
Nonlinear Dynamics and Systems Theory, 23 (5) (2023) 461–474

Solvability of Nonlinear Elliptic Problems with

Degenerate Coercivity in Weighted Sobolev Space

Y. Akdim 1, S. Lalaoui Rhali 2 and Y. Oumouacha 2∗

1 LAMA Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah
University, Fez, Morocco.

2 Engineering Sciences Laboratory (LSI), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben
Abdellah University, Taza, Morocco.

Received: July 8, 2023; Revised: November 16, 2023

Abstract: In this paper, we investigate the existence of our entropy solution for the
nonlinear elliptic equation

− div[ω(x)a(x, u,∇u)] = f − divF, in Ω,

in the setting of the weighted Sobolev space W 1,p
0 (Ω, ω). We focus on the case where

the operator has a degenerate coercivity and f ∈ L1(Ω), F ∈ [Lp′(Ω, ω1−p′)]N .
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1 Introduction

Partial differential equations have many applications in various areas of engineering,
mathematics, physics, and other applied sciences (see for instance [8, 20]). In the last
years, there has been an increasing interest in the study of various mathematical problems
in weighted Sobolev spaces motivated by many considerations in applications (see [1, 2,
5, 10,11] and the references therein).

Let Ω be a bounded smooth subset of RN with N ≥ 2 and 1 < p < ∞. We are
interested in proving the existence of entropy solutions to the following elliptic Dirichlet
problem:

(P)

{
−div[ω(x)a(x, u,∇u)] = f − divF, in Ω,

u(x) = 0, on ∂Ω.
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Here a(x, s, ξ) : Ω × R × RN → RN is a Carathédory function satisfying the following
conditions:

a(x, s, ξ).ξ ≥ α

(1 + |s|)θ(p−1)
|ξ|p (1)

for some α > 0 and some real number θ such that 0 ≤ θ < 1.
As far as the datum f and F are concerned, we will assume that f belongs to the

space L1(Ω), and F ∈ [Lp′
(Ω, ω1−p′

)]N with (1/p+ 1/p′ = 1).
Problems like (P) have been studied by many authors in the non-weighted case.

In [18], Leone and Porretta studied the nonlinear elliptic problem

Bu = f(x) − div(F ) in Ω

in the setting of Sobolev spaces, where Bu = −div(a(x, u,∇u)) is a Leray-Lions op-
erator from W 1,p

0 (Ω) to W−1.p′
(Ω), they demonstrated the existence of entropy solu-

tions. In addition, Alvino et al. [4] have proved that the nonlinear elliptic equations
− div(a(x, u,∇u)) = f admit the entropy solutions under assumption (1).

Notice that the existence of a weak solution for the Dirichlet problem (P) has been
obtained by Cavalheiro in [12] under the condition

a(x, s, ξ).ξ ≥ α|ξ|p, (2)

and by assuming that f/ω ∈ Lp′
(Ω, ω). Also, he discussed in [11] the existence of our

entropy solution when f ∈ L1(Ω).
Our objective in this work is to study the problem (P) when the operator satisfies

assumption (1) instead of (2). The main difficulties that arise in our study are due, on the
one hand, to the fact that the differential operator A(u) = −div(ω(x)a(x, u,∇u)), which
is well defined between W 1,p

0 (Ω, ω) and its dual W−1,p′
(Ω, ω1−p′

), may not be coercive on
W 1,p

0 (Ω, ω) when u is large. This imposes that, even if the datum is extremely regular,
the classical methods used to demonstrate the existence of a solution to problem (P)
cannot be used.

On the other hand, f only belongs to L1(Ω), making it difficult to show the existence
of a weak solution. To get around this difficulty, we will use in this paper the concept of
entropy solutions. This concept was introduced in [7], and then used by many authors
to study elliptic equations (see [2–4,6, 10,18]).

The structure of this paper is as follows. In Section 2, we recall some preliminary
results which will be used later. In Section 3, we give the assumptions on the data, then
we state the main results which will be proved in Section 4.

2 Preliminaries

In this section, we provide a brief facts about the weighted Sobolev space as well as some
Ap-weight features. Let ω = ω(x) be a weight function, that is, 0 < ω <∞, and a locally
integrable function on RN . By integration, each weight ω generates a measure on the
measurable subsets of RN . This measure is denoted by µ and defined as follows:

µ(S) =

∫
S
ω(x)dx

for a measurable set S ⊂ RN .
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Definition 2.1 Let ω be a weight and 1 < p < ∞. We say that ω belongs to
Ap-weight if there exists a positive constant Cω,p such that, for every ball B ⊂ RN ,(

1

|B|

∫
B
ωdx

)(
1

|B|

∫
B
ω1/(1−p)dx

)p−1

≤ Cω,p if p > 1,

where |.| denotes the N -dimensional Lebesgue measure in RN .

Lemma 2.1 [16]. Let B be a ball in RN and S be a measurable subset of B. If
ω ∈ Ap, 1 < p <∞, then (

|S|
|B|

)p

≤ Cω,p
µ(S)

µ(B)
.

Remark 2.1 If µ(S) = 0, then |S| = 0. Thus, for every sequence (un) in B that
converges µ-a.e. to some u, we have un −→ u a.e.

The weighted Lebesgue space Lp(Ω, ω) is defined for every weight ω and 1 ≤ p < ∞
by

Lp(Ω, ω) =
{
u = u(x) : uω1/p ∈ Lp(Ω)

}
,

and it is endowed with the norm

∥u∥Lp(Ω,ω) =

(∫
Ω

|u(x)|pω(x)dx

)1/p

.

Definition 2.2 Let Ω be a bounded open subset of RN , 1 < p <∞ and let ω be an
Ap-weight. The weighted Sobolev space W 1,p(Ω, ω) is defined as the set of all functions
u ∈ Lp(Ω, ω) with weak derivatives ∂u

∂xi
∈ Lp(Ω, w), for all i = 1, . . . , N .

The norm of u in W 1,p(Ω, ω) is given by

∥u∥W 1,p(Ω,ω) =

(∫
Ω

|u|pω(x)dx+

∫
Ω

|∇u|pω(x)dx

) 1
p

. (3)

The space W 1,p
0 (Ω, ω) is defined as the closure of C∞

0 (Ω) with respect to the norm

∥u∥W 1,p
0 (Ω,ω) =

(∫
Ω

|∇u|pω(x)dx

) 1
p

. (4)

A compact imbedding is required because we are working with compactness methods
to find solutions to nonlinear elliptic equations. As a result, we assume also that the
domain Ω is smooth.

Theorem 2.1 [13]. Let Ω be a bounded smooth domain. For ω ∈ Ap, we have the
compact embedding

W 1,p
0 (Ω, ω) ↪→↪→ Lp(Ω, ω).

Theorem 2.2 [14]. Let Ω be a bounded open subset of RN . Take 1 < p <∞ and a
function ω ∈ Ap. There exist positive constants CΩ and δ such that for all u ∈ C∞

0 (Ω)
and all η satisfying 1 ≤ η ≤ N

N−1 + δ,

∥u∥Lηp(Ω,ω) ≤ CΩ∥|∇u|∥Lp(Ω,ω). (5)
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Definition 2.3 Let ω be a weight function and let q be a positive real number. The
weighted Marcinkievicz space Mq(Ω, ω) is the set of all measurable functions f : Ω → R
such that the function

Φf (k) = µ({x ∈ Ω : |f(x)| > k}) k > 0,

satisfies, for some positive constant C, an estimate of the form Φf (k) ≤ Ck−q.

Remark 2.2 It follows from [17] that if 1 ≤ q < p and Ω ⊂ RN is a bounded set,
then

Lp(Ω, ω) ⊂ Mp(Ω, ω) and Mp(Ω, ω) ⊂ Lq(Ω, ω).

3 Basic Assumptions and Main Result

3.1 Basic assumptions

Let Ω be an open bounded smooth domain of RN (N ≥ 2), p > 1 and ω ∈ Ap. Let
a : Ω × R × RN → RN be a Carathéodry function (that is, a(., s, ξ) is measurable on Ω
for every (t, ξ) in R × RN , and a(x, ., .) is continuous on R × RN for almost every x in
Ω). Assume that

a(x, s, ξ) · ξ ≥ b(|s|)|ξ|p (6)

for almost every x in Ω and for every (s, ξ) ∈ R× RN , where

b(s) =
α

(1 + s)θ(p−1)
(7)

for some 0 ≤ θ < 1 and some α > 0;

|a(x, s, ξ)| ≤ l0(x) + l1(x)|s|p−1 + l2(x)|ξ|p−1 (8)

for almost every x in Ω and for every (s, ξ) ∈ R×RN , where l0, l1 and l2 are non-negative
functions, with l0 ∈ Lp′

(Ω, ω) and l1, l2 ∈ L∞(Ω);

[a(x, s, ξ) − a(x, s, ξ′)] · (ξ − ξ′) > 0 (9)

for almost every x in Ω and for every s ∈ R, for every ξ, ξ′ for every ξ, ξ′ in RN with
ξ ̸= ξ′. As regards the source term, we assume that

f ∈ L1(Ω) and F ∈ [Lp′
(Ω, ω1−p′

)]N . (10)

3.2 Main result

We first give the definition of an entropy solution of problem (P). For a given constant
k > 0, the truncation function Tk : R → R is defined by

Tk(s) = max{−k,min{k, s}}.

We denote by T 1,p
0 (Ω, ω) the set of all measurable functions u : Ω → R such that for

every k > 0, the truncated function Tk(u) belongs to W 1,p
0 (Ω, ω).

Let u ∈ T 1,p
0 (Ω, ω), then there exists a unique measurable function v : Ω → RN such

that
∇Tk(u) = vχ{|u|<k}. (11)

If u ∈ T 1,p
0 (Ω, ω), the weak gradient ∇u of u is defined as the unique function v which

satisfies (11).
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Definition 3.1 A function u ∈ T 1,p
0 (Ω, ω) is an entropy solution of the problem (P)

if ∫
Ω

ωa(x, u,∇u) · ∇Tk(u− v)dx =

∫
Ω

fTk(u− v)dx+

∫
Ω

F · ∇Tk(u− v)dx (12)

for every k > 0 and for every v ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω).

The main result proved in this paper is the following.

Theorem 3.1 Assume that the Carathéodry function a satisfies (6)-(9). Then there
exists an entropy solution u of the problem (P).

Proposition 3.1 The entropy solution u of the problem (P) satisfies

u ∈ Mr(Ω, ω) with r = η(p− 1)(1 − θ), (13)

|∇u| ∈ Ms(Ω, ω) with s =
pη(p− 1)(1 − θ)

r + θ(p− 1) + 1
, (14)

where η is a constant such that 1 ≤ η ≤ N
N−1 + δ.

4 Proof of the Main Result

4.1 Useful lemmas

Lemma 4.1 Let u ∈ T 1,p
0 (Ω, ω), where ω ∈ Ap, 1 < p < ∞. Let 1 ≤ λ < p, and

suppose that u satisfies ∫
{|u|<k}

|∇u|pωdx ≤Mkλ, ∀k > 0. (15)

Then u belongs to Mr(Ω, ω) with r = η(p−λ) (where 1 ≤ η ≤ N
N−1 + δ). More precisely,

there exists C > 0 such that
Φu(k) ≤ CMηk−r.

Proof. For 0 < ε ≤ k, we have {x ∈ Ω : |u| ≥ ε} = {x ∈ Ω : |Tk(u)| ≥ ε}. Thus

µ({x ∈ Ω : |u| > ε}) = µ({x ∈ Ω : |Tk(u)| ≥ ε})

=

∫
{|Tk(u)|≥ε}

ω(x)dx

=
1

εηp

∫
{|Tk(u)|≥ε}

εηpω(x)dx

≤ 1

εηp

∫
{|Tk(u)|≥ε}

|Tk(u)|ηpω(x)dx

≤ 1

εnp
∥Tk(u)∥ηpLηp(Ω,ω) .

By Theorem 2.2 and inequality (15), we get

∥Tk(u)∥Lηp(Ω,ω) ≤ CΩ ∥|∇Tk(u)∥Lp(Ω,ω) ≤ CΩ(Mkλ)1/p,
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which implies that

µ({x ∈ Ω : |u| > ε}) ≤ 1

εηp
C(Mkλ)η.

Therefore, by taking ε = k, we have

µ({x ∈ Ω : |u| > k}) ≤ 1

kηp
C(Mkλ)η = CMηk−η(p−λ) = CMηk−r.

Lemma 4.2 Assume that the hypothesis in Lemma 4.1 holds true. Then |∇u| ∈
Ms(Ω, ω), where s = pr/(r+ λ) (with r as in Lemma 4.1 ). More precisely, there exists
C > 0 such that

Φ∇u(k) ≤ CM (r+ηλ)/(r+λ)k−s.

Proof. We set for every k, ρ > 0, the function

Ψ(k, ρ) = µ ({x ∈ Ω : |∇u|p > ρ, |u| > k}) .

It is clear that the function ρ → Ψ(k, ρ) is decreasing. Thus for k > 0 and ρ > 0, we
obtain

Ψ(0, ρ) ≤ 1

ρ

∫ ρ

0

Ψ(0, s)ds ≤ Ψ(k, 0) +
1

ρ

∫ ρ

0

(Ψ(0, s) − Ψ(k, s))ds. (16)

From Lemma 4.1, we have
Ψ(k, 0) ≤ CMηk−r. (17)

Now, observe that

Ψ(0, s) − Ψ(k, s) = µ ({x ∈ Ω : |∇u|p > s, |u| > 0}) − µ ({x ∈ Ω : |∇u|p > s, |u| > k})

= µ ({x ∈ Ω : |∇u|p > s, |u| ≤ k}) .

Hence, we get by using Proposition 6.24 in [15] that∫ ∞

0

(Ψ(0, s) − Ψ(k, s))ds =

∫ ∞

0

µ ({x ∈ Ω : |∇u|p > s, |u| ≤ k}) ds

=

∫
{|u|<k}

|∇u(x)|pω(x)dx

≤Mkλ.

(18)

Going back to (16) and using (17) and (18), we obtain

Ψ(0, ρ) ≤ CMηk−r +
1

ρ
Mkλ. (19)

A minimization of the right-hand side of (19) in k gives

Ψ(0, ρ) ≤ CM (r+ηλ)/(r+λ)ρ−r/(r+λ).

Setting ρ = hp, we obtain

Ψ(0, hp) = µ ({x ∈ Ω : |∇u| > h}) ≤ CM (r+ηλ)/(r+λ)h−rp/(r+λ) = CM (r+ηλ)/(r+λ)h−s,

where s = rp/(r + λ).
Let n ∈ N, and define, for u in W 1,p

0 (Ω, ω), the differential operator

An(u) = −div[ω(x)a(x, Tn(u),∇u)].
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Lemma 4.3 The operator An maps W 1,p
0 (Ω, ω) into its dual W−1,p′

(Ω, ω1−p′
).

Moreover, An is bounded, pseudomonotone and coercive in the following sense:

< Anv, v >

∥v∥W 1,p
0 (Ω,ω)

−→ +∞ if ∥v∥W 1,p
0 (Ω,ω) −→ +∞, v ∈W 1,p

0 (Ω, ω).

Proof. By (8), we deduce that for every u in W 1,p
0 (Ω, ω),∫

Ω

(
ω|a(x, Tn(u),∇u)|

)p′

ω1−p′
dx

≤
∫
Ω

(
l0 + l1|Tn(u)|p/p

′
+ l2|∇u|p/p

′
)p′

ωdx

≤ C
[
∥l0∥p

′

L′(Ω,ω) +
(
CΩ∥l1∥p

′

L∞(Ω) + ∥l2∥p
′

L∞(Ω)

)
∥u∥p

W 1,p
0 (Ω,ω)

]
,

which means that ωa(x, Tn(u),∇u) belongs to
(
Lp′

(Ω, ω1−p′
)
)N

. Therefore

An(u) ∈W−1,p′
(Ω, ω1−p′

), ∀n ∈ N.

Thanks to Hölder’s inequality and (8), we have for all u, v ∈W 1,p
0 (Ω, ω),

|⟨Anu, v⟩| ≤
(
C
[
∥l0∥p

′

L′(Ω,ω) +
(
CΩ∥l1∥p

′

L∞(Ω) + ∥l2∥p
′

L∞(Ω)

)
∥u∥p

W 1,p
0 (Ω,ω)

])1/p′

× ∥v∥W 1,p
0 (Ω,ω).

Thus An is bounded from W 1,p
0 (Ω, ω) to W−1,p′

(Ω, ω1−p′
).

For the coercivity, by using (6), we get for every u ∈W 1,p
0 (Ω, ω),

⟨Anu, u⟩ =

∫
Ω

ωa(x, Tn(u),∇u) · ∇udx

≥
∫
Ω

ωb(|Tn(u)|)|∇u|pdx

≥ b(n)∥u∥p
W 1,p

0 (Ω,ω)
.

Hence, the operator An is coercive.
It remains to show that An is pseudomonotone. We thus consider a sequence uj in

W 1,p
0 (Ω, ω) such that

uj ⇀ u, in W 1,p
0 (Ω, ω),

Anuj ⇀ ψn, in W−1,p′
(Ω, ω1−p′

),

lim supj→∞ ⟨Anuj , uj⟩ ≤ ⟨ψn, u⟩.
(20)

We shall prove that
ψn = Anu and ⟨Anuj , uj⟩ → ⟨Anu, u⟩.

Firstly, since W 1,p
0 (Ω, ω) ↪→↪→ Lp(Ω, ω), one has

uj → u in Lp(Ω, ω) for a subsequence denoted again by (uj)j .
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Due to the boundedness of the sequence (uj)j in W 1,p
0 (Ω, ω), and using the growth

assumption (8), we have that ωa(x, Tn(uj),∇uj) is bounded in
(
Lp′

(Ω, ω1−p′
)
)N

.

Therefore, there exists a function ϕ ∈ Lp′
(Ω, ω1−p′

) such that

ωa(x, Tn(uj),∇uj) ⇀ ϕ weakly in
(
Lp′

(Ω, ω1−p′
)
)N

. (21)

It is clear that, for all v ∈W 1,p
0 (Ω, ω),

⟨ψn, v⟩ = lim
j→+∞

⟨Anuj , v⟩

= lim
j→+∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇vdx

=

∫
Ω

ϕ · ∇vdx.

(22)

Hence, by hypotheses, we have

lim sup
j→+∞

< Anuj , uj > = lim sup
j→+∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx

≤
∫
Ω

ϕ · ∇udx.
(23)

On the other hand, by (9),

[a(x, Tn(uj),∇uj) − a(x, Tn(uj),∇u))] · ∇(uj − u) > 0.

Hence∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx >
∫
Ω

ωa(x, Tn(uj),∇uj) · ∇udx

+

∫
Ω

ωa(x, Tn(uj),∇u) · (∇uj −∇u)dx.

(24)

Using (21), we get

lim inf
j→+∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx ≥
∫
Ω

ϕ · ∇u. (25)

By using (23) and (25), we get

lim
j→∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx =

∫
Ω

ϕ · ∇udx. (26)

As a result of (22) and (26), we get

⟨Anuj , uj⟩ → ⟨ψn, u⟩ as j −→ +∞.

Yet, due to (26) and the strong convergence ωa(x, Tn(uj),∇u) → ωa(x, Tn(u),∇u)

in
(
Lp′

(Ω, ω1−p′
)
)N

, we deduce that

lim
j→+∞

∫
Ω

(ωa(x, Tn(uj),∇uj) − ωa(x, Tn(uj),∇u)) · (∇uj −∇u) dx = 0,
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and so, by virtue of Lemma 3.2 in [1],

∇uj → ∇u a.e. in Ω,

we deduce then that ωa(x, Tn(uj),∇uj) converges to ωa(x, Tn(u),∇u) weakly in(
Lp′

(Ω, ω1−p′
)
)N

. This implies that ψn = Anu.

4.2 Approximate problem

We consider the sequence of approximate problems

(Pn)

{
An(un) = fn − divF in Ω,

un = 0 on ∂Ω,

where (fn) is a sequence of functions in C∞
0 (Ω) which is strongly convergent to f in

L1(Ω) such that ∥fn∥L1(Ω) ≤ ∥f∥L1(Ω).

Since the source term fn−div(F ) belongs to the dual space W−1,p′
(Ω, ω1−p′

), in view
of Lemma 4.3, the operator An is pseudomonotone, and by Theorem 2.7 in [19], there
exists at least one solution un ∈W 1,p

0 (Ω, ω) of problem (Pn) in the sense that∫
Ω

ωa(x, Tn(un),∇un).∇vdx =

∫
Ω

fnvdx+

∫
Ω

F.∇vdx (27)

for every v ∈W 1,p
0 (Ω, w).

By choosing v = Tk(un) in (27), we can take n > k, then applying (6) in the first
term and using Hölder’s then Young’s inequalities in the last one, we obtain

b(k)

∫
Ω

|∇Tk(un)|pωdx ≤ k∥f∥L1(Ω) +
b(k)

2

∫
Ω

|∇Tk (un)|p ωdx+ C1

∫
Ω

∣∣∣∣Fω
∣∣∣∣p′

ωdx.

Thus we have the estimate∫
Ω

|∇Tk(un)|pωdx ≤ C2(1 + k)θ(p−1)+1. (28)

4.3 Local convergence of un in µ-measure

Combining the previous estimation with Lemma 4.1, we conclude that un ∈ Mr(Ω, ω)
with r = η(p−1)(1−θ), we also have that µ({x ∈ Ω : |un(x)| > k}) is bounded uniformly
in n for every k > 0, that is,

µ({x ∈ Ω : |un(x)| > k}) ≤ Ck−r, (29)

and by Lemma 4.2, we have that the sequence (|∇un|) is bounded in Ms(Ω, ω) with
s = pr

r+θ(p−1)+1 . Our objective now is to prove that un → u locally in µ−measure. For

that, we will use the same reasoning as in the proof of Theorem 2.11 in [10] (see also
Theorem 6.1 in [7]). Let ρ > 0, we have

{|un − um| > ρ} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un) − Tk(um)| > ρ}
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so that

µ({|un−um| > ρ}) ≤ µ({|un| > k})+µ({|um| > k})+µ({|Tk(un)−Tk(um)| > ρ}). (30)

Fix ε > 0. From (29), there exists kε = k such that

µ({|un| > k}) + µ({|um| > k}) ≤ ε

2
.

Since (∇Tk(un)) is bounded in Lp
loc(Ω, ω) for all k > 0 and Tk(un) belongs to W 1,p

0 (Ω, ω),
we can assume that (Tk(un)) is a Cauchy sequence in Lq(Ω∩BR, ω) for any q < pη = p∗

and any R > 0 and

Tk(un) → Tk(u) in Lp
loc(Ω, ω) and a.e.

Then

µ({|Tk(un) − Tk(um)| > ρ} ∩BR) =

∫
{|Tk(un)−Tk(um)|>ρ}∩BR

ωdx

≤ k−q

∫
Ω∩BR

|Tk(un) − Tk(um)|qωdx ≤ ε

2

for all n,m ≥ n0(k, ρ,R). It follows that (un) is a Cauchy sequence in µ-measure. As a
consequence, there exist a function u and a subsequence, still denoted by un, such that

un → u µ-a.e. in Ω, (31)

then by Remark 2.1, one has

un → u a.e. in Ω. (32)

Using (31) and (28), we have

Tk (un) ⇀ Tk(u) weakly in W 1,p
0 (Ω, ω) for every k > 0,

Tk (un) → Tk(u) strongly in Lp(Ω, ω) and µ -a.e. in Ω for every k > 0.
(33)

Hence, Tk(u) ∈W 1,p
0 (Ω, ω).

Furthermore, by the weak lower semicontinuity of the norm W 1,p
0 (Ω, ω), estimate (28)

still holds for u, that is,∫
Ω

|∇Tk(u)|pωdx ≤ C(1 + k)θ(p−1)+1, ∀k > 0.

Applying again Lemma 4.1 and Lemma 4.2, we find that u ∈ Mr(Ω, ω) and |∇u| ∈
Ms(Ω, ω).

4.4 Strong convergence of truncations

Our aim now is prove that

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω, ω) for all k > 0. (34)
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For n > k, we write

I(n) =

∫
Ω

ω[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))] · ∇(Tk(un) − Tk(u))dx

=

∫
Ω

ωa(x, Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u))dx

−
∫
Ω

ωa(x, Tk(un),∇Tk(u)) · ∇(Tk(un) − Tk(u))dx

=I1(n) − I2(n).

Keeping in mind that (6) implies that a(x, s, 0) = 0, we get

I1(n) =

∫
{|un|<k}

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

=

∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

−
∫
{|un|≥k}

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx.

Observing that ∇Tk(un) = 0 on the set {|un| ≥ k}, we obtain

I(n) =

∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

+

∫
{|un|≥k}

ωa(x, Tn(un),∇un) · ∇Tk(u)dx

−
∫
Ω

ωa(x, Tk(un),∇Tk(u)) · ∇(Tk(un) − Tk(u))dx.

We take Tk(un) − Tk(u) as a test function in (27) and we get∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

=

∫
Ω

fn(Tk(un) − Tk(u))dx+

∫
Ω

F · ∇(Tk(un) − Tk(u))dx.

By the almost convergence of un and using the strong convergence of fn in L1(Ω), we
obtain

lim
n→∞

∫
Ω

fn(Tk(un) − Tk(u))dx = 0.

Also, since F belongs to
(
Lp′

(Ω, ω1−p′
)
)N

and by (33), we obtain

lim
n→∞

∫
Ω

F · ∇(Tk(un) − Tk(u))dx = 0.

Therefore

lim
n→∞

∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx = 0. (35)
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Using the growth assumption (8), for every u in W 1,p
0 (Ω, ω), we have that

ω|a(x, Tn(u),∇u)| is bounded Lp′
(Ω, ω1−p′

). Therefore, it converges weakly to some
g in Lp′

(Ω, ω1−p′
) and we have

lim
n→∞

∫
{|un|≥k}

ωa(x, Tn(un),∇un) · ∇Tk(u)dx =

∫
{|u|≥k}

g · ∇Tk(u) = 0. (36)

By virtue of Vitali’s theorem, we obtain

ω(x)a(x, Tn(un),∇Tk(u)) → ω(x)a(x, u,∇Tk(u)) strongly in
(
Lp′

(Ω, ω1−p′
)
)N

.

It follows from (33) that

lim
n→∞

∫
Ω

ωa(x, Tk(un),∇Tk(u)) · ∇(Tk(un) − Tk(u))dx = 0. (37)

Bringing together (35)-(37), we conclude that

lim
n→∞

I(n) = 0.

Now we can apply Lemma 3.2 in [1] to get (34). Hence, for every fixed k > 0, we have

ωa(x, Tk(un),∇Tk(un)) → ωa(x, Tk(u),∇Tk(u)) in (Lp′
(Ω, ω1−p′

))N . (38)

4.5 Passage to the limit

We will now demonstrate that u satisfies (12). Let v ∈ W 1,p
0 (Ω, ω) ∩ L∞(Ω). Testing

(27) with ψn = Tk (un − v), we get∫
Ω

ωa (x, Tn(un),∇un) · ∇ψndx =

∫
Ω

fnψndx+

∫
Ω

F · ∇ψndx.

If M = k + ∥v∥L∞(Ω) and n > M , then∫
Ω

ωa (x, Tn(un),∇un) · ∇Tk (un−v) dx=

∫
Ω

ωa(x, Tn(un),∇TM (un)) · ∇Tk(un − v)dx

=

∫
Ω

ωa(x, TM (un),∇TM (un)) · ∇Tk(un − v)dx.

Thus, we can write∫
Ω

ωa(x, TM (un),∇TM (un))·∇Tk(un−v)dx =

∫
Ω

fnTk(un−v)dx+

∫
Ω

F ·∇Tk(un−v)dx.

(39)
Hence we can pass to the limit as n tends to infinity, using (33) and (38), we obtain∫

Ω

ωa(x, u,∇u) · ∇Tk(u− v)dx =

∫
Ω

fTk(u− v)dx+

∫
Ω

F · ∇Tk(u− v)dx

for every v ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω) and for every k > 0.
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Example 4.1 We put ourselves in the situation N = 2, p = 3. Let Ω ={
(x, y) ∈ R2 : x2 + y2 < 1

}
, the weight function ω(x, y) =

(
x2 + y2

)−1/2
is such

that ω ∈ A3. And the function f(x, y) = cos(xy)

(x2+y2)1/3
∈  L1(Ω) and F (x, y) =((

x2 + y2
)

sin(xy),
(
x2 + y2

)−1/3
cos(xy)

)
∈

[
L

3
2 (Ω, ω− 1

2 )
]2

. The Carathéodory func-

tion is defined as follows: a : Ω × R × R2 → R2, a((x, y), s, ξ) = ξ√
1+|s|

. Therefore, by

virtue of Theorem 3.1, the problem{
−div [ω(x, y)a((x, y), u,∇u)] = f(x, y) − divF (x, y) in Ω,

u(x, y) = 0, on ∂Ω,

has an entropy solution.

5 Conclusion

Through this work, we were able to demonstrate the existence and regularity of solutions
for some nonlinear elliptic equations of the form − div[ω(x)a(x, u,∇u)] = f − divF , in
the framework of the weighted Sobolev spaces. The novelty here is that the operator
A(u) = - div[ω(x)a(x, u,∇u)] is a nonlinear degenerate elliptic operator in the sense that
the Carathéodory function a(·, ·, ·) satisfies the degenerate coercivity (6) instead of the
case where A is a uniformly elliptic operator, that is, when b is the constant function. Let
us point out that this work can be seen as a generalization of the work in [11] and [18].
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