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Abstract: This paper deals with the chaos and synchronization behavior of two
identical nonlinear dynamical systems of the restricted charged three-body problem.
An active control technique is introduced to achieve synchronization between the drive
and response systems. Also, an error dynamical system of the drive and response
systems has been investigated using active control inputs. Secondly, the Lyapunov
theorem on stability and the Routh-Hurwitz criteria have been taken into account for
the study of stability of the error dynamical system. Further, a six degree coefficient
matrix of the error dynamical system has been investigated. We have concluded
by the Lyapunov stability criteria, the error dynamical system is stable. Numerical
simulation is taken into account to check the effectiveness of the proposed active
control technique.
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1 Introduction

The basic theory of chaos and synchronization has a very powerful application in the
real world. There are various dynamical systems which have real life applications. There
is an opportunity of doing well research and obtaining some new information about real
life from the study of the solar dynamical system. There are many forces acting between
the celestial bodies of a solar dynamical system. There exist many perturbations such as
radiation pressure, oblateness, the Coriolis and centrifugal forces and drag force between
the solar system bodies. These perturbations can make new contributions in the study
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of chaos and synchronization of solar system bodies. The basic idea of synchronization
between two dynamical systems is one of the important phenomena occurring in nature.

The synchronization of chaotic systems have been studied by many authors and re-
searchers. They have introduced the basic concept and analytical approach to study the
chaotic behavior of dynamical systems. Also, they have incorporated some techniques of
controlling chaos and studying synchronization in the chaotic systems. Synchronization
has been studied by many authors for different physical systems, namely, chaotic sys-
tems, the fractional Lü system, coupled chaotic systems, between two different chaotic
systems via nonlinear feedback control, two Lorenz systems using active control and the
Rossler and Chen chaotic dynamical systems [1-6].

In continuation of research on synchronization, chaos synchronization, anti-
synchronization, hybrid synchronization, synchronization of the finance chaotic system,
synchronization of fractional-order systems, projective synchronization and function pro-
jective dual synchronization of chaotic systems, adaptive synchronization, sliding mode
control synchronization and adaptive sliding mode control synchronization have been
studied by many authors [7-13]. Moreover, the restricted charged three-body problem,
low-thrust restricted three-body problem, chaos synchronization in the restricted three-
body problem have been studied by many authors [14-18]. In addition, synchronization
of fractional-order 3D chaotic system analysis has been incorporated in [19].

In this paper, we have studied the synchronization behavior of two identical systems
of the restricted charged three-body problem using the active control technique. This
paper is arranged as follows. Section 1 discussed the introductory part of the paper. In
Section 2, we have derived the equations of motion of the restricted charged three-body
problem. In Section 3, we have used the active control technique for synchronization. In
Section 4, we have discussed the numerical simulation for synchronization. Finally, in
Section 5, we have concluded the results obtained.

2 Equations of Motion

Let two charged bodies M1 = (m1, q1) and M2 = (m2, q2) with masses m1 and m2 (m1 >
m2) and charges q1, q2 be moving with angular velocity ω in circular orbits about their
center of mass O taken as an origin, and let the third charged infinitesimal body M of
mass m3 be moving in the plane of motion of m1 and m2 (see Fig. 1). The motion of
the third charged infinitesimal body is affected by the motion of m1 and m2 but does
not affect them. We shall determine the equations of motion of the charged infinitesimal
body of mass m3 in synodic and dimensionless variables. The angular velocity of the

primaries is given by the relation ω =
√

G(m1+m2)
l3 , where l is the distance between the

primaries, and G is the gravitational constant. We scale the units by taking the sum
of the masses and the distance between the primaries both equal to unity. Therefore
m1 = 1 − µ, m2 = µ (0 < µ ≤ 0.5) and µ = m2

m1+m2
with m1 +m2 = 1. Also, the scale

of the time is chosen so that the gravitational constant is unity. For the classical case,
q1 = q2 = 0, only the range 0 ≤ µ ≤ 0.5 is of interest since the range 0 < µ ≤ 1 is the
reflection of the previous one with respect to the y-axis. Let us assume that 0 < µ ≤ 0.5,
continuing, we may define q1

q1+q2
= q1 = 1 − µ, q2

q1+q2
= q2 = µ, where q1 + q2 = 1. The

equations of motion of the charged infinitesimal body in the dimensionless co-ordinate
system according to [14] can be written as
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Figure 1: Configuration of the restricted charged three-body problem.
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r31
(x+ µ)

− µ− q

r32
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ÿ + 2 ẋ = y − q − µ

r31
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r32
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r31
z − µ− q

r32
z,


(1)

where

r1 =

√
(x+ µ)

2
+ y2 + z2

and

r2 =

√
(x+ µ− 1)

2
+ y2 + z2.

3 Synchronization of the Restricted Charged Three-Body Problem

In this section, we have introduced an active control method to study the synchronization
behavior of two identical systems of the restricted charged three-body problem. We have
introduced a dynamical system of the restricted charged three-body problem of the solar
system bodies. We have formulated the master and slave systems of the solar system
bodies with the help of the restricted charged three-body problem. The master system
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(a)

(b)

(c)

Figure 2: Time series graphs of the master and slave systems for µ = 0.05, q = 0.15, (a) For
the master system of x1(t), (b) For the slave system of y1(t), (c) Combined graphs of the master
and slave systems of x1(t) and y1(t).
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(a) (b)

(c)

Figure 3: Phase portrait graphs of the master and slave systems for µ = 0.05, q = 0.15, (a) For
the master system of (x1(t), x2(t)), (b) For the slave system of (y1(t), y2(t)), and (c) Combined
graphs of the master and slave systems of (x1(t), x2(t)) and (y1(t), y2(t)).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (4) (2023) 410–421 415

(a) (b)
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(e) (f)

(f)

Figure 4: The convergence of the error dynamical system, (a) for e1(t), (b) for e2(t), (c)
for e3(t), (d) for e4(t), (e) for e5(t), (f) for e6(t), and (g) the combined convergence of errors
e1(t), e2(t), e3(t), e4(t), e5(t), e6(t).



416 KRISHAN PAL

for the restricted charged three-body problem is defined by ẋ = f(x, y, z) and the slave
system ẏ = g(x, y, z), where x(t), y(t) and z(t) are the phase space (state variables), and
ẋ = f(x, y, z), ẏ = g(x, y, z), and ż = h(x, y, z) are the corresponding nonlinear functions.
We want to study the synchronization behavior of the master and slave systems for the
restricted charged three-body problem.

Synchronization is defined as a process in which two or more systems interact with
each other. We can obtain a combined effect of the dynamical properties using the
synchronization phenomenon. Mathematically, we can define the synchronization by the
expression |x(t)−y(t)| → 0 as t → 0. When the above expression holds, then the systems
of six equations are said to be completely synchronized. According to the control theory
of synchronization, a dynamical system depends on the design of control laws for the
slave system using the known information of the master system so as to ensure that the
controlled receiver synchronizes with the master system. Therefore, the slave chaotic
system completely investigates the dynamics of the master system with respect to time.
The model of the restricted charged three-body problem defined by Eq. (1) can be written
as a system of six first-order differential equations. We have introduced six variables such
as x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = z and x6 = ż. Therefore, the master system of
the Eq.(1) is defined as

ẋ1 = x2,

ẋ2 = x1 + 2x4 −
(
q − µ

r31
(x1 + µ) +

µ− q

r32
(x1 + µ− 1)

)
,

ẋ3 = x4,

ẋ4 = x3 − 2x2 −
(
q − µ

r31
+

µ− q

r32

)
x3,

ẋ5 = x6,

ẋ6 = −
(
q − µ

r31
+

µ− q

r32

)
x5,



(2)

where r21 = (x1 + µ)2 + x2
3 + x2

5 and r22 = (x1 + µ − 1)2 + x2
3 + x2

5. We can write the
identical slave system of six first-order differential equations corresponding to Eq.(2) as

ẏ1 = y2 + u1(t),

ẏ2 = y1 + 2 y4 −
q − µ

d31
(y1 + µ)− µ− q

d32
(y1 + µ− 1) + u2(t),

ẏ3 = y4 + u3(t),

ẏ4 = y3 − 2 y2 −
(
q − µ

d31
+

µ− q

d32

)
y3 + u4(t),

ẏ5 = y6 + u5(t),

ẏ6 = −
(
q − µ

d31
+

µ− q

d32

)
y5 + u6(t)



(3)

with d21 = (y1+µ)2+y23 +y25 and d22 = (y1+µ−1)2+y23 +y25 , where ui(t) = 1, 2, 3, 4, 5, 6
are called the control functions. We can define the error functions in such a way that in
the synchronization state

lim
t→∞

ei(t) → 0, i = 1, 2, 3, 4, 5, 6,
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e1 = y1 − x1,

e2 = y2 − x2,

e3 = y3 − x3,

e4 = y4 − x4,

e5 = y5 − x5,

e6 = y6 − x6.

We can transform the above error dynamical system in the derivative form of the input
variables. After taking the derivative of the above error dynamical system, a new form
can be written as

ė1 = ẏ1 − ẋ1,

ė2 = ẏ2 − ẋ2,

ė3 = ẏ3 − ẋ3,

ė4 = ẏ4 − ẋ4,

ė5 = ẏ5 − ẋ5,

ė6 = ẏ6 − ẋ6.


(4)

In the error dynamical system of Eqs. (4), the dot over ei, xi, yi, i = 1, 2, 3, 4, 5, 6
indicates the differentiation with respect to time. After using Eqs. (2), (3) and (4), the
above error dynamical system can be transformed into a new form and can be written as

ė1(t) = e2(t) + u1(t),

ė2(t) = e1(t) + 2 e4(t)− e1(t)

(
q − µ

r31
+

µ− q

r32

)
+ u2(t),

ė3(t) = e4(t) + u3(t),

ė4(t) = e3(t)− 2 e2(t)− e3(t)

(
q − µ

r31
+

µ− q

r32

)
+ u4(t),

ė5(t) = e6(t) + u5(t),

ė6(t) = − e5(t)

(
q − µ

r31
+

µ− q

r32

)
+ u6(t).



(5)

In Eq.(5), we have introduced the input variables to study the behavior of a dynamical
system. The error dynamical system defined by Eq. (5) to be controlled must be a linear
system with control inputs. Hence, we have incorporated the control functions after
eliminating the non-linear terms in e1(t), e2(t), e3(t), e4(t), e5(t) and e6(t) of equation
(5) as given below

u1(t) = v1(t),

u2(t) = e1(t)

(
q − µ

r31
+

µ− q

r32

)
+ v2(t),

u3(t) = v3(t),

u4(t) = e3(t)

(
q − µ

r31
+

µ− q

r32

)
+ v4(t),

u5(t) = v5(t),

u6(t) = e5(t)

(
q − µ

r31
+

µ− q

r32

)
+ v6(t).



(6)
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The control inputs have been introduced to study the behavior of a dynamical system.
We can take one or more input variables to control a dynamical system, which depend
on our choice. We want to control an output of a dynamical system. We can obtain the
desired output of a dynamical system using these control inputs. There are two control
inputs which are used in Eqs. (5) and (6). Using Eqs. (5) and (6), we can write the linear
error dynamical system as given below

ė1(t) = e2(t) + v1(t),

ė2(t) = e1(t) + 2 e4(t) + v2(t),

ė3(t) = e4(t) + v3(t),

ė4(t) = e3(t)− 2 e2(t) + v4(t),

ė5(t) = e6(t) + v5(t),

ė6(t) = v6(t).


(7)

Equation (7) represents the error dynamical system with new control inputs. The formu-
lated Eq. (7) is the error dynamics, which can be interpreted as a control problem where
the system to be controlled is a linear system with control inputs v1(t), v2(t), v3(t), v4(t),
v5(t) and v6(t). We have introduced some new active control variables v1(t), v2(t), v3(t),
v4(t), v5(t) and v6(t) which are given by the relation

v1(t)
v2(t)
v3(t)
v4(t)
v5(t)
v6(t)

 = M


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)
e6(t)




. (8)

In Eq. (8), M is a 6 × 6 constant matrix to be determined. The error dynamical
system (7) can be re-written as given below

ė1(t)
ė2(t)
ė3(t)
ė4(t)
ė4(t)
ė6(t)

 = N


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)
e6(t)




. (9)

In equation (9), N is a 6×6 coefficient matrix. According to the Lyapunov stability theory
and Routh-Hurwitz criteria, the eigenvalues of the coefficient matrix of the error system
must be real or complex with negative real parts. We can choose the elements of the
matrix arbitrarily, there are several ways to choose in order to satisfy the Lyapunov and
Routh-Hurwitz criteria. Therefore, the matrix corresponding to Eq. (7) can be defined
as

M =


−1 −1 0 0 0 0
−1 −1 0 −2 0 0
0 0 −1 −1 0 0
0 2 −1 −1 0 0
0 0 0 0 −1 −1
0 0 0 0 0 −1


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and the matrix corresponding to Eq. (9) given by

N =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 (10)

becomes a matrix with the eigenvalues having negative real parts. After using Eqs. (9)
and (10), we have obtained an expression which is given below

ė1(t) = −e1(t)

ė2(t) = −e2(t)

ė3(t) = −e3(t)

ė4(t) = −e4(t)

ė5(t) = −e5(t)

ė6(t) = −e6(t).


(11)

The system of Eqs.(11) indicates an equation of the error dynamical system of the
restricted charged three-body problem. We shall study the stability of the above error
dynamical system given by Eq.(11). In order to study the stability of the error dynamical
system, we shall determine the solution of Eq.(11) using the Lyapunov stability criteria.
It is concluded by the Lyapunov stability theory, the above error dynamical system is
stable.

4 Analysis of Numerical Simulation

We have introduced two parameters, namely, the mass ratio µ and the charge q of
the second primary. We shall discuss the effects of these two parameters µ and q.
We have taken the numerical values of the given parameters and the initial condi-
tions for studying simulation. For the parameters included in the system under in-
vestigation µ = 0.05, q = 0.15 and with the initial conditions for the master and
slave systems [x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = [3.5,−4.75,−2.5, 3.35, 0.85, 0.75]
and [y1(0), y2(0), y3(0), y4(0), y5(0), y6(0)] = [4.5,−2.75,−3.5, 6.35, 0.65, 0.95], respec-
tively. We have simulated the system under consideration using mathematica. The
phase portraits and time series analysis of the master and slave systems show
the irregular behavior of the dynamical system (see Figures 2 and 3). And for
[e1(0), e2(0), e3(0), e4(0), e5(0), e6(0)] = [1, 2,−1, 3,−0.2, 0.2], the convergence diagrams
of errors are the proof of achieving synchronization between the master and slave systems
(see Figure 4).

5 Conclusion

In this paper, we have studied the synchronization behavior of two identical nonlinear
systems of the restricted charged three-body problem using different initial conditions
through active control technique depending on the Lyapunov stability theory and the



420 KRISHAN PAL

Routh-Hurwitz criteria. We have observed that the master and slave systems of the
restricted charged three-body problem are completely synchronized. Also, we have ob-
served that the error propagation between the master and slave systems of the restricted
charged three-body problem is tending to zero. The obtained results were certified by
numerical simulations using the latest version 12.0 of Wolfram Mathematica®. In this
paper, the present work is applicable for the study of some perturbations on the artifi-
cial satellite in space. This paper is applicable in various astrophysical systems. There
are three examples such as Sun-Earth-Satellite system, Sun-Jupiter-Satellite system and
Earth-Moon-Satellite system.
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