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1 Introduction

For humanity’s long-term welfare, there is a great deal of interest in comprehending
and developing bio-economic models for biodiversity. To preserve the long-term viability
and prosperity of the ecosystem, researchers are attempting to generate some possibly
beneficial effects.

Numerous studies have focused on understanding these processes. The dynamical be-
havior of a specific predator-prey ecosystem was explored using a number of differential
equations and an algebraic equation [12, 17]. They made important discoveries, includ-
ing limit cycle, singularity-driven bifurcation, control, and interior equilibrium stability.
However, in all of the models examined, only the prey population is harvested. The
relationship between the predator and the prey was investigated using a variety of func-
tional responses, including Holling-type I, Holling-type II [10, 11], Holling-type III [13],
and Beddington-DeAngelis [19], under the presumption that the isolated predator species
had natural mortality.

As far as we know, a dynamical investigation of a predator-prey model with a hybrid
functional response has never been done. Since this model exhibits stability and the
Hopf bifurcation, we explore it and describe it in this paper [13, 15]. Additionally, we
are interested in learning some theoretical guidelines for administering and regulating
renewable resources.

We organized the existing information in the manner described below to achieve the
predetermined goals: we started our investigation by going through the model-building
idea and its biological importance. We sequentially prove the pomposity and boundedness
of the model. Following a thorough discussion of the system’s stability and the Hopf
bifurcation analysis, the existence of a positive equilibrium is then investigated. We
conclude by presenting numerical simulation tests that support the theoretical findings.

2 The Model

The study of population dynamics with harvesting has emerged as a fascinating subject
in mathematical bio-economics due to the significance of the effective management of
renewable resources. When Gordon [7] established a standard property resource economic
theory in 1954, he made the following economic proposition. This theory examined the
impact of harvest effort on the ecosystem from an ecological perspective.

NetEconomicRevenue(NER) = TotalRevenue(TR)− TotalCost(TC). (1)

Studying the predator-prey paradigm with the hybrid functional response is both in-
triguing and crucial: {

dX
dτ = (a1 − b1X − m1Y

α1X+β1Y+γ1
)X,

dY
dτ = (a2 − m2Y

X+K1
)Y

(2)

with the initial values X(0) > 0 and Y (0) > 0. The constants
a1, a2, b1, b2, m1, m2, α1, β1, γ1 and K1 are the parameters of the model and are
assumed to be nonnegative with β1 non trivial (if β1 = 0, then the model (2) is the same
as that in [14]).

These parameters are defined as follows: a1 (resp.,a2) describes the growth rate of
the prey (resp., of the predator), b1 measures the strength of competition among the
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individuals of the prey’s species, m1 is the maximum value which per capita reduction
rate of the prey can attain, γ1 (resp., K1) measures the extent to which environment
provides protection to the prey (resp., to the predator), and m2 has a similar meaning
to m1. The functional response in (2) was introduced by Beddington [2] and DeAngelis
et al. [6].

When introducing the following scaling (see [14]): t = a1τ , x(t) = (b1/a1)X(τ),
and y(t) = (m2b1/a1a2)Y (τ), the hybrid functional response model (2) should take the
following nondimensional form:{

dx
dt = x(1− x)− axy

αx+βy+γ ,
dy
dt = b(1− y

x+k )y
(3)

where a = (a1/a2)(m1/m2), b = a2/a1, α = α1, β = β1(a2/m2, γ = γ1(b1/a1), and
k = K1(b1/a1). The model (3) that interests us is introduced in [14].

It is known that the harvest effort is an important factor to construct a useful bioe-
conomic mathematical model, for this reason, taking (1) into account, we extend the
system (3) by considering the following algebraic equation which describes the economic
profit v of the harvest effort on the predator:

E(t)(py(t)− c) = v, (4)

where 0 ≤ E(t) ≤ Emax and y(t) ≥ 0 represent the harvest effort and the density of the
predator, respectively. p represents the unit price of the harvested population and c is
the cost of harvest effort, the total revenue and total cost are

TR = pE(t)y(t), TC = cE(t).

Based on (3) and (4), a singular differential-algebraic model that consists of two
differential equations and an algebraic equation can be established as follows:

dx
dt = x(1− x)− axy

αx+βy+γ ,
dy
dt = b(1− y

x+k )y − Ey,

0 = E(py − c)− v

(5)

which is a semi-explicit differential-algebraic equation of the form{
ż = dz

dt = f(v,X),
0 = g(v,X),

(6)

where we denote X = (x, y, E)T , with z = (x, y)T being the differential variable, E being
the algebraic variable, v is the bifurcation parameter, f and g are the smooth functions
given by

f(v,X) =

(
f1(v,X)
f2(v,X)

)
=

(
x((1− x)− ay

αx+βy+γ )

y(b(1− y
x+k )− E)

)
,

g(v,X) = E(py − c)− v.

3 Mathematical Analysis

We are just concerned with this model’s dynamics, positive octant R3
+ for biological

reasons. Thus, we consider the biologically meaningful initial condition

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, E(0) = E0 =
v

py0 − c
, py0 − c > 0. (7)
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3.1 Existence and uniqueness

Proposition 3.1 The system (5) with the initial conditions (7) has a unique maximal
solution (x(t), y(t), E(t)) in an open subset U of Ω = {(x, y, E)T ∈ R3

+/ py − c > 0}
defined on some maximal interval [0, T [.

Proof. Let (x, y, E)T ∈ U , then from the algebraic equation g(x, y, E, v) = 0, we get
E = v

px−c , substituting in the first differential equation of (5). The differential-algebraic
equation is transformed to the following ordinary differential equation that has the same
solution with respect to the differential variables z = (x, y)T :{

dx
dt = x(1− x)− axy

αx+βy+γ ,
dy
dt = b(1− y

x+k )y −
vy

py−c ,
(8)

its vectorial form is ż = dz
dt = F (z), where

F (z) =

(
x((1− x)− ay

αx+βy+γ )

y(b(1− y
x+k )−

v
py−c )

)
.

Clearly, F ∈ C1(U
′
), where U

′
is an open subset of Ω

′
= {(x, y, )T ∈ R2

+/ py − c > 0}.
Thus, by applying Cauchy-Lipschitz’s theorem for ordinary differential equations [9],
we deduce the local existence and uniqueness of the maximal solution (x, y)T to (8)
for any (x0, y0) ∈ U

′
, then the local existence and uniqueness of solution for (5) is

straightforward.

3.2 Positivity and boundedness

Regarding the positivity of solution for the system (5), we introduce the following propo-
sition.

Proposition 3.2 Any smooth solution of (5), defined on the maximal interval [0, T [,
with positive initial condition (7), remains positive for all t ∈ [0, T [.

Proof. From the system (8), it follows that x = 0 implies dx
dt = 0 and y = 0 implies

dy
dt = 0, thus x = 0 and y = 0 are invariant sets showing that x(t) ≥ 0 and y(t) ≥ 0
whenever x(0) > 0 and y(0) > 0.

From the second equation of (8), we deduce that for all t ∈ [0, T [,

py(t)− c ̸= 0. (9)

Suppose that there exists t∗ ∈ [0, T [ such that E(t∗) < 0, it follows that px(t∗)− c < 0,
then by applying the intermediate value theorem to the continuous function py(t)− c on
the interval [0, t∗], we deduce the existence of t̃ ∈]0, t∗[ such that py(t̃) − c = 0, which
contradicts (9), thus, E(t) ≥ 0 for all t ∈ [0, T [.

Clearly, when the prey biomass x approaches to the critical value yc =
c
p , the finishing

effort E will being unbounded is not realistic.
To answer the boundedness of the solution for system (5), we impose a realistic

ecological contraint in the context that the economic policy requires a minimum level
ymin > 0 for the resource given by

y(t) ≥ ymin >
c

p
, ∀t ≥ 0. (10)
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This constraint will affect the fishing effort E that will be constrained by a fixed produc-
tion capacity. We denote this limit capacity by Emax, then

0 < E(t) ≤ Emax =
v

pymin − c
, ∀t ≥ 0. (11)

Next, we will show that, under some assumptions, the solutions of system (5), which
start in R3

+, are ultimately bounded. First, let us give the following comparison result.

Definition 3.1 A solution ϕ(t, t0, x0, y0, E0) of system (5) is said to be ultimately
bounded with respect to R3

+ if there exists a compact region A ⊂ R3
+ and a finite time

T (T = T (t0, x0, y0, E0) such that, for any (t0, x0, y0, E0) ∈ R× R3
+,

ϕ(t, t0, x0, y0, E0) ∈ A, ∀t ≥ T. (12)

Proposition 3.3 All solutions of the system (5) subject to the initial conditions (7)
and constraint (11) are bounded in R3

+ with an ultimate bound.

Proof. (1) We have for all t ≥ 0, 0 ≤ x(t) ≤ 1 and 0 ≤ x+ y ≤ L1, see [14]

L1 =
1

4b
(5b+ (1 + b)2(1 + k).

Then

(x(t), y(t), E(t)) ∈ A = {(x, y, E) ∈ R3
+ : 0 ≤ x ≤ 1, 0 ≤ x+ y ≤ L1, 0 ≤ E ≤ Emax}.

(2) We have to prove that, for (x(0), y(0), E(0)) ∈ R3
+, (x(t), y(t), E(t)) ∈ A when

t → +∞. We will show that limt→+∞x(t) ≤ 1, limt→+∞(x(t) + y(t)) ≤ L1, and
limt→+∞E(t) ≤ Emax, see [14]. Then we conclude that system (5) is dissipative in R3

+.

4 Existence and Positivity Equilibrium Points

In this section, we aim to inspect the existence of the positive equilibrium points and to
study their stability.
An equilibrium point of the system (5) is a solution of the following equations: f1(v,X) = 0,

f2(v,X) = 0,
g(v,X) = 0.

(13)

By the analysis of the roots for (13), it follows that

(i) If v = 0, then there exist at least three boundary equilibrium points

Xe1 = (0, 0, 0), Xe2 = (1, 0, 0), Xe3 = (0, 0, k),

and if k(α − β) ≤ γ, the system (5) has a unique equilibrium P ∗(x∗, y∗, 0), where x∗ is
the root of the equation

a(a(x+ k) = (1− x)((α+ β)x+ βk + γ) (14)
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or, equivalently, the quadratic equation

(α+ β)x2 + (βk + γ + a− α− β)x+ (a− β)k − γ = 0 (15)

satisfying 0 < x∗ ≤ 1, and
y∗ = x∗ + k. (16)

For the proof see [14].

(ii) If v > 0, the interior equilibrium points P ∗(x∗, y∗, E∗) are defined by the system{
1− x− ay

αx+βy+γ = 0,

b(1− y
x+k ) =

v
py−c

(17)

or, equivalently, the system {
1− x− ay

αx+βy+γ = 0,

x = by(py−c)
b(py−c)−v − k

(18)

satisfying 0 < x∗ ≤ 1, and y∗ is a solution of the fourth degree equation

y4 +By3 + Cy2 +Dy + E = 0, (19)

where A,B,C,D,E are given by

A = b2p2(α+ β),

B = bp[bp(a+ β(k − 1) + γ − α)− 2αbc− β(bc+ v)]/A,

C = b[2αbpck + pv(αk − γ − 2a)− 2bpc(a+ γ) + (α+ β)bc2+

+βcv + p(1− k)(2bc(α+ β) + pb(αk − γ)]/A,

D = (bv + v)[(k − 1)(bp(2αk − γ) + bc(αk − γ) + βv) + a(bc+ v)2]/A,

E = (cb+ v)[(1− k)(bp(γ − 2αk)− bc(α+ β − βv) + b(ac− αk) +Bγ + av]/A.

The equation (19) is equivalent by the change of variable y = Y − B
4 of the equation

Y 4 + PY 2 +QY +R = 0, (20)

where P,Q,R are given by

P = −3B2

8
+ C,

Q = (
B

2
)3 − BC

2
+D,

R = −3(
B

4
)4 − B2C

16
− BD

4
+ E.

We use Ferrari’s method to solve the equation (19). If Q = 0 if and only if B3 − 4BC +
8D = 0, the equation reduces to a bisquare equation which is easy to solve.
We assume that the equation does not reduce to a bisquare equation (8Q = B3− 4BC+
8D ̸= 0), the equation (20) is rewrite as

(Y 2 +
B

2
)2 = (

B2

4
− C)Y 2 −DY − E,
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or

(Y 2 +
B

2
+ λ)2 = (

B2

4
− C + 2λ)Y 2 + (Bλ−D)Y + λ2 − E.

The second member is a square if and only if

(Bλ−D)2 = 4(
B2

4
− C + 2λ)(λ2 − E),

or
8λ3 − 4Cλ2 + (2BD − 8E)λ+B2E + 4CE −D2 = 0.

Let λ0 be a solution of this cubic solvent and let µ0 be the square root of 2λ0 − c+ B2

4
which is necessarily nonzero according to the hypothesis Q ̸= 0. The equation is then
written as

(Y 2 +
B

2
+ λ)2 = (µ0Y +

Bλ0 −D

2µ0
)2.

Therefore, it is equivalent to

Y 2 + (µ0 +
B

2
)Y + λ0 +

Bλ0 −D

2µ0
= 0 (21)

or

Y 2 + (−µ0 +
B

2
)Y + λ0 −

Bλ0 −D

2µ0
= 0. (22)

For (21), the discriminant is

∆+ = −2λ0 − C + 2
D −Bλ0

µ0
+Bµ0 +

B2

2
,

ye,0 =
−µ0 +

√
∆+

2
− B

4
and ye,1 =

−µ0 −
√

∆+

2
− B

4
.

(22) is solved in the same way as (21) by replacing everywhere µ0 by −µ0,

∆− = −2λ0 − C − 2
D −Bλ0

µ0
−Bµ0 +

B2

2
,

ye,2 =
µ0 +

√
∆−

2
− B

4
and ye,3 =

µ0 −
√
∆−

2
− B

4
.

5 Dynamic Analysis near the Coexistence Equilibria

In this section, we study the stability of the interior equilibrium Xe and analyse the
bifurcation through it using the bifurcation theory and normal form theory.

5.1 Local stability analysis

For the analysis of the local stability of Xe, we let X = QX̄, here

X̄ = (x, y, Ē)T , Q =

 1 0 0
0 1 0

0 − Eep
pxe−c 1

 .
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Then we get
DXg(Xe)Q = (0, 0, pye − c),

and

Ē = E +
Eepy

pye − c
.

Then the system can be expressed as follows:
dx
dt = x(1− x− ay

αx+βy+γ ),
dy
dt = y(b(1− y

x+k )− Ē + Eepy
pye−c ),

0 = (Ē − Eepy
pye−c )(py − c)− v.

(23)

We denote also

f(v, X̄)

(
f1(v, X̄)
f2(v, X̄)

)
=

(
x(1− x− ay

αx+βy+γ )

y(b(1− y
x+k )− Ē + Eepy

pye−c )

)
,

g(v, X̄) = (Ē − Eepy

pye − c
)(py − c)− v, X̄ = (x, y, Ē)T ,

and
DXg(X̄e)Q = (0, 0, pye − c).

For system (23), we consider the following local parametrization:

X̄ = ϕ(v, Y ) = X̄e + U0Y + v0h(v, Y ), g(v, ϕ(v, Y )) = 0.

Here, Y = (y1, y2), U0 =

 1 0
0 1
0 0

, V0 =

 0
0
1

, and h : R2 −→ R is a smooth

mapping. More information about the local parametrization can be found in [4,8]. Then
we can deduce that the parametric system of (23) takes the form{

ẏ1 = dy1

dt = f1(v, ϕ(v, Y )),

ẏ2 = dy2

dt = f2(v, ϕ(v, Y )).
(24)

Consequently, the Jacobian matrix A(v) of the parametric system (24) at Y = 0 takes
the form

A(v) =

(
Dy1

f1(v, ϕ(v, Y )) Dy2
f1(v, ϕ(v, Y ))

Dy1
f2(v, ϕ(v, Y )) Dy2

f2(v, ϕ(v, Y ))

)
,

=

(
DX̄f1(v, X̄e)
DX̄f2(v, X̄e)

)(
DX̄g(v, X̄e)

UT
0

)−1(
0
I2

)
,

=

(
Dxf1(v, X̄e(v)) Dyf1(v, X̄e(v))
Dxf2(v, X̄e(v)) Dyf2(v, X̄e(v))

)
,

=

(
xe(−1 + aαye

(αxe+βye+γ)2 ) − axe(αxe+γ)
(αxe+βye+γ)2

by2
e

(xe+k)2 ye(
−b

xe+k + pEe

pye−c )

)
.

Therefore, the characteristic equation of the matrix A(v) can be expressed as

λ2 + T1λ+ T2 = 0, (25)



406 M.C. BENKARA MOSTEFA AND N. E. HAMRI

where

T1 = xe(1−
aαye

(αxe + βye + γ)2
) + ye(

b

xe + k
− pEe

pye − c
),

T2 = xeye(1−
aαye

(αxe + βye + γ)2
)(

−b

xe + k
+

pEe

pye − c
) +

aby2exe(αxe + γ)

(xe + k)2(αxe + βye + γ)2
.

Remark 5.1 The positive equilibrium point X̄e of the system (5) corresponds to the
equilibrium point Y = 0 of system (24).

Corollary 5.1 For the positive equilibrium point X̄e of the system (23), we have
(i) If T 2

1 (v) ≥ 4T2(v) and T2(v) > 0, then when T1(v) > 0, X̄e is a locally asymptotically
stable node. When T1(v) < 0, X̄e is an unstable node.
(ii) If T2(v) < 0, then X̄e is an unstable saddle point.
(iii) If T 2

1 (v) < 4T2(v), then when T1(v) > 0, X̄e is a locally asymptotically focus. When
T1(v) < 0, X̄e is an unstable focus.

5.2 Hopf bifurcation analysis

The Hopf bifurcation is a very interesting type of bifurcation of systems. It refers to
the local birth or death of a periodic solution from an equilibrium point as a parameter
crosses a critical value named a bifurcation value.

We discuss the Hopf bifurcation in the system (23) from the equilibrium point X̄e by
considering the economic profit v as a bifurcation value.
If T 2

1 (v) < 4T2(v), then the equation (25) has a pair of conjugate complex roots

λ1,2 = −1

2
T1(v)± i

√
T2(v)−

T 2
1 (v)

4
= η(v)± iθ(v).

Let 2η(v) = T1(v) = 0, we get the bifurcation value v∗ that satisfies

v∗ =
(pye − c)2

p
(
xe

ye
(1− aαye

(αxe + βye + γ)2
) +

b

xe + k
)

if
aαye

(αxe + βye + γ)2
= 1.

Moreover,

η(v∗) = 0, θ∗ = θ(v∗) =
ye

(xe + k)(αxe + βye + γ)

√
abxe(αxe + γ),

v∗ =
b(pxe − c)2

p(xe + k)
,

which implies that if

η
′
(v∗) =

1

2

d

dv
(xe(1−

aαye
(αxe + βye + γ)2

) + ye(
b

xe + k
− pve

(pye − c)2
)v=v∗ =
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= − pye
2(pye − c)2

̸= 0,

then the Hopf bifurcation occurs at the value v∗. The signal of the number σ is given by

16σ =
1

θ∗
(a111(a

2
11 − a112) + a222(a

2
12 − a122) + (a211a

2
12 − a112a

1
22)) + (a1111 + a1122 + a2112a

2
222),

where
a111 = τ1f1y1y1

, a112 = τ2f1y1y2
, a122 =

τ2
2

τ1
f1y2y2

, a1111 = τ21 f1y1y1y1
, a1112 = τ1τ2f1y1y1y2

,

a1122 = τ22 f1y1y2y2 , a
1
222 =

τ3
2

τ1
f1y2y2y2 .

a211 =
τ2
1

τ2
f2y1y1

, a212 = τ1f2y1y2
, a222 = τ2f2y2y2

, a2111 =
τ3
1

τ2
f2y1y1y1

, a2112 = τ21 f2y1y1y2
,

a2122 = τ1τ2f2y1y2y2
, a2222 = τ22 f2y2y2y2

,
which determines the direction of the Hopf bifurcation through the interior equilibrium
Xe(v) of the system (2.5), as stated in the following theorem.

Theorem 5.1 For the system (5), there exist a positive constant 0 < ε ≪ 1 and two
small neighborhoods of the positive equilibrium point Xe(v): O1 and O2, where O1 ⊂ O2.

Case 1 : If σ > 0, then

1. When v∗ < v < v∗ + ε, Xe(v) rejects all the points in O2, so it is unstable.

2. When v∗ − ε < v < v∗, sytem (5) has at least a periodic solution located in
Ō1 (the cloture of O1), one of them rejects all the points in Ō1 \Xe(v), at the
same time another periodic solution (may be the same one) rejects all points
in O2 \ Ō1, and Xe(v) is locally asympototic stable.

Case 2 : If σ < 0, then

1. When v∗−ε < v < v∗, Xe(v) attracts all the points in O2, and Xe(v)is locally
asymptotic stable.

2. When v∗ < v < v∗ − ε, system (5) has at least a periodic solution located in
Ō1, one of them attracts all the points in Ō1 \Xe(v), at the same time another
periodic solution (may be the same one) attracts all points in O2 \ Ō1, and
Xe(v) is unstable.

For the proof see [19], where we use

f1y1
(v∗, X̄e) = 0, f2y2

(v∗, X̄e) = 0, f1y2
(v∗, X̄e) =, − axe(αxe+γ)

(αxe+βye+γ)2 ,

f2y1(v
∗, X̄e) =

by2
e

(xe+k)2 , f1y1y1(v
∗, X̄e) = −2 + 2 aα2ye(βye+γ)

(αxe+βye+γ)3 ,

f1y1y2
(v∗, X̄e) = f1y2y1

(v∗, X̄e) =
−aγ(αxe+βye+γ)−2aαβxeye

(αxe+βye+γ)3 ,

f1y2y2
(v∗, X̄e)=

2aβxe(αxe+γ)
(αxe+βye+γ)3 , f2y1y1

(v∗, X̄e)=
−2by2

e

(xe+k)3 ,

f2y1y2(v
∗, X̄e)=f2y2y1(v

∗, X̄e)=
2bye

(xe+k)2 ,f2y2y2(v
∗, X̄e)=−2 bye

(xe+k)(pye−c) ,

f1y1y1y1(v
∗, X̄e)=

−4aα2ye(βye+γ)+2aα3xeye

(αxe+βye+γ)4 ,

f1y1y1y2
(v∗, X̄e)=f1y1y2y1

(v∗, X̄e)=f1y2y1y1
(v∗, X̄e)=

2aα(−βye+γ)(αxe+βye+γ)+6aα2βxeye

(αxe+βye+γ)4 ,

f1y1y2y2
(v∗, X̄e) = f1y2y2y1

(v∗, X̄e) =

= f1y2y1y2
(v∗, X̄e)=

2aβ(2αxe+γ)(αxe+βye+γ)−6aαβxe(αxe+γ)
(αxe+βye+γ)4 ,

f1y2y2y2
(v∗, X̄e)=

−6αβ2xe(αxe+γ)
(αxe+βye+γ)4 , f2y1y1y1

(v∗, X̄e)=
6by2

e

(xe+k)4 ,
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f2y1y1y2
(v∗, X̄e)=f2y1y2y1

(v∗, X̄e)=f2y2y1y1
(v∗, X̄e) =

−4bye

(xe+k)3 ,

f2y1y2y2
(v∗, X̄e) = f2y2y2y1

(v∗, X̄e) = f2y2y1y2
(v∗, X̄e) =

2b
(xe+k)2 ,

f2y2y2y2
(v∗, X̄e) =

6p2cEe

(pye−c)3 .

and

τ1 =

√
axe(αxe+γ)

αxe+βye+γ , τ2 = − ye

√
b

xe+k .

6 Conclusion

This paper examines the stability and the Hopf bifurcation of a differential-algebraic
biological economic system with a hybrid functional response. A dynamical investigation
of a predator-prey model with a hybrid functional response equiped with an algebraic
equation has never been done. We consider the system’s dynamic behavior when only
the prey is vulnerable to harvesting. Only the positive equilibrium points are of interest
from a biological standpoint. By examining their associated characteristic equation and
applying the new normal form theorem, the local stability of the inner equilibrium is
determined. When the economic revenue v is changed, the inner equilibrium’s stability
property changes. Additionally, a one-parameter bifurcation analysis of the economic
revenue is performed. When the system bifurcates, the properties of periodic solutions
in the system are obtained by computing the parameter σ. The qualitative analysis, that
is, the foundation of the revised model will be completed by future research. Additionally,
it will include the numerical simulations used to support the outcomes.
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