can be seen as a complement to
the corresponding result of Zhu and Zhao [12].
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Abstract: In this paper, we used the regularization method to prove some properties
of the sub-Riemannian geodesics in infinite dimension for a Hilbertian manifold. More
precisely, we generalize the result obtained by S.Nikitin [14], so we prove that the sub-
Riemannnian distance for the Hilbert-Schmidt distribution can be approximated by
the smooth sub-Riemannian geodesics.
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1 Introduction

In finite-dimension context, a sub-Riemannian distance between two fixed points is de-
fined by the infimum length of curves connecting them and whose velocity is constrained
to be tangent to sub-vector space (distribution) of the tangent space TxM of a Rieman-
nian manifold M , where x ∈ M . Such curves are called horizontal. The distance is finite
if every pair of points can be connected by at least one horizontal curve and is achieved
on the curves of minimal length. Finding a length minimizer is an optimal control prob-
lem, the extremals of this problem are called the sub-Riemannian geodesics. According
to the Pontryagin maximum principle [6,10,15,16], the optimal curves are of two types:
abnormal curves and normal geodesics which are the projections of the Hammiltonian
trajectories. In [14], in finite dimension, S.Nikitin presented conditions under which
the sub-Riemannian distance can be measured by an infinitely smooth sub-Riemannian
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geodesics. This result arises from the fact that sometimes the sub-Riemannian distance
is measured by abnormal extremals [10,12, 13]. Our objective is to give a generalization
of this result for an infinite dimensional manifold.

The first problem when we consider a control problem is that of controllability [1,9,17],
which presents the first difference between the finite dimension and infinite-dimensional
cases, so that the infimum could be not reached even for the Riemannian-Hilbertian
manifold. The same is true in the general sub-Riemannian manifold. So the second
difference is that the Pontryagin maximum principle is not available any longer. However,
we still have the strong Chow-Rashevski theorem developed for the manifold modeled
on Hilbert spaces and the maximum principle for certain special cases. Using them,
we give analogue properties for the sub-Riemannian structure generated by a bilinear
distribution of Hilbert-Schmidt.

In this work, we show that the problem of the length minimization is a control problem
and we give a characterization of smooth geodesics where we use a variant of Pontryagin’s
maximum principle [3] and we also prove that in infinite dimension and under some
conditions, we can approximate a sub-Riemannian distance by a normal sub-Riemannian
geodesics. The structure of the paper is as follows. In Section 2, we introduce notations
and briefly review some natural objects associated to a sub-Riemannian structure in an
infinite dimensional manifold modeled on the Hilbert space. The results on the bilinear
Hilbert-Schmidt distribution are given in Section 3. We characterize the sub-Riemannian
geodesics in Section 4. To accomplish our objective, we replace the sub-Riemannian
problem by the regularized one and we present certain conditions under which we prove,
at the first step, the existence of the sub-Riemannian geodesics and, at the second step,
we measure the sub-Riemannian distance by a normal geodesics. For the proof of all
these results, we use some classical techniques of the functional analysis.

2 Preliminary Results

In this section, we will recall some basic notions of sub-Riemannian geometry in infinite
dimension, for more details, we refer the reader to [1, 7].

2.1 Sub-Riemannian structure in infinite dimension

Let M be a connected manifold modelled on a Hilbert space E, TM be the tangent
bundle of M , then according to [7], we have the following definition.

Definition 2.1 A sub-Riemannian structure is a triple (M,F ,h), where

• M is a Hilbert connected manifold;

• F is a sub-bundle of TM .

• h is a Riemannian metric on F .

Remark 2.1 • Given a Riemannian metric h on M , we get a Riemannian metric
on F by restriction. On the other hand, there always exists a complementary V of
F and so we can extend h into the Riemannian metric h on M, which means that
TM = V + F .

• The requirement of the splitting is non-trivial if M is not modeled on a Hilbert
space, see [7], this splitting implies that there exists a smooth projection from TM
to F .
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Definition 2.2 A horizontal curve is a smooth curve γ : [a, b] → M such that

γ̇ ∈ Fγ(t) for every t ∈ [a, b]. (1)

According to the previous definitions, we can also define the following.

Definition 2.3 1. The length of a horizontal curve is given by

l(γ) =

b∫
a

√
h( ˙γ(t), ˙γ(t))dt. (2)

2. The sub-Riemannian energy functional (Action) is given by

e(γ) =

b∫
a

h( ˙γ(t), ˙γ(t))dt. (3)

The sub-Riemannian distance between the distinct points is defined by

dF (x0, x1) = inf
{
l(γ); γ̇ ∈ Fγ(t), γ(a) = x0, γ(b) = x1

}
. (4)

The problem of the length minimization is equivalent to the problem of energy mini-
mization, which allows us to formulate the first-order condition for length minimizer.

Definition 2.4 (see [7]) A horizontal curve γ is called a sub-Riemannian
geodesics if

∂se(γ
s)|s=0 = 0, for any γs ∈ JF (γ), (5)

where JF (γ) is the collection of all F- horizontal variations of γ.

Our aim is to characterize the normal sub-Riemannian geodesics for the bilinear
Hilbert-Schmidt distribution on the Hilbertian manifold. We consider a manifold mod-
eled on the Hilbert space with a strong Riemannian metric.

3 Bilinear Distribution

From [3–5], we recall all definitions, properties and results we shall use in this work.
Let E and F be two Hilbert spaces, and let A ∈ L(F ;E) (u → Au), B ∈ L(F ; (E;E))
(u → Bu) and B̃ ∈ L (F × E;E) be an operator associated to B and defined by

∀ u ∈ F, ∀ x ∈ E B̃(x, u) = Bux,

where L(F ;E) is the space of linear bounded operators from F to E and L(F ; (E;E)) is
the space of the bounded operators from F to L(E;E). Denote by {fi; i ∈ N} a Hilbert
basis for F and set

Xi(x) = Afi +Bfix.

We denote also by F the distribution spanned by {Xi, i ∈ N}.
We consider the associated system defined by

ẋ = Au+ B̃(u, x). (6)
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We will say that (6) is a bilinear system of E and F is a bilinear distribution.
For a given bilinear distribution F on a Hilbertian manifold, for all horizontal curves
γ : [0, T ] → E that are tangent to F , there exists a control u : [0, T ] → F such that

γ̇ = Au+ B̃(u, γ). (7)

We can assume that all horizontal curves are defined on [0, 1], after changing the
parametrization if necessary. Then for any horizontal curve, we can define its length
L(γ) by

l(γ) =

1∫
0

∥u(t)∥F dt, (8)

and the energy of a horizontal curve is defined by

e(γ) =
1

2

1∫
0

∥u(t)∥2F dt, (9)

where u ∈ L2([0, 1], F ) and ∥∥F denotes the Hilbertian norm on F . In this case, all
requirements of the previous definitions are satisfied.

When A and B are the Hilbert-Schmidt operators, the associated distribution F is
called a Hilbert-Schmidt distribution. Then we have the following result.

Lemma 3.1 [3] If F is a bilinear Hilbert-Schmidt distribution, then to each hori-
zontal curve we can associate a control u and conversely.

Example 3.1 (see [3]) Let K,H be two separable Hilbert spaces, if we denote by
{ki; i ∈ N} a Hilbert basis for K and by {hα;α ∈ N} a Hilbert basis for H, then the set
{hα ⊗ ki} is a Hilbert basis for the space of Hilbert-Schmidt operators LHS(K;H). On
G = LHS(K;H) ⊕K ⊕H, we define a generalized Heisenberg-Lie algebra structure by
setting F = LHS(K;H)⊕K and Z = H with Lie brackets defined, with respect to the
basis Yαi = (hα ⊗ ki, 0) and Xi = (0, ki) of F , by

[Yαi, Xi] = CαiZα,

where Zα is the basis of Z and Cαi are constants, the other Lie brackets are zero.
Let G be a Lie group with Lie algebra G. F induces on G a left invariant distribution F ,
this distribution is a Hilbert-Schmidt distribution if

∑
αi Cαi < ∞.

4 Optimal Control Viewpoint

Looking for the sub-Riemannian geodesics between two points means solving the smooth
infinite minimization problem

e(γ) = e(u) =
1

2

1∫
0

∥u(t)∥2F dt → inf, (10)

where u :[0, T ] → F with the following constraint:{
ẋ(t) = Au(t) + B̃(u(t), x(t)),
x(0) = x0, x(1) = x1,

(11)
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where A ∈ L(F,E), B ∈ L(F,L(E,E)) and x0, x1 are two given points of E. So we
have a bilinear control problem where the spaces of a control and state have an infinite
dimension.

In finite dimension, we always use the maximum principle [2,15] to calculate the opti-
mal trajectories. Unfortunately, in infinite dimension, we loose Pontryagine’s Maximum
Principle. However, in this context, we can apply a variant of the maximum principle [3,5]
which gives us a characterization of the optimal curve for a bilinear distribution on the
Hilbertian manifold. In the case when the set of control is contained in a closed bounded
convex subset and the operators A,B are compact, this characterization is similar to the
finite dimensional case, see [6].

Theorem 4.1 (see [4]) Let u ∈ L2 ([0, T ] ;K), where K is a closed bounded convex
subset, B and A are compact for all t ∈ [0, T ] , there exists a control ū which minimizes
the functional e and, moreover, ū satisfies the following relation for almost all t ∈ [0, T ]:〈

Aū+ B̃(ū, x̄), p̄
〉
+ p0∥ū∥2 = min

v∈K

〈
Av + B̃(v, x), p

〉
+ p0∥v∥2, (12)

where x̄ is the trajectory associated to ū and where p̄ is a mild solution of the adjoint
system

d

dt
p̄ = −B∗

ūp. (13)

B∗
ū is the adjoint of Bū.

Under these assumptions, and following the terminology introduced in [1], we can
distinguish two types of the extremal.

Definition 4.1 An extremal of minimization problem (10)-(11), i.e., a couple (x̄, p̄, )
meeting the condition of Theorem 4.1 is called the normal bi-extremal if p0 ̸= 0 (which
can be normalized to 1), and the abnormal bi-extremal if p0 = 0.

In the sequel of this work, we assume that u(t) ∈ K, where K is a closed bounded
convex subset, B and A are compact.

4.1 Characterization of normal geodesics

The following proposition gives the link between the normal extremal of Theorem 4.1
and the normal geodesics.

Proposition 4.1 Let γ be a horizontal curve, then the following assertions are equiv-
alent:

1. γ is a critical point of the energy function with a fixed end point;

2. there exists a covector p such that the couple (γ, p) is a normal bi-extremal of
maximum principle.

Proof. The proof of this result is an adaptation, step by step, of the proof of the
corresponding result of Proposition 2 in [1].
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Remark 4.1 By the previous proposition, we deduce that the normal geodesics is a
solution to the Hamiltonian system

ẋ = ∂
∂p

H(x, p),

ṗ = − ∂
∂x

H(x, p),

H(x, p) = 1
2

∥∥(A+B(x))
∗
p
∥∥2 . (14)

We recall that our objective is to generalize the result obtained by S.Nikitin in [14] to
infinite dimension. We present new conditions under which the sub-Riemannian distance
can be approximated by a normal sub-Riemannian geodesics. To attain this goal, we use
the regularization method.

5 Regularization Procedure

We use the regularization method to replace a minimization problem with constraint by
another one without constraint.

5.1 Regularized problem

At first, we need the following hypotheses
Let L : E × TE ×F → E, η = (x, u) → L(x, u) = ẋ− (A+B(x))u, and G : E ×F →

F, η = (x, u) → u,
where A ∈ L(F,E), B ∈ L(F,L(E,E)) and TE is the tangent space of E.
We assume that L and G satisfy the following assumptions.

Assumption 5.1 The set

UL =

{
(x, u) ∈ E × F : ∥L(x, u)∥L2 = ∥ẋ− (A+B(x))u∥L2 =

µ = inf
(x,u)∈D

∥ẋ− (A+B(x))u∥L2 ,

}

is not empty, where D = E ×K. We define also

Û =

{
(x, u) ∈ E × F : ∥G(x, u)∥ = ∥u(t)∥ = νF = inf

(x,u)∈UL

∥u (t)∥ℓ2
}
,

where L2([0, 1], F ) is identified to the space L2([0, 1], l2(N)) via the Hilbertian basis
{fi; i ∈ N} of F (see [3]).

Assumption 5.2 There exists c > 0 such that

WC = {(x, u) ∈ E × F : ∥L(x, u)∥ ≤ c, ∥G(x, u)∥ ≤ c}

is not empty and bounded.

The regularized problem is

Jα(γ) =
1

2
∥L(x, u)∥E +

α

2
∥G(x, u)∥F → inf, (Pα)

where α > 0 denotes the regularization parameter.
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Theorem 5.1 Under Assumptions 5.1 and 5.2, the problem (Pα) has a solution.

Proof. Let {γn
α} be a minimizing sequence

γn
α = {(xn

α(t), u
n
α(t)) ; t ∈ [0, 1]} ⊂ D n = 1, 2, ..., (15)

such that mα ≤ Jα(γ
n) ≤ mα + 1

n , n = 1, 2, ..., then we have

∥L(xn
α, u

n
α)∥E = ∥ẋn

α − (A+B(xn
α)u

n
α∥ ≤ (mα + 1)

1
2 ,

∥G(xn
α, u

n
α)∥F = ∥un

α∥ ≤
(

mα+1

α

) 1
2

.

We take

c = max

{(
mα+1

α

) 1
2

, (mα + 1)
1
2

}
.

It is clear that {γn
α} ⊂ Wc, as we have already noticed that the set Wc is weakly compact,

then the sequence (γn
α) is weakly convergent, i.e.,

((xn
α(t), u

n
α(t)))

weakly−→ (x0(t), u0(t)) (in H = E × F )

ẋn
α(t)− (A+B(xn

α)u
n
α(t)

weakly−→ r

un
α(t)

weakly−→ u0(t).

As the operators L,G are jointly weakly closed on D, then we have

ẋ0(t)− (A+B(x0)u0(t) = r.

It remains to prove that (x0(t), u0(t)) is a solution of the problem (Pα) .
We use the lower semi-continuity of the norm in a Hilbert space, we find that

mα ≤ Jα(γ
0) ≤ lim

n→∞
inf Jα(γ

n) ≤ lim
n→∞

sup Jα(γ
n) ≤ mα,

then Jα(γ
0) = mα.

Now we define a new hypothesis to show that under these conditions and Assumptions
5.1-5.2, the sub-Riemannian distance can be measured by normal minimizers.

Assumption 5.3 The distribution F satisfies the strong Chow-Rashevsky property
[1], then there exists a control v(t) which steers the system

ẋ = (A+B(x))v

from the state x0 to the state x1.

Assumption 5.4 The system (6) satisfies the following condition (at points x0 and
x1 ): if there exist real numbers δ > 0, P > 0 and Q > 0 such that

∀0 < α ≤ δ
∥∥√αpα(0)

∥∥
E
≤ P ⇒ ∥pα(0)∥E ≤ Q, (16)
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p(0) should be chosen so that x (1) = x1, where x is the solution to the following
Hamiltonian system: 

ẋ = ∂
∂p

Hα(x, p),

ṗ = − ∂
∂x

Hα(x, p),

x(0) = x0,

(17)

Hα(x, p) =
1

2

∥∥(A+B(x))
∗
p
∥∥2 + α

2
∥p∥2 .

Our principal result is the following theorem.

Theorem 5.2 Consider the sub-Riemannian problem∫ 1

0

∥u(t)∥2 dt → inf,

where u is the unique solution of the system

ẋ = (A+B(x))u. (
∑

)

Suppose that Assumptions 5.1,5.2,5.3 and 5.4 are satisfied. Then, for all given x0, x1 ∈
E, the regularized solutions converge to the normal geodesics solution, i.e.,

∥xα − x̃(t)∥ → 0

and
Hα → H,

where Hα, H are given in Assumption 5.4 and (14).

Proof. According to [19], the solution (xα(t), uα(t)) (normal) of regularized problem
(Pα) necessarily satisfies the Euler-Lagrange equations

d

dt

(
∂

∂ẋ
Lα(ẋ, x, u)

)
− ∂

∂x
Lα(ẋ, x, u) = 0,

∂

∂u
Lα(ẋ, x, u) = 0,

where Lα is the Lagrangian which is given by

Lα(ẋ, x, u) =
1

2
∥L(x, u)∥E +

α

2
∥G(x, u)∥F =

1

2
∥ẋ− (A+B(x))u∥2E +

α

2
∥u∥2F .

As the Lagrangian Lα is hyper regular, then according to [8], we can define p as

p =
1

α

∂

∂ẋ
Lα(ẋ, x, u). (18)

Using the Euler-Lagrange equations, and according to [18], we can easily write
ẋα = ∂

∂pHα(xα, pα),

ṗα = − ∂
∂xHα(xα, pα),

uα = (A+B(xα))
∗pα,

where

Hα(xα, pα) =
1

2

∥∥∥(A+B(xα))
t
pα

∥∥∥2 + α

2
∥pα∥2 .
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By Assumption 5.3, there exists a control v(t) which steers the system

ẋ = (A+B(x)) v

from x0 to x1, for which we have∫ 1

0

1

2
∥ẋα(t)− (A+B(xα(t))uα(t))∥2E dt+

α

2
∥uα(t)∥2F dt ≤ α

2

∫ 1

0

∥v(t)∥2F dt.

Set

k =
1

2

∫ 1

0

∥v(t)∥2F dt.

As

Hα =
1

α
Lα,

then
Hα(xα, pα) ≤ k ∀α > 0 ∀t ∈ [0, 1],

it implies
∥αpα∥ → 0 while α → 0.

According to Assumption 5.1, there exists a positive constant δ such that

∥αpα∥ ≤ δ,

the function xα(t) is bounded on [0, 1], i.e.

∥xα(t)∥ ≤ β,

and as ∥∥∥∥ ∂

∂p
Hα(xα, pα)

∥∥∥∥
is bounded, we have the same for

.
xα(t), i.e.,∥∥ .

xα(t)
∥∥ ≤ G1,

where G1 is a positive constant which does not depend on α; on the other hand,

1

2
∥L(xα, uα)∥E +

α

2
∥G(xα, uα)∥F ≤ 1

2
∥L(x, u)∥E +

α

2
∥G(x, u)∥F (19)

for all u ∈ UL, then we have

∥G(xα, uα)∥F ≤ ∥G(x, u)∥F , ∥L(xα, uα)∥E ≤ µL + ανF . (20)

From the previous inequality, the families {(xα, uα)} {G(xα, uα)} {L(xα, uα)} are weakly
compact, there exist weakly convergent sub-families, i.e.,

(xαj
, uαj

) → (x̃, ũ),

L(xαj
, uαj

) → r.

So
L(x̃, ũ) = r,
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we replace (x̃, ũ) in (19) and (20), we find

lim
αj→0

∥∥L(xαj , uαj )− L(x̃, ũ)
∥∥
E = 0,

lim
αj→0

∥∥G(xαj
, uαj

)−G(x̃, ũ)
∥∥
F = 0.

Using the previous results and the Gronwall inequality, we prove that the solution xαj
(t)

will converge strongly to x̃,
αj → 0 while j → ∞

and ∥∥xαj
(t)− x̃(t)

∥∥ → 0 while j → ∞.

On the other hand, for the control v(t) which steers the system

ẋ(t) = (A+B(x(t))v(t)

from x0 to x1 and for any α > 0,∫ 1

0

∥uα(t)∥2 dt ≤
∫ 1

0

∥v(t)∥2 dt.

This proves that x̃(t) is a minimizing curve which measures the sub-Riemannian distance
between x0 and x1.

The functions ṗα and pα are bounded,

ṗα = −ptα (A+B(x))Btpα,

but
(A+B(x))

t
pα = uα,

by substituting uα in the above expression, we obtain

∥pα(t)∥ =
∥∥∥pα(0) + ∫ t

0
−uα (s)Btpα(s)ds

∥∥∥
≤ ∥pα(0)∥+

∥∥∥∫ t

0
−uα (s)Btpα(s)ds

∥∥∥ ,
then √

α ∥pα(t)∥ ≤
√
2k ∀t ∈ [0, 1].

From Assumption 5.4, we have
∥pα(0)∥ ≤ δ,

then

∥pα(t)∥ ≤ c

∫ t

0

∥pα(s)∥ ds.

According to the Gronwall inequality, we get

∥pα(t)∥ ≤ G.

We also have ∥∥∥∥ ∂

∂x
Hα(xα, uα)

∥∥∥∥ ≤ l.

It follows that ṗα is also bounded. The proof of the convergence of pα to a continuous
function p is similar to xα; by passing to the limit in Hαj

, we obtain

Hαj
→ H.
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6 Conclusion

In this paper, we studied some properties of bilinear extremals in infinite dimension, these
properties have a direct application in sub-Riemannian geometry, especially in the case
of a sub-Riemannian structure generated by a bilinear Hilbert-Schmidt distribution. We
prove also that, under some conditions, a sub-Riemannian distance can be approximated
by a normal geodesics. These results remain valid for a manifold modeled on a Hilbert
space, we can also generalize these results for the Banach manifold.
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of Nonlinear Mathematical Physics 16 (4) (2009) 443–454.


	COV-V23N3_web
	Страница 1
	Страница 2

	NDST_2023_V23_N3
	Introduction
	Optimal Control Dengue Fever Model
	Mathematical model of dengue fever
	Pontryagin's maximum principle
	Forward-backward sweep method

	Firefly Algorithm
	Simulation Results
	Conclusion
	Introduction
	Preliminaries
	Existence and Uniqueness of the Solution to the Direct Problem
	Setting of the problem
	A priori estimate
	Solvability of the direct problem


	Existence and Uniqueness of Solution of the Inverse Problem
	Conclusion
	Introduction
	Main Results
	Application
	Conclusion
	Introduction
	The Principal of Chaos Optimization
	Chaos model

	 Design of the Algorithm
	Step-size control

	Numerical Results
	Conclution
	Introduction
	Description of the novel chaotic system
	Basic properties
	Equilibrium points
	Stability
	Lyapunov exponents and Kaplan-Yorke dimension


	Dynamics of the System
	0-1 test for system (1)

	Master-Slave Synchronization of Non-Identical 3-D Novel Chaotic Systems Using FSHP Method
	Illustrative Example
	Conclusion
	Concluding remarks
	Introduction
	Preliminaries
	Kamal Integral Transform (KIT)
	The ADM-Kamal method

	Mean Absolute Error (MAE)
	Solution of the Black-Scholes FPDE for the Option Pricing Model Using the Combined ADM-Kamal Method
	Numerical Simulation
	Conclusion
	Introduction
	Background and Preliminary Results
	Backdrop and brief information on linear semidefinite programming
	Preliminary inequalities

	Theoretical Aspects of Perturbed Problem
	Existence of solution of the perturbed problem
	Uniqueness of the solution of the perturbed problem
	Convergence of perturbed problem to (1)

	The Numerical Aspects of Perturbed Problem
	Newton descent direction
	 New minorant and majorant functions of G

	Description of the Algorithm and Numerical Results
	The algorithm
	Numerical tests
	 Examples with fixed size
	Example with variable size
	Conclusion
	Conclusion




	Introduction
	Research Method
	Electronic nose design
	Electronic nose (E-nose)

	Coffee
	Civet coffee and non-civet
	Data mining
	Support vector machine (SVM)
	K-nearest neighbor (KNN)
	Decision tree (C4.5)
	Confusion matrix


	Results and Analysis
	Hardware design of electonic nose

	Conclusion
	Introduction and Statement of Main Result
	Preliminaries
	Littlewood-Paley theory and Fourier-Besov spaces with variable exponent
	Fractional micropolar semigroup and mild solutions
	Banach fixed point theorem and Chemin-Lerner type homogeneous Fourier-Besov spaces 

	A Priori Estimates
	Proof of Theorem 1.1
	Conclusion
	Introduction
	Preliminary Results
	Sub-Riemannian structure in infinite dimension

	Bilinear Distribution
	Optimal Control Viewpoint
	Characterization of normal geodesics

	Regularization Procedure
	Regularized problem

	Conclusion

	Introduction
	Preliminaries
	Existence and Uniqueness of the Solution to the Direct Problem
	Setting of the problem
	A priori estimate
	Solvability of the direct problem


	Existence and Uniqueness of Solution of the Inverse Problem
	Conclusion



