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Abstract: In this paper, we fulfill some conditions to examine the multiple well-
posedness conditions that define the continuous dependence of the solutions and their
derivatives on the initial data of the Cauchy problem. Indeed, for the differential
operator equation of arbitrary order in a Hilbert space, an appropriate condition is
given for the two main operators that assert the multiple well-posedness. Our results
are new and complement some previous ones in the literature.
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1 Introduction

In [21], Vlasenko et al. studied the p-fold well-posedness of the higher-order abstract
Cauchy problem of the following form:

n∑
j=0

Aj
dju

dtj
= 0, t > 0, (1)

uj (0) = uj , j = 0, ..., n− 1, (2)

where Aj (j = 0, ..., n) are linear closed operators from a complex Banach space E into
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another complex Banach space F with the domain of definition D (Aj) ⊂ E , An can be
a degenerate operator.

Many real phenomena can be modeled using problems of the form of (1), (2). For
example, many initial-value or initial-boundary value problems for partial differential
equations arise in mechanics, physics, engineering, control theory, etc., in particular, the
description of vibrations (see [5], [13], [2]) or the vibrations of a viscoelastic pipeline [14].
The theory of problems of this kind is also connected with many other branches of mathe-
matics, which translates the importance of their study for both theoretical investigations
and practical applications.

Over the past half-century, (1), (2) has been studied extensively by many scholars.
Especially, for the first-order abstract Cauchy problem, the theory (or closely related
operator semigroup theory) has evolved relatively well since the well-known Hille-Yosida
theorem was presented in 1948, and is well documented in the monographs (see [6], [15]
and other), the study of the second-order abstract Cauchy problem has also received
much attention. For more information, we can refer to [10], [18], [20], and references
cited therein. Since integrated semi-groups were introduced at the end of the eighties
of the last century, it has become possible to deal with the ill-posed first-order abstract
Cauchy problems (see [16], [11], [8]).

In 2004, Vlasenko et al. [21] carried out one of the latest and significant research
on establishing conditions that ensure the p-fold well-posedness of the Cauchy problem
(1), (2). The study imposed that An is a bounded operator and An−1 = F + B, where
F and B are two operators fulfilling certain criteria that lead to guarantee the p-fold
well-posedness in the case of the Hilbert space.

Motivated by the aforementioned works, this paper aims to establish new sufficient
conditions that ensure the p-fold well-posedness of the problem (1), (2) even when An is
a non bounded operator and when the requirements on the two main operators An and
An−1 are different from those in [21]. The theorem presented in this paper is new and
extends and improves previously known results.

Due to its great importance and its many applications in various mathematical fields
such as nonlinear dynamics and systems theory (see [1], [22], [3]), many scholars have
devoted a great deal of attention to this topic. For example, Vlasenko and his collab-
orators have published several works in this direction, notably in the case of nonlinear
operators. As a result, their interesting outcomes inspired us to find new criteria that
guarantee the stability of nonlinear dynamics.

The paper is organized as follows. In Section 2, we introduce some necessary
definitions and preliminary results that play a crucial role in establishing our main
outcomes. In Section 3, we present some previous global existence results which inspired
us to investigate problem (1), (2). Finally, we state and prove our main results in Section
4.

2 Preliminaries

Definition 2.1 (see [21]) We call a solution of problem (1), (2) any function u satis-
fying condition (2) and

u ∈ Cn((0,∞), E)
⋂

Cn−1([0,∞), E)

so that
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Aju ∈ Cj((0,∞),F)
⋂

Cj−1([0,∞),F), j = 1, ..., n.

Definition 2.2 (see [21]) The Cauchy problem (1), (2) is p−fold well-posed
(p ∈ {1, ..., n}) if and only if for any of its solutions u, the following estimate is true:

∥∥up−1 (t)
∥∥ ≤ F (t)

n−1∑
j=0

∥uj∥ , t ≥ 0, (3)

where F is a non-negative function from R+ to R+.

Definition 2.3 (see [21]) If F is a locally bounded function on R+ the problem (1),
(2) is p−fold uniformly well-posed.

Definition 2.4 (see [21]) The problem (1), (2) is said to be p−fold exponentially
well-posed if F (t) = Ceωt, where C ≥ 0 and ω ≥ 0.

Remark 2.1 (see [21]) If p = n, the problem (1), (2) is full-fold well-posed.

Examples. Consider the problem of the vibrating string

∂2u

∂x2
− C2 ∂

2u

∂t2
= 0, t > 0, −∞ < x < ∞,

u (x, 0) = f (x) , ut (x, 0) = 0.

The solution of this problem is given by

u (x, t) =
1

2
[f (x− Ct) + f (x+ Ct)] .

Then

u (x, t) =
1

2
[G (−Ct) f (x) +G (Ct) f (x)] ,

where {G (t)} is a semigroup of the operator d
dx . We have

∥u (x, t)∥ =

∥∥∥∥12 [G (−Ct) f (x) +G (Ct) f (x)]

∥∥∥∥
≤ 1

2
∥G (−Ct)∥ ∥f (x)∥+ ∥G (Ct)∥ ∥f (x)∥ .

G (−Ct) is strongly continuous, then there exist M and ω such that

∥G (−Ct)∥ ≤ M exp (−ωCt) ,

also
∥G (Ct)∥ ≤ M exp (ωCt) ,

which implies that

∥u (x, t)∥ ≤ 1
2 (exp (ωCt) + exp (−ωCt)) ∥f (x)∥ .

For
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F (t) = max
(
1
2 (exp (ωCt) + exp (−ωCt)) , 1

)
,

we have

∥u (x, t)∥ ≤ F (t)
1∑

j=0

∥uj∥,

ut (x, t) =
1

2

[
dG (−Ct) f (x)

dt
+

dG (Ct) f (x)

dt

]
=

1

2
[AG (−Ct) f (x) +AG (Ct) f (x)] .

As the operator A is unbounded, then there is no nonnegative function F such that

∥ut (x, t)∥ ≤ K (t)

1∑
j=0

∥uj∥ .

Hence, the problem of the vibrating string is well-posed but is not 2-fold well-posed.
Equation (1) is associated with the characteristic polynomial

L (λ) =

n∑
j=0

λjAj

and its resolvent R (λ) = L−1 (λ) . Let G be the angle in the complex plane given by

G = G (b, θ) =
{
λ = b+ reiγ , |γ| ≤ π − θ, r ≥ 0

}
, 0 < θ <

π

2
,

and bounded by a pair of rays. The orientation of the boundary contour Λ should be
such that the area G is located on its left side when bypassing below see Figure A.

Here, the joint properties of the two leading operators An−1 and An in terms of the
following linear bundle of operators P (λ) and its resolvent S (λ) are

P (λ) = λAn +An−1,

S (λ) = P−1 (λ) .



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (4) (2023) 447–460 451

Theorem 2.1 (see [9], [12], [19]) A is a closed linear operator from E into E so that

∥A∥ ≤ q < 1. Then (I +A) is a reversible and (I +A)
−1

is a bounded operator.

Corollary 2.1 Suppose that n > 1, the linear D (L) is dense in E , the number p
belongs to the set {1, ..., n} and, in a certain angle G (b, θ) , b > 0, the resolvent S (λ) of
the bundle of leading operators satisfies the estimates

∥S (λ)Aj∥ ≤ C |λ|n−p
, j = 0, ..., n− 1, (4)

and

∥S (λ)Aj∥ ≤ C |λ|qj , j = 0, ..., n− 2, (5)

with the constants qj < n− j−1. Then the Cauchy problem (1), (2) is full-fold well-posed
and p−fold exponentially well-posed.

In [21], for the proof, the authors postulated another Cauchy problem and presented
the proof without that assumption. The proof is as follows.

Proof. For λ ∈ G(a, θ),

L(λ) = λnAn + λn−1An−1 +

n−2∑
j=0

λjAj

= λn−1(λAn +An−1) +

n−2∑
j=0

λjAj

= λn−1P (λ) +

n−2∑
j=0

λjAj

= λn−1P (λ)(I +

n−2∑
j=0

λj−n+1P−1(λ)Aj),

so

L(λ) = λn−1P (λ)(I +

n−2∑
j=0

λj−n+1S(λ)Aj).

As the estimate (5) is verified, then∥∥∥∥∥∥
n−2∑
j=0

λj−n+1S(λ)Aj

∥∥∥∥∥∥ ≤
n−2∑
j=0

|λ|j−n+1 ∥S(λ)Aj∥

≤
n−2∑
j=0

|λ|j−n+1
C |λ|qj

≤ C

n−2∑
j=0

|λ|j−n+1+qj ,

we have qj < n − j − 1, so j − n + 1 + qj < 0, and as λ ∈ G(a, θ), this implies that(
1
|λ|

)−j+n−1−qj
<
(

1
a0 sin θ

)−j+n−1−qj
, j = 0, · · · , n− 2. So
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∥∥∥∥∥∥
n−2∑
j=0

λj−n+1S(λ)Aj

∥∥∥∥∥∥ < C((
1

|λ|
)n−1−q0 + (

1

|λ|
)n−2−q1 + · · ·+ (

1

|λ|
)1−qn−2)

< C((
1

a0 sin θ
)n−1−q0 + (

1

a0 sin θ
)n−2−q1 + · · ·

+ (
1

a0 sin θ
)1−qn−2),

for a0 sin θ ≤ 1, we let

h = max {n− 1− q0, n− 2− q0, · · · , 1− qn−2} ,
and if a0 sin θ ≥ 1, we let

h = min {n− 1− q0, n− 2− q0, · · · , 1− qn−2} ,
in any case, we have ∥∥∥∥∥n−2∑

j=0

λj−n+1S(λ)Aj

∥∥∥∥∥ < C((n− 1)( 1
a0 sin θ )

h).

For a0 = (C(n−1))
1
h

sin θ , we get

C((n− 1)( 1
a0 sin θ )

h) = 1,

therefore G0 = G
(

(C(n−1))
1
h

sin θ , θ

)
⊂ G (a, θ) so that∥∥∥∥∥n−2∑
j=0

λj−n+1S(λ)Aj

∥∥∥∥∥ < 1.

According to Theorem 2.6, we conclude that

γ (λ) =

(
I +

n−2∑
j=0

λj−n+1S(λ)Aj

)−1

exists and is bounded in G0. We have also

∥∥L−1(λ)Ajx
∥∥ =

∥∥∥∥∥∥(λn−1P (λ)(I +

n−2∑
j=0

λj−n+1P−1(λ)Aj))
−1Ajx

∥∥∥∥∥∥
=

∥∥∥∥∥∥(I +
n−2∑
j=0

λj−n+1P−1(λ)Aj)
−1λ1−nP−1(λ)Ajx

∥∥∥∥∥∥
≤

∥∥∥∥∥∥(I +
n−2∑
j=0

λj−n+1P−1(λ)Aj)
−1

∥∥∥∥∥∥ |λ|1−n ∥∥P−1(λ)Aj

∥∥ ∥x∥
≤

∥∥∥∥∥∥(I +
n−2∑
j=0

λj−n+1P−1(λ)Aj)
−1

∥∥∥∥∥∥ |λ|1−n ∥S(λ)Aj∥ ∥x∥

≤

∥∥∥∥∥∥(I +
n−2∑
j=0

λj−n+1P−1(λ)Aj)
−1

∥∥∥∥∥∥ |λ|1−n
C |λ|n−p ∥x∥ ,
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and as (I +
n−2∑
j=0

λj−n+1S(λ)Aj)
−1 exists and is bounded in G0, then there is K > 0 such

that ∥∥∥∥∥(I + n−2∑
j=0

λj−n+1S(λ)Aj)
−1

∥∥∥∥∥ ≤ K

so that ∥∥L(λ)−1Ajx
∥∥ ≤ KC |λ|1−n+n−p ∥x∥ .

This implies that there exists K1 = CK such that∥∥L(λ)−1Ajx
∥∥ ≤ K1 |λ|1−p ∥x∥ ,

and hence

∥R(λ)Ajx∥ ≤ K1

|λ|1−p ∥x∥ .

According to Theorem 4 in [21], the result is proved.
We conclude that two conditions (4), (5) are substitutes for condition (19) in [21]. By

this corollary, we get the full-fold uniform well-posedness of the initial boundary-value
problems that describe small vibrations of an elastic bar in [13].

Theorem 2.2 (see [9], [12], [19]) A is a self-adjoint operator and A−1 exists and is
a bounded operator on R (A) . Then R (A) = H and A−1 is a self-adjoint operator.

Theorem 2.3 (see [9], [12], [19]) Suppose D (A) and R (A) are dense in H and A−1

exists. Then (A∗)
−1

exists and (A∗)
−1

=
(
A−1

)∗
.

3 Global Existence Result

In this part, we display some existing theorems [21] that set some conditions which
guarantee two inequalities (4) and (5) so that to achieve the full-fold exponentially well-
posedness in the case of the Hilbert space E = F = H and for the closed operators Aj

with the domains of definitions D (Aj) being dense in H.

Theorem 3.1 Suppose that n > 1, An is a nonnegative bounded operator and An−1 =
F + B, where F is a self-adjoint operator and B is a symmetric or skew-symmetric

operator. Suppose that the linear
n−1⋂
j=0

D (Aj) is dense in H, DF ⊂
n−2⋂
j=0

D
(
A∗

j

)
∩ D (B) ,

for certain b ≥ 0, the operator F + bAn is positive-definite (with a positive lower bound),
and

q =
∥∥∥B (F + bAn)

−1
∥∥∥ < 1. (6)

Then the Cauchy problem (1), (2) is full-fold well-posed and (n-1)-fold exponentially well-
posed. In addition, if An is positive-definite, then the problem is full-fold exponentially
well-posed.

We can find another condition that guarantees the same results as the previous the-
orem.
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Theorem 3.2 Suppose that n > 1, D (L) is dense in H, An = A∗
n ≥ 0, An−1 =

F +B, where F = F ∗, B is a symmetric or skew-symmetric operator, and for a certain
number b ≥ 0, estimate (6) is true, furthermore, F + bAn ≥ mI > 0,

D
(
(F + bAn)

1
2

)
⊂ D (An) ∩ D (B) ∩

(
n−2⋂
j=0

D (A∗
n)

)
.

Then the Cauchy problem (1), (2) is full-fold well-posed and (n-1)-fold exponentially well-
posed. In addition, if the operator An is positive-definite and bounded, then the problem
is full-fold exponentially well-posed.

4 Main Result

In this section, we give the main result of the paper. We will study the case where An is
an unbounded and non self-adjoint operator.

Theorem 4.1 Suppose that n > 1, An = K + C, where K is a positive self-adjoint
operator and C is a symmetric operator, and An−1 is a symmetric operator such that the

linear
n−1⋂
j=0

D (Aj) is dense in H so that

D (C∗) ⊂
n−2⋂
j=0

D
(
A∗

j

)
∩ D (An−1) , D (K) ⊂ D (C) , (7)

and for a certain b ≥ 0, the operator An−1 + bK is positive-definite, we have

q =
∥∥∥C (An−1 + bK)

−1
∥∥∥ ≤ 1

|λ|
(8)

and ∥∥(An−1 + bK)K−1
∥∥ ≤ 1

b
. (9)

Then the Cauchy problem (1), (2) is full-fold well-posed and full-fold exponentially well-
posed.

Proof. For λ ∈ G (b, θ) , we have

D
(
(λAn +An−1)

∗)
= D

(
(λK + λC +An−1)

∗)
= D (λK) ∩ D (λC) ∩ D

(
A∗

n−1

)
.

(10)

Because C is a symmetric operator, we have D (C) ⊂ D (C∗) and D (K) ⊂ D (C) , which
means that

D (K) ⊂ D (C) ⊂ D (C∗) .

Then

D
(
(λK + λC +An−1)

∗)
= D (K) ∩ D

(
A∗

n−1

)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (4) (2023) 447–460 455

and
D (K) ⊂ D (C∗) ⊂ D

(
A∗

n−1

)
.

Thus, we have
D
(
(λK + λC +An−1)

∗)
= D (K) (11)

and

D ((λK + λC∗ +An−1)) = D (K) ∩ D (C∗) ∩ D (An−1)

= D (K) ∩ D (An−1) .

As C is a symmetric operator and using (7), we have

D (K) ⊂ D (C) ⊂ D (C∗) ⊂ D (An−1) ,

which implies
D ((λK + λC∗ +An−1)) = D (K) . (12)

Furthermore, according to (11) and (12), we have

D
(
(λK + λC +An−1)

∗)
= D (λK + λC∗ +An−1) .

In addition, ∀x ∈ D (λK + λC∗ +An−1) , C and An−1 are symmetric operators and K
is a self-adjoint operator, we can therefore write

⟨(λK + λC∗ +An−1)x, x⟩ =
〈(
λK + λC∗ +A∗

n−1

)
x, x

〉
=

〈
(λK + λC +An−1)

∗
x, x

〉
.

As An−1 + bK is a positive operator, we have

D
(
(An−1 + bK)

∗)
= D

(
A∗

n−1

)
∩ D (K)

= D (K) .

We have also

D ((An−1 + bK)) = D (An−1) ∩ D (K)

= D (K) .

Therefore

D((An−1 + bK)
∗
) = D(An−1 + bK).

Let us remind that An−1 are symmetric operators and K is a self-adjoint operator, then
∀x, y ∈ D

(
(An−1 + bK)

∗)
,

⟨(An−1 + bK)x, y⟩ = ⟨x, (An−1 + bK) y⟩ .

This implies that An−1+bK is a self-adjoint operator, and as C is a symmetric operator,
we get

D ((An−1 + bK)) = D (K) .

As D (K) ⊂ D (C), we have
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D ((An−1 + bK)) ⊂ D (C)

and

∥C∥ =
∥∥∥C (An−1 + bK)

−1
(An−1 + bK)

∥∥∥
≤

∥∥∥C (An−1 + bK)
−1
∥∥∥ ∥(An−1 + bK)∥

≤ q ∥(An−1 + bK)∥ .

As K is a self-adjoint operator, D (An−1 + bK) = D (K) and

∥(An−1 + bK)∥ =
∥∥(An−1 + bK)K−1K

∥∥
≤

∥∥(An−1 + bK)K−1
∥∥ ∥K∥

≤ 1

b
∥K∥

≤ ∥bK∥ .

Then, according to Theorem 4.12 in [9], we obtain

|⟨Cx, x⟩| ≤ q ⟨(An−1 + bK)x, x⟩ , (13)

⟨(An−1 + bK)x, x⟩ ≤ ⟨bKx, x⟩ (14)

for all x ∈ D (K) and λ ∈ G (b, θ) .
Using (13) and (14), for all x ∈ D (K) and for all λ ∈ G (b, θ) , we get

|⟨(λAn +An−1)x, x⟩|

= |⟨(λK + λC +An−1)x, x⟩|
≥ |⟨(λK +An−1)x, x⟩| − |λ| |⟨Cx, x⟩|
≥ |⟨(λK +An−1 − bK + bK)x, x⟩| − |λ| q ⟨(An−1 + bK)x, x⟩
≥ |⟨λKx, x⟩| − ⟨(bK − (An−1 + bK))x, x⟩ − |λ| q ⟨(An−1 + bK)x, x⟩
≥ |⟨λKx, x⟩| − ⟨bKx, x⟩+ ⟨(An−1 + bK)x, x⟩ − |λ| q ⟨(An−1 + bK)x, x⟩ .

As |λ| ≥ b, then −⟨bKx, x⟩ ≥ − |λ| ⟨Kx, x⟩ , which implies that

|⟨(λAn +An−1)x, x⟩|

≥ |λ| ⟨Kx, x⟩ − |λ| ⟨Kx, x⟩+ ⟨(An−1 + bK)x, x⟩ − |λ| q ⟨(An−1 + bK)x, x⟩
≥ (1− |λ| q) ⟨(An−1 + bK)x, x⟩ .

Since q < 1
|λ| , we have q |λ| < 1, this gives 0 < 1− q |λ| < 1, hence ∃α0 ∈ ]0, 1[ with

1− q |λ| ≥ α0,

An−1 + bK is a positive-definite operator, i.e.,

∀x ∈ D (An−1 + bK) , ∃C0 > 0 : ⟨(An−1 + bK)x, x⟩ ≥ C0 ⟨x, x⟩ ,

which implies

|⟨(λAn +An−1)x, x⟩| ≥ (1− |λ| q) ⟨(An−1 + bK)x, x⟩
≥ α0C0 ⟨x, x⟩ .

Hence
|⟨(λAn +An−1)x, x⟩| ≥ C1 ⟨x, x⟩ , (15)
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λ ∈ G, x ∈ D (K) ,

with C1 = 0 + α0C0. Now, we have

(λAn +An−1)
∗
= λK + λC∗ +An−1.

Then An−1 + bK is a positive self-adjoint operator and C∗ is a symmetric operator,
therefore

D (An−1 + bK) = D (K) ⊂ D (C∗)

and

∥C∗∥ =
∥∥∥C∗ (An−1 + bK)

−1
(An−1 + bK)

∥∥∥
≤

∥∥∥C∗ (An−1 + bK)
−1
∥∥∥ ∥(An−1 + bK)∥

≤ q ∥(An−1 + bK)∥ .

Using Theorem 4.12 in [9], we can easily get

|⟨C∗x, x⟩| ≤ q ⟨(An−1 + bK)x, x⟩ . (16)

In the same way as in the proof of inequality (15) and using the relation (16), we can
prove the following:∣∣〈(λAn +An−1)

∗
x, x

〉∣∣ ≥ C2 ⟨x, x⟩ , λ ∈ G, x ∈ D (K) . (17)

In addition, using (15) and (17), we get the existence and the boundedness of

(λAn +An−1)
−1

.
Furthermore, we have

D
(
(λAn +An−1)

∗)
= D (K)

and

D (λAn +An−1) = D (K)

with

D
(
(λAn +An−1)

∗)
= D (λAn +An−1) .

So, ∀x ∈ D (λAn +An−1) ,

⟨(λAn +An−1)x, x⟩ = ⟨(λK + λC +An−1)x, x⟩
= |λ| ⟨Kx, x⟩+ |λ| ⟨Cx, x⟩+ ⟨An−1x, x⟩ .

As K is a self-adjoint operator and An−1 is a symmetric operator, we can write

⟨(λAn +An−1)x, x⟩ = |λ| ⟨x,Kx⟩+ |λ| ⟨x,Cx⟩+ ⟨x,An−1x⟩ ,
= ⟨x, (λAn +An−1)x⟩ .

This implies that (λAn +An−1) is a self-adjoint operator and (λAn +An−1)
−1

ex-
ists and is bounded on R (λAn +An−1) . According to Theorem 2.9, we conclude that
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R (λAn +An−1) is dense in H and D (λAn +An−1) is dense in H. From Theorem 2.9,

we find that
(
(λAn +An−1)

∗)−1
exists with

(
(λAn +An−1)

∗)−1
=
(
(λAn +An−1)

−1
)∗

= (λAn +An−1)
−1

. (18)

According to (15), (17) and (18), and for Q (λ) =
(
(λAn +An−1)

∗)−1
, there exists a

constant C3 > 0 such that

∥Q (λ)∥ ≤ C3, λ ∈ G. (19)

Use D (C∗) ⊂
n−2⋂
j=0

D (A∗)j and D (K) ⊂ D (C) , where C is a symmetric operator and

any C ⊂ C∗, so D (K) ⊂
n−2⋂
j=0

D (A∗)j and

D (P∗ (λ)) = D (λK + λC +An−1)
∗
= D (λK + λC∗ +An−1) = D (K) .

Hence

D (P∗ (λ)) ⊂
n−2⋂
j=0

D (A∗)j .

As P∗ (λ) and A∗
j are closed, and according to Remark 1.5 in [9], we have A∗

j are P∗ (λ)-
bounded, where j = 0, ..., n− 2, this gives∥∥A∗

j

∥∥ ≤ a+ b ∥P∗ (λ)∥ . λ ∈ G a > 0, b > 0, j = 0, ..., n− 2, (20)

and thus ∥∥A∗
jQ (λ)

∥∥ ≤
∥∥A∗

j

∥∥ ∥Q (λ)∥
≤ (a+ b ∥P∗ (λ) ∥)∥Q (λ)∥ ,
≤ a ∥Q (λ)∥+ b ∥P∗ (λ)∥ ∥Q (λ)∥ ,

where j = 0, ..., n− 2. We have

Q(λ) = (P∗(λ))−1,

so

∥P∗(λ)∥ ∥Q(λ)∥ = 1.

Therefore ∥∥A∗
jQ (λ)

∥∥ ≤ a ∥Q (λ)∥+ b, λ ∈ G. (21)

From (19) and (21), we find that ∃C4 > 0, where∥∥A∗
jQ (λ)

∥∥ ≤ C4, λ ∈ G j = 0, ..., n− 2, (22)

and ∥∥A∗
jQ (λ)

∥∥ =
∥∥∥A∗

j

(
P−1 (λ)

)∗∥∥∥ =
∥∥∥(P−1 (λ)Aj

)∗∥∥∥ =
∥∥(P−1 (λ)Aj

)∥∥
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so that ∥∥(P−1 (λ)Aj

)∥∥ ≤ C4, λ ∈ G (b, θ) , j = 0, ..., n− 2. (23)

We have D (K) ⊂ D (An−1) and D (P∗ (λ)) = D (K) . If An−1 is a symmetric operator,
then

D (P∗ (λ)) ⊂ D (An−1) ⊂ D
(
A∗

n−1

)
.

As A∗
n−1 is closable, so A∗

n−1 is P∗ (λ)-bounded, therefore∥∥A∗
n−1

∥∥ ≤ c+ d ∥P∗ (λ)∥ , λ ∈ G, c > 0, d > 0. (24)

This implies

∥∥A∗
n−1Q (λ)

∥∥ ≤
∥∥A∗

n−1

∥∥ ∥Q (λ)∥
≤ (c+ d ∥P∗ (λ)∥) ∥Q (λ)∥ ,
≤ c ∥Q (λ)∥+ d ∥P∗ (λ)∥ ∥Q (λ)∥ ,

which we can rewrite as

∥∥A∗
n−1Q (λ)

∥∥ ≤ C5, λ ∈ G,

where C5 = c ∥Q (λ)∥+ d. Therefore λ ∈ G (b, θ) , and we have∥∥P−1 (λ)An−1

∥∥ ≤ C5, λ ∈ G. (25)

Using (23) and (25), we find that∥∥(P−1 (λ)Aj

)∥∥ ≤ C6, λ ∈ G (b, θ) , j = 0, ..., n− 1, (26)

where C6 = max (C4, C5) . Moreover, the use of (23) leads to the estimate∥∥(P−1 (λ)Aj

)∥∥ ≤ C4 |λ|qj , λ ∈ G (b, θ) , j = 0, ..., n− 2, (27)

where qj = 0. Using (26), we get the estimate∥∥(P−1 (λ)Aj

)∥∥ ≤ C6 |λ|n−p
, λ ∈ G (b, θ) , j = 0, ..., n− 1. (28)

For n = p, according to (27), (28) and Corollary 2.4, we obtain the full-fold exponential
well-posedness and full-fold well-posedness of the Cauchy problem.

5 Conclusion

In this paper, we found the sufficient conditions for the operators Aj in (1), in the case of
the Hilbert space, that guarantee the conditions (4), (5) even if An is not bounded and
self-adjoint. As a result, the problem (1), (2) is full-fold exponentially well-posed. There
will always be attempts to find the least possible sufficient conditions to fulfill the multi
well-posedness.
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