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Abstract: The proposed study presents a collocation method to address two types
of two-dimensional Volterra integral equations (2D VIEs): nonlinear first kind and
linear second kind. The nonlinear equations of the first kind are transformed into the
linear second kind equations. A convergent algorithm using the Taylor polynomials
is developed to construct a collocation solution that approximates the solution of 2D
VIEs of the second kind. The study includes various numerical examples to compare
the results of different methods and demonstrate the proposed approach’s accuracy
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and systems theory, establishing the reliability and stability of novel methods.
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1 Introduction

The nonlinear 2D VIE of the first kind, which includes an unknown function u, can be
represented in a standard form as follows:∫ τ

0

∫ z

0

κ(τ, z, t, s)H(u(t, s))dsdt = f(τ, z), (τ, z) ∈ D, (1)

where D is a subset of R2 defined as [0, T ] × [0, Z], f and κ are smooth functions on
their corresponding domains. Additionally, H is a continuous inverse function that is
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nonlinear with respect to u. To solve equation (1), we substitute ω(t, s) = H(u(t, s)) and
obtain the linear equation∫ τ

0

∫ z

0

κ(τ, z, t, s)ω(t, s)dsdt = f(τ, z), (τ, z) ∈ D. (2)

To obtain an approximation for ω, we transform the first kind VIE (2) into the second
kind VIE (3) by differentiating equation (2) with respect to z and τ . This transformation
technique aligns with the strategies used in various nonlinear systems analyses. It allows
researchers and practitioners to simplify the problem while retaining essential character-
istics, thus aiding the analysis and comprehension of complex nonlinear systems. This
conversion technique is effective only under the conditions that f(τ, 0) = f(0, z) = 0 and
κ(τ, z, τ, z) ̸= 0 for (τ, z) ∈ D, and results in a linear 2D VIE of the following form:

ω(τ, z) = g(τ, z) +

∫ τ

0

κ1(τ, z, t)ω(t, z)dt+

∫ z

0

κ2(τ, z, s)ω(τ, s)ds

+

∫ τ

0

∫ z

0

κ3(τ, z, t, s)ω(t, s)dsdt, (τ, z) ∈ D,

(3)

where the functions g, κ1, κ2 and κ3 are given smooth functions defined on their corre-
sponding domains by

κ1(τ, z, t) := −∂κ

∂τ
(τ, z, t, z)/κ(τ, z, τ, z), κ2(τ, z, s) := −∂κ

∂z
(τ, z, τ, s)/κ(τ, z, τ, z),

κ3(τ, z, t, s) := − ∂2κ

∂τ∂z
(τ, z, t, s)/κ(τ, z, τ, z), g(τ, z) :=

∂2f

∂τ∂z
(τ, z)/κ(τ, z, τ, z).

The solution for (1) can be approximated as H−1(ω(t, s)) = u(t, s). The existence and
uniqueness of the solution for equation (1), using H(u(t, s)) = ω(t, s) and equation (3),
have been proposed in [1].

The applications of VIEs extend to a diverse range of fields, including physical and
engineering domains, population dynamics, economics and finance, fluid dynamics, and
heat transfer. By providing a method to efficiently and accurately solve nonlinear integral
equations, we contribute to the modeling and analyzing complex nonlinear systems. Our
algorithm’s ability to handle nonlinearity is directly relevant to nonlinear dynamics, as
it provides a means to understand and predict the behaviors of such systems. However,
solving these equations has motivated mathematicians to develop reliable methods for
their solutions [2–10]. In [2], a method based on applying 2D block-pulse functions
was utilized to solve nonlinear 2D VIEs of the first kind. An Euler-type technique was
discussed in [1]. The Chelyshkov polynomial strategy for solving (1) was considered in [6].
In [7], the Tau technique was employed to approximate the solution of (2). Nemati and
Ordokhani [8] used operational matrices of Legendre polynomials to approximate the
solution of a class of (1), specifically when H = un and n is a positive integer. In [9], a
multi-step method was implemented for the numerical solution of nonlinear 2D VIEs of
the first kind. A special case of (3) for κ1 = κ2 = 0 is considered in [10].

This paper presents an extension of the collocation method proposed in previous
works such as [11–14], to solve equations (1) and (3) by utilizing Taylor’s theorem in two
variables. Additionally, the method is straightforward to implement, and the iterative
formulas used to obtain the approximate solution do not require solving any algebraic
equations. This showcases the possibility of our method to address broader challenges in
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nonlinear dynamics that involve integral equations, paving the way for its adaptation in
various related problem domains.

The remainder of this paper is structured as follows: the next section outlines our
approach to approximating the solution of equation (3) through the Taylor polynomials.
Section 3 focuses on the convergence analysis. To demonstrate the validity of our theo-
retical results, we provide several numerical examples in Section 4. Finally, in Section 5,
we present our conclusion and offer suggestions for future research.

2 Description of the Method

In this section, we approximate solutions of 2D VIE (3) in the space

S
(−1)
p−1,p−1(ΠN,M ) = {v : vn,m = v|Dn,m

∈ πp−1,p−1, n = 0, 1, ..., N − 1;m = 0, 1, ...,M − 1}
of the real bivariate polynomial spline functions of degree (at most) p − 1 in τ and z.
Its dimension is NMp2. Here, ΠN = {τi = ih, i = 0, 1, ..., N} and ΠM = {zj = jk, j =
0, 1, ...,M} denote, respectively, uniform partitions of the intervals [0, T ] and [0, Z] with
the step sizes given by h = T

N and k = Z
M . These partitions defined a grid for D

ΠN,M = ΠN ×ΠM = {(τn, zm), 0 ≤ n ≤ N, 0 ≤ m ≤ M}. Set the subintervals
σn = [τn; τn+1), n = 0, 1, ..., N − 2; σN−1 = [τN−1, τN ],
δm = [zm; zm+1),m = 0, 1, ...,M − 2; δM−1 = [zM−1, zM ], and Dn,m := σn × δm for
all n = 0, 1, ..., N − 1;m = 0, 1, ...,M − 1.

To defined the collocation solution, we use the Taylor polynomial on each rectangle
Dn,m;n = 0, 1, ..., N − 1;m = 0, 1, ...,M − 1. Note that the solution ω of (3) is known at
the point(0, 0): ω(0, 0) = g(0, 0).

2.1 Taylor collocation solution in D0,0

We approximate ω in the rectangle D0,0 by the polynomial

v0,0(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+jω(0, 0)

∂τ i∂zj
τ izj , (τ, z) ∈ D0,0, (4)

where
∂i+jω(0, 0)

∂τ i∂zj
is the exact value of

∂i+jω

∂τ i∂zj
at the point (0, 0). We differentiate

equation (3) j times with respect to z and i times with respect to τ , we obtain

∂i+jω(0, 0)

∂τ i∂zj
= ∂

(i)
1 ∂

(j)
2 g(0, 0)

+

j∑
l=0

i−1∑
q=0

q∑
η=0

(
j

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j−l)
2 κ1(τ, z, τ)

]τ=0

z=0

∂η+lω(0, 0)

∂τη∂zl

+

j−1∑
r=0

r∑
l=0

i∑
η=0

(
r

l

)(
i

η

)
∂i−η

∂τ i−η

[
∂r−l

∂zr−l

(
∂
(j−1−r)
2 κ2(τ, z, z)

)]τ=0

z=0

∂η+lω(0, 0)

∂τη∂zl

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂i−1−q

∂τ i−1−q

∣∣∣∣
t=τ

(
∂r−l

∂zr−l

[
∂
(j−1−r)
2 κ3(τ, z, t, z)

])]τ=0

z=0

× ∂η+lω(0, 0)

∂τη∂zl
.
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2.2 Taylor collocation solution in Dn,0

We approximate ω in the rectangles Dn,0, n = 1, ..., N − 1 by the polynomials

vn,0(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+j v̂n,0(τn, 0)

∂τ i∂zj
(τ − τn)

izj , (τ, z) ∈ Dn,0, (5)

where v̂n,0 is the exact solution of the integral equation

v̂n,0(τ, z) = g(τ, z) +

∫ z

0

κ2(τ, z, s)v̂n,0(τ, s)ds

+

n−1∑
ξ=0

∫ τξ+1

τξ

κ1(τ, z, t)vξ,0(t, z)dt+

∫ τ

τn

κ1(τ, z, t)v̂n,0(t, z)dt

+
n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

0

κ3(τ, z, t, s)vξ,0(t, s)dsdt+

∫ τ

τn

∫ z

0

κ3(τ, z, t, s)v̂n,0(t, s)dsdt.

(6)

We differentiate (6) j times with respect to z and i times with respect to τ , we obtain

∂i+j v̂n,0(τn, 0)

∂τ i∂zj
= ∂

(i)
1 ∂

(j)
2 g(τn, 0)

+

n−1∑
ξ=0

j∑
l=0

(
j

l

)∫ τξ+1

τξ

[
∂
(i)
1 ∂

(j−l)
2 κ1(τ, z, t)

]τ=τn

z=0

∂lvξ,0(t, 0)

∂zl
dt

+

j∑
l=0

i−1∑
q=0

q∑
η=0

(
j

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j−l)
2 κ1(τ, z, τ)

]τ=τn

z=0

∂η+lv̂n,0(τn, 0)

∂τη∂zl

+

j−1∑
r=0

r∑
l=0

i∑
η=0

(
r

l

)(
i

η

)
∂i−η

∂τ i−η

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ2(τ, z, z)]

]τ=τn

z=0

∂η+lv̂n,0(τn, 0)

∂τη∂zl

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ τξ+1

τξ

∂i

∂τ i

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ3(τ, z, t, z)]

]τ=τn

z=0

∂lvξ,0(t, 0)

∂zl
dt

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂i−1−q

∂τ i−1−q

∣∣∣∣
t=τ

(
∂r−l

∂zr−l

[
∂
(j−1−r)
2 κ3(τ, z, t, z)

])]τ=τn

z=0

× ∂η+lv̂n,0(τn, 0)

∂τη∂zl
.

2.3 Taylor collocation solution in Dn,m

We approximate ω by vn,m in Dn,m, n = 0, 1, ..., N − 1 and m = 1, ...,M − 1, so that

vn,m(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+j v̂n,m(τn, zm)

∂τ i∂zj
(τ − τn)

i(z − zm)j , (τ, z) ∈ Dn,m, (7)
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where v̂n,m is the exact solution of the integral equation

v̂n,m(τ, z) = g(τ, z) +

n−1∑
ξ=0

∫ τξ+1

τξ

κ1(τ, z, t)vξ,m(t, z)dt+

∫ τ

τn

κ1(τ, z, t)v̂n,m(t, z)dt

+

m−1∑
ρ=0

∫ zρ+1

zρ

κ2(τ, z, s)vn,ρ(τ, s)ds+

∫ z

zm

κ2(τ, z, s)v̂n,m(τ, s)ds

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ τξ+1

τξ

∫ zρ+1

zρ

κ3(τ, z, t, s)vξ,ρ(t, s)dsdt

+

n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

zm

κ3(τ, z, t, s)vξ,m(t, s)dsdt+

m−1∑
ρ=0

∫ τ

τn

∫ zρ+1

zρ

κ3(τ, z, t, s)vn,ρ(t, s)dsdt

+

∫ τ

τn

∫ z

zm

κ3(τ, z, t, s)v̂n,m(t, s)dsdt.

(8)

We differentiate (8) j times with respect to z and i times with respect to τ , we obtain

∂i+j v̂n,m(τn, zm)

∂τ i∂zj
= ∂

(i)
1 ∂

(j)
2 g(τn, zm)

+

n−1∑
ξ=0

j∑
l=0

(
j

l

)∫ τξ+1

τξ

∂
(i)
1 ∂

(j−l)
2 κ1(τn, zm, t)

∂lvξ,m(t, zm)

∂zl
dt

+

j∑
l=0

i−1∑
q=0

q∑
η=0

(
j

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j−l)
2 κ1(τ, z, τ)

]τ=τn

z=zm

∂η+lv̂n,m(τn, zm)

∂τη∂zl

+

m−1∑
ρ=0

i∑
η=0

(
i

η

)∫ zρ+1

zρ

∂
(i−η)
1 ∂

(j)
2 κ2(τn, zm, s)

∂ηvn,ρ(τn, s)

∂τη
ds

+

j−1∑
r=0

r∑
l=0

i∑
η=0

(
r

l

)(
i

η

)
∂i−η

∂τ i−η

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ2(τ, z, z)]

]τ=τn

z=zm

∂η+lv̂n,m(τn, zm)

∂τη∂zl

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ τξ+1

τξ

∫ zρ+1

zρ

∂
(i)
1 ∂

(j)
2 κ3(τn, zm, t, s)vξ,ρ(t, s)dsdt

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ τξ+1

τξ

∂i

∂τ i

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ3(τ, z, t, z)]

]τ=τn

z=zm

∂lvξ,m(t, zm)

∂zl
dt

+

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ zρ+1

zρ

∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j)
2 κ3(τ, z, τ, s)

]τ=τn

z=zm

∂ηvn,ρ(τn, s)

∂τη
ds

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂i−1−q

∂τ i−1−q

∣∣∣∣
t=τ

(
∂r−l

∂zr−l

[
∂
(j−1−r)
2 κ3(τ, z, t, z)

])]τ=τn

z=zm

× ∂η+lv̂n,m(τn, zm)

∂τη∂zl
.
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3 Study of Convergence and Error of the Numerical Method

We consider the space L∞(D) with the norm

∥φ∥L∞(D) = inf {C ∈ R : |φ(τ, z)| ≤ C for a.e. (τ, z) ∈ D} < ∞.

The following lemmas will be used in proving the convergence of the presented method.

Lemma 3.1 (Gronwall-type inequality [2]) Let ω(τ, z) and p(τ, z) be non-negative
continuous functions in Ω = [a, b]× [c, d], and let p(τ, z) be nondecreasing in each of the
variables in Ω and satisfy the following inequality:

ω(τ, z) ≤ p(τ, z) + κ

∫ τ

a

ω(t, z)dt+ κ

∫ z

c

ω(τ, s)ds+ κ

∫ τ

a

∫ z

c

ω(t, s)dsdt, (τ, z) ∈ Ω,

where κ is a positive constant. Then there exists a positive constant ν such that

ω(τ, z) ≤ νp(τ, z).

Lemma 3.2 (Discrete Gronwall-type inequality [15]) Let {kj}nj=0 be a given non-

negative sequence and the sequence {εn} satisfy ε0 ≤ p0 and εn ≤ p0+
∑n−1

j=0 kjεj , n ≥ 1,
with p0 ≥ 0. Then

εn ≤ p0 exp

n−1∑
j=0

kj

 , n ≥ 1.

Lemma 3.3 (Discrete Gronwall-type inequality of two variables [1]) Let ωn,m be a
given non-negative sequence, and let b1, b2, b3 and β be independent of h and k and strictly
positive. If the sequence ωn,m satisfies

ωn,m ≤ hb1

n−1∑
ξ=0

ωξ,m + kb2

m−1∑
ρ=0

ωn,ρ + hkb3

n−1∑
ξ=0

m−1∑
ρ=0

ωξ,ρ + β,

for all n = 0, 1, ..., N,m = 0, 1, ...,M , then

ωn,m ≤ βexp(γ(Nh+Mk),

where γ = 1
2

(
b1 + b2 +

√
(b1 + b2)2 + 4b3

)
.

Theorem 3.1 Let g, κ1, κ2 and κ3 be p times continuously differentiable on their

respective domains. Then (4),(5),(7) define a unique approximation v ∈ S
(−1)
p−1,p−1(ΠN,M ),

and the resulting error function e(τ, z) = ω(τ, z)− v(τ, z) satisfies

∥e∥L∞(D) ≤ C(h+ k)p,

where C is a finite constant independent of h and k.

Proof. Define the error e(τ, z) on Dn,m by en,m(τ, z) = ω(τ, z) − vn,m(τ, z) for all
n = 0, 1, ..., N − 1 and m = 0, 1, ...,M − 1 .
There exists a constant C independent of h and k such that

∥en,m∥L∞(Dn,m) ≤ C(h+ k)p
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for all n = 0, 1, . . . , N − 1 and m = 1, . . . ,M − 1.
First, let (τ, z) ∈ D0,0, we obtain from (4),

|e0,0(τ, z)| ≤
∑

i+j=p

1

i!j!

∥∥∥∥ ∂i+jω

∂τ i∂zj

∥∥∥∥hikj .

When using a more direct generalization of the procedures utilized in Lemma 3.6 in [10],

there exists a positive number α(p) such that
∥∥∥∂i+j v̂n,m

∂τ i∂zj

∥∥∥ ≤ α(p) for all n = 0, 1, . . . , N−1,

m = 0, . . . ,M − 1 and i+ j = 0, ..., p, where v̂0,0(τ, z) = ω(τ, z) for (τ, z) ∈ D0,0. Hence,

|e0,0(τ, z)| ≤ α(p)
∑

i+j=p

1

i!j!
hikj =

α(p)

p!︸ ︷︷ ︸
C1

(h+ k)p.

Second, let (τ, z) ∈ Dn,0, for all n = 1, . . . , N − 1, we have from (6),

|ω(τ, z)− v̂n,0(τ, z)| ≤
n−1∑
ξ=0

hκ∥eξ,0∥L∞(Dξ,0) +

n−1∑
ξ=0

hkκ∥eξ,0∥L∞(Dξ,0)

+ κ

∫ τ

τn

|ω(t, z)− v̂n,0(t, z)|dt+ κ

∫ z

0

|ω(τ, s)− v̂n,0(τ, s)|ds

+ κ

∫ τ

τn

∫ z

0

|ω(t, s)− v̂n,0(t, s)|dsdt,

where κ = max{∥κi∥L∞(D), i = 1, 2, 3}, then by Lemma 3.1

|ω(τ, z)− v̂n,0(τ, z)| ≤

n−1∑
ξ=0

hκ∥eξ,0∥L∞(Dξ,0) +

n−1∑
ξ=0

hkκ∥eξ,0∥L∞(Dξ,0)

 ν

≤
n−1∑
ξ=0

hκ(1 + Z)ν︸ ︷︷ ︸
λ1

∥eξ,0∥L∞(Dξ,0),

which implies that

∥en,0∥L∞(Dn,0) ≤ ∥ω − v̂n,0∥+ ∥v̂n,0 − vn,0∥

≤
n−1∑
ξ=0

hλ1∥eξ,0∥L∞(Dξ,0) +
α(p)

p!
(h+ k)p,

then, by Lemma 3.2, we have

∥en,0∥L∞(Dn,0) ≤
α(p)

p!
exp(Tλ1)︸ ︷︷ ︸
C2

(h+ k)p.
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Third, let (τ, z) ∈ Dn,m for all n = 0, . . . , N −1 and m = 1, . . . ,M −1, we have from (8),

|ω(τ, z)− v̂n,m(τ, z)| ≤
n−1∑
ξ=0

hκ∥eξ,m∥+
m−1∑
ρ=0

kκ∥en,ρ∥+ κ

∫ τ

τn

∫ z

zm

|ω(t, s)− v̂n,m(t, s)|dsdt

+

n−1∑
ξ=0

m−1∑
ρ=0

hkκ∥eξ,ρ∥+
n−1∑
ξ=0

hkκ∥eξ,m∥+
m−1∑
ρ=0

hkκ∥en,ρ∥

+ κ

∫ τ

τn

|ω(t, z)− v̂n,m(t, z)|dt+ κ

∫ z

zm

|ω(τ, s)− v̂n,m(τ, s)|ds,

then by Lemma 3.1,

|ω(τ, z)− v̂n,m(τ, z)| ≤
n−1∑
ξ=0

hκ(1 + k)ν︸ ︷︷ ︸
λ2

∥eξ,m∥+
m−1∑
ρ=0

k κ(1 + h)ν︸ ︷︷ ︸
λ3

∥en,ρ∥

+

n−1∑
ξ=0

m−1∑
ρ=0

hk κν︸︷︷︸
λ4

∥eξ,ρ∥,

which implies that

∥en,m∥ ≤∥ω − v̂n,m∥+ ∥v̂n,m − vn,m∥

≤
n−1∑
ξ=0

hλ2∥eξ,m∥+
m−1∑
ρ=0

kλ3∥en,ρ∥+
n−1∑
ξ=0

m−1∑
ρ=0

hkλ4∥eξ,ρ∥+
α(p)

p!
(h+ k)p,

using Lemma 3.3, we obtain

∥en,m∥ ≤ α(p)

p!
exp(γ3(T + Z))︸ ︷︷ ︸

C3

(h+ k)p

such that γ3 = 1
2

(
λ2 + λ3 +

√
(λ2 + λ3)2 + 4λ3

)
.

Thus, the proof is completed by taking C = max{C1, C2, C3}. □

4 Numerical examples

In this section, we present numerical experiments that assess the performance of the
Taylor collocation method (TCM) for solving problems of the form (1) in Example 4.4
and the form (2) in Examples 4.1–4.3. We also compare the TCM results with those
obtained using other methods such as the multi-step method [9], Euler-type method,
and Trapezoidal method [1], Chelyshkov polynomials method [6], bivariate shifted Leg-
endre functions method [16], and two-dimensional block-pulse functions method [17]. In
each example, we compare the TCM solution with the results obtained from previous
references. Our numerical experiments were conducted using Maple version 17 and a PC
with Intel Core i7-2630QM CPU @2.00 GHz and 8,00 Go of RAM, running MS Windows
7 operating system. We observed that the TCM produces more accurate results than the
previous methods.
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(τ, z) N = M = 10,p = 3 N = M = 20,p = 3 N = M = 10, p = 4
(0.1, 0.1) 1.73e− 06 5.99e− 07 2.59e− 06
(0.2, 0.2) 1.84e− 05 5.29e− 06 2.20e− 05
(0.3, 0.3) 6.23e− 05 1.68e− 05 7.02e− 05
(0.4, 0.4) 1.34e− 04 3.53e− 05 1.47e− 04
(0.5, 0.5) 2.28e− 04 5.85e− 05 2.46e− 04
(0.6, 0.6) 3.29e− 04 8.35e− 05 3.52e− 04
(0.7, 0.7) 4.27e− 04 1.07e− 04 4.55e− 04
(0.8, 0.8) 5.14e− 04 1.28e− 04 5.46e− 04
(0.9, 0.9) 5.85e− 04 1.45e− 04 6.21e− 04
(1.0, 1.0) 1.86e− 03 3.17e− 04 5.93e− 04

Table 1: Absolute errors function for Example 4.1.

Example 4.1 Consider the linear 2D VIE of the first kind∫ τ

0

∫ z

0

(τz + 1)ω(t, s)dsdt = f(τ, z), τ, z ∈ [0, 1]. (9)

By differentiating both sides of equation (9), we obtain

ω(τ, z) = g(τ, z)−
∫ τ

0

zω(t, z)

τz + 1
dt−

∫ z

0

τω(τ, s)

τz + 1
ds−

∫ τ

0

∫ z

0

ω(t, s)

τz + 1
dsdt, (10)

where g(τ, z) = −3τ2+(2+3τ+3τz)τez

2(1+τz) , which has the exact solution ω(τ, z) = τez.

A comparison between the approximate and exact solutions is shown in Table 1
by applying the TCM to equation (10) at some points with p = 3, 4 and (N,M) =
(10, 10), (20, 20).

Example 4.2 Consider the linear 2D VIE of the first kind [9](
τ2z2 + 2 sin(τz)− 2τz cos(τz)

2z2

)
sin(z) =

∫ τ

0

∫ z

0

(sin(zt) + 1)ω(t, s)dsdt

for τ, z ∈ [0, 1], and the exact solution is ω(τ, z) = τ cos(z). This equation is equivalent
to the following linear 2D VIE of the second kind:

ω(τ, z) = τ cos(z) +
τ2 sin(z) cos(τz)

sin(τz) + 1
−

∫ z

0

τ cos(τz)

sin(τz) + 1
ω(τ, s)ds.

The numerical results for p = 4 and N = M = 15 of the TCM and the numerical results
obtained by using the multi-step method [9] are compared in Table 2.

Example 4.3 Consider the linear 2D VIE of the first kind [1]

f(τ, z) =

∫ τ

0

∫ z

0

(sin(z + t) + sin(τ + s) + 3)ω(t, s)dsdt, τ, z ∈ [0, 2],

where g(τ, z) is chosen so that the exact solution is ω(τ, z) = cos(τ + z).
In Table 3, the numerical results for p = 3 and h = k = 0.1, 0.05 of the present

method (TCM) are compared with the numerical results obtained by using the Euler-type
method (EM) and Trapezoidal method (TM) [1], Chelyshkov polynomials method (2D-
CPs) [6], bivariate shifted Legendre functions method [16] and two-dimensional block-
pulse functions method (2D BPFs) [17].
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(τ, z) multi-steps method present method
(2−7, 2−7) 2.38e− 07 2.00e− 12
(2−6, 2−6) 1.90e− 06 4.00e− 11
(2−5, 2−5) 1.57e− 05 1.24e− 09
(2−4, 2−4) 2.25e− 06 3.97e− 08
(2−3, 2−3) 1.51e− 07 1.88e− 07
(2−2, 2−2) 1.92e− 07 2.66e− 07
(2−1, 2−1) 6.16e− 07 8.87e− 08

Table 2: Comparison of the absolute errors of Example 4.2.

TCM EM [1] TM [1] Method in [16] 2D-BPFs [17]
(τ, z) h = 0.05 h = 0.05 h = 0.05 M = 4 m = 32
(1, 1) 8.57e− 07 4.06e− 02 9.80e− 04 4.96e− 06 6.08e− 02
(1, 2) 2.29e− 05 1.23e− 02 5.47e− 04 5.98e− 06 4.00e− 03
(2, 1) 2.29e− 05 1.23e− 02 5.47e− 04 9.87e− 03 4.00e− 03
(2, 2) 4.27e− 05 4.06e− 02 2.03e− 03 1.22e− 05 4.74e− 02
∥e∥∞ 4.27e− 05 5.49e− 02 2.03e− 03 / /

TCM 2D-CPs [6]
(τ, z) h = 0.1 h = 0.05 N = 2 M = 4

(0.1, 0.1) 2.77e− 07 3.78e− 08 7.41e− 03 4.77e− 06
(0.2, 0.2) 9.38e− 07 1.18e− 07 4.43e− 04 2.10e− 05
(0.3, 0.3) 1.63e− 06 2.03e− 07 5.40e− 03 7.20e− 06
(0.4, 0.4) 2.14e− 06 2.67e− 07 6.65e− 03 8.20e− 06
(0.5, 0.5) 2.33e− 06 2.91e− 07 4.48e− 03 6.40e− 06
(0.6, 0.6) 2.09e− 06 2.62e− 07 5.43e− 05 6.90e− 06
(0.7, 0.7) 1.28e− 06 1.60e− 07 4.80e− 03 1.20e− 05
(0.8, 0.8) 2.85e− 07 3.66e− 08 7.93e− 03 5.00e− 06
(0.9, 0.9) 2.80e− 06 3.58e− 07 7.08e− 03 3.00e− 05
(1, 1) 6.85e− 06 8.59e− 07 2.77e− 04 1.80e− 06

Table 3: Comparison of the absolute errors for Example 4.3.

Example 4.4 Consider the nonlinear 2D VIE of the first kind [17]

1

9
(eτ+z − eτ+4z − e7τ+z + e7τ+4z) =

∫ τ

0

∫ z

0

2eτ+zω3(t, s)dsdt

for τ, z ∈ [0, 1], and the exact solution is ω(τ, z) = eτ+2z. This equation is equivalent to
the following linear 2D VIE of the second kind:

u(τ, z) = g(τ, z)−
∫ τ

0

u(t, z)dt−
∫ z

0

u(τ, s)ds−
∫ τ

0

∫ z

0

u(t, s)dsdt,

where u = ω3. In Table 4, the numerical results for p = 3 and N = M = 64 of
the TCM are compared with the numerical results obtained by using the Chelyshkov
polynomials method (2D CPs) [6], bivariate shifted Legendre functions method [16] and
two-dimensional block-pulse functions method (2D BPFs) [17].
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(2−i, 2−i) 2D-BPFs [17] Method in [16] 2D-CPs [6] Present method
i = 1 1.0e− 1 2.6e− 6 3.5e− 5 6.1e− 6
i = 2 4.6e− 2 4.6e− 6 2.0e− 6 2.6e− 6
i = 3 2.9e− 2 6.3e− 7 1.5e− 5 1.3e− 6
i = 4 2.3e− 2 1.2e− 5 1.2e− 5 7.2e− 7
i = 5 2.0e− 2 3.8e− 6 5.9e− 5 3.7e− 7
i = 6 3.1e− 2 9.0e− 6 9.6e− 5 1.9e− 7

Table 4: Comparison of the absolute errors of Example 4.4.

5 Conclusion

In this paper, the problem expressed in (1) is transformed into a linear 2D VIE of the
second kind, which is given by (3). A collocation method using the Taylor polynomials
is developed to solve the 2D VIE of the second kind. The convergence and error analysis
of this method are investigated, and numerical examples are provided to illustrate its
effectiveness and accuracy. The numerical results confirm the theoretical estimates, and
comparisons with other methods are presented. This method can be easily generalized
and applied to a system of 2D VIEs of the first and second kinds.
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