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Abstract: Dynamical systems can be stochastic or uncertain because of some as-
sumptions or distractions that limit the problem. This occurs when the system is
obtained from data using system identifiers with various uncertainties. One example
of a system that contains uncertainty parameters is the longitudinal motion of the
aircraft model. The longitudinal motion of the aircraft requires control, so in this
study, control was applied using the Model Predictive Control (MPC) method. Be-
fore applying control to the aircraft model, the Polynomial Chaos expansion will be
applied to the state space model to get the deterministic model. The simulation uses
different prediction horizons (Np) and polynomial orders (r). Based on the simula-
tion results, it was found that the pitch rate output can approach the given pitch rate
reference.
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1 Introduction

Mathematical models are the representations of phenomena or realities written in math-
ematical equations. The process of constructing a mathematical model of reality or a
problem is called mathematical modelling [1]. Mathematical models can be written in
the dynamic system [2]. A dynamic system is a system that changes or experiences
dynamics over time. In practice, dynamic systems are not always deterministic. The
dynamic system can be stochastic because there are assumptions to limit the problem
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or disturbances. Uncertainty in the parameters occurs if the system parameters are not
known. This can also happen when the system model is obtained from the data using
system identification so that the system’s transfer function has an uncertainty range [3].

One of the methods for approximating linear dynamic systems with parameter un-
certainty is the Polynomial Chaos method. By using the Polynomial Chaos method, the
stochastic system will be transformed into a deterministic system with a larger dimen-
sion state space [4]. Research on the Polynomial Chaos method in dynamical systems
was conducted by Bhattacharya [5] in 2014. This research develops a control design
using the Robust State Feedback Control method with probabilistic system parameters.
In this study, the Polynomial Chaos method approach was applied to the F-16 aircraft
model. Based on the simulation results, it was found that by using the Polynomial Chaos
method, the control design showed good consistency. Another study discussing the Poly-
nomial Chaos method was conducted by Tadiparthi and Bhattacharya [6] in 2020. In
this research, the Robust Linear Quadratic Regulator (LQR) algorithm was developed
with a control design based on the Polynomial Chaos method.

Model Predictive Control (MPC) is an advanced process control method that is widely
applied in industrial processes. Research on the Robust Model Predictive Control (MPC)
method was conducted by Asfihani, et al. [7] in 2019. In this study, the Robust MPC
method was applied to a linear model of Unmanned Surface Vehicle (USV) motion.
Robust MPC is used to control Dubin’s track tracking [8, 9]. In this study, sea waves
are considered as a disturbance. The simulation results show that the Robust MPC
method can guide ships to follow the trajectory and reject disturbances. Another study
discussing the MPC method was conducted in 2020 by Asfihani, et al. [10]. The MPC
method is applied to control the missile. The MPC aims to minimize the time it takes
for the missile to reach a moving target. The simulation results show that the fastest
time to reach the target is 20 seconds, when the horizon prediction value is 10 and given
a constraint on the state.

Based on the previous research described above, the Polynomial Chaos and Model
Predictive Control (MPC) are applied for the longitudinal motion of the F-16 aircraft
control. In this paper, the nonlinear aircraft model is taken from Stevens, et al. [11].
The Taylor expansion is employed for linearization so that a linear model is obtained
based on the coefficient data of the F-16 aircraft. The longitudinal motion model of the
F-16 aircraft contains stochastic uncertainty in the parameter, so the Polynomial Chaos
method is applied to the linear model [4,12] to obtain a deterministic model. The previous
studies in [4–6] assumed that the random variables ∆ were uniformly distributed. In this
study, it is assumed that the distribution of the random variables is Gaussian. Then the
control will be applied to a deterministic state space with the MPC method.

This paper is constructed as follows. The longitudinal motion model of the aircraft
is defined in Section 2. Then Section 3 explains the Polynomial Chaos method to trans-
form stochastic state space into deterministic state space. Section 4 explains the MPC
design implemented in the deterministic state space obtained from the Polynomial Chaos
method. Next, Section 5 deals with discussions based on the simulation result. And last,
Section 6 provides the conclusion.

2 Linear Model of Longitudinal Motion of the Aircraft

Longitudinal motion is the movement of the aircraft in a vertical direction such as climb-
ing or swooping. The control affecting the aircraft’s longitudinal motion response is the
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elevator deflection [13]. The condition when the elevator angle is negative causes the tail
of the plane to go down and the nose to go up (pitch angle is positive) [14].

In this study, the F-16 longitudinal motion model is used in the form of a stochastic

state space that contains uncertainty parameters. The state variable x =
[
α q xe

]T
consists of the angle of attack (α), pitch rate (q), and elevator state (xe) that captures
the actuator dynamics. The control input (u) is in the form of an elevator command or
an elevator deflection with an angle in degrees (δec). So the stochastic state space for
the longitudinal motion of the aircraft is written as follows [4, 12]:

ẋ = A(∆)x + Bu, α̇
q̇
ẋe

 =

−0, 6398 0, 9378 −0, 0014
a21(∆) a22(∆) a23(∆)

0 0 −20, 2000

α
q
xe

+

 0
0

20, 2

 [
δec

]
(1)

with the output in the form of the pitch rate (q) so that the output equation is as follows:

y = Cx =

[
0

180

π
0

]α
q
xe

 , (2)

where

a21(∆) = −1, 5679(1 + 0, 1∆),
a22(∆) = −0, 8791(1 + 0, 1∆),
a23(∆) = −0, 1137(1 + 0, 1∆).

The stochastic uncertainty parameter in the longitudinal motion model of the F-16
aircraft is shown byA(∆), a matrix function of the random variable ∆. Random variables
∆ are assumed to be Gaussian distributed.

The random variable ∆ represents the pitch of the plane. This relates to the derived
coefficients of the aircraft pitching moment. The pitching moment is the moment that
pivots on the pitch axis/Y axis [14]. The random variables a21(∆), a22(∆), and a23(∆)
represent the derived coefficients of pitch stiffness, pitch damping plane, and the power
of the elevator control [11].

3 Polynomial Chaos Method

Polynomial Chaos is a deterministic approach used to handle uncertainty evolution when
probabilistic uncertainty exists in the system parameters. [15]. Let ∆ : Ω → Rd be a
random variable and L2(Ω,F , P ) be the set of all random variables ξ over the probability

space (Ω,F ,P) such that

∫
Ω

|ξ|2 dP < ∞. The second-order general process of

X ∈ L2(Ω,F ,P) can be written in Polynomial Chaos as follows [6]:

X(ω) =

∞∑
i=0

xiϕi(∆(ω)), (3)

where ω denotes the sample point and ϕ(∆) represents the general Polynomial Chaos
(gPC) basis with degree p over the random variable ∆.
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For a random variable ∆ with a given distribution, a family of the orthogonal basis
functions {ϕi} can be selected such that its weight function f(x) exhibits a similar form
as the probability density function, i.e.,∫

D∆

ϕi(x)ϕj(x)f(x) dx = E[ϕi(∆)ϕj(∆)] = E[ϕ2
i (∆)]δij = ⟨ϕi, ϕj⟩, (4)

where E[·] represents the expectation relative to the probability measure denoted by P
and pdf f .

The relation between the choice of polynomials and given ∆ distribution can be seen
in Table 1.

Random Variable ∆ Polynomial Choice
Beta Jacobi

Gamma Laguerre
Uniform Legendre
Gaussian Hermite

Table 1: The Relation between Polynomial Choices and the ∆(ω) Distribution.

A stochastic linear system is defined as follows:

ẋ(t,∆) = A(∆)x(t,∆) +B(∆)u(t), (5)

where x ∈ Rnx ,u ∈ Rnu . The system in Equation (5) contains probability uncertainties
in its system parameters.

By applying the general finite-order Polynomial Chaos expansion, we get [6]

x̂i(t,∆) =

p∑
k=0

xi,k(t)ϕk(∆) = x̃i(t)
TΦ(∆), (6)

Âij(∆) =

p∑
k=0

aij,kϕk(∆) = ãT
ijΦ(∆), (7)

B̂ij(∆) =

p∑
k=0

bij,kϕk(∆) = b̃
T

ijΦ(∆), (8)

where x̃i(t), ãij , b̃ij ,Φ(∆) ∈ Rp is defined as

x̃i(t) =
[
xi,0(t) · · · xi,p(t)

]T
,

ãij =
[
aij,0 · · · aij,p

]T
,

b̃ij =
[
bij,0 · · · bij,p

]T
,

Φ(∆) =
[
ϕ0(∆) · · · ϕp(∆)

]T
.

The value of p is determined by the dimension of ∆ (d) and the order of the orthogonal

polynomial {ϕk} (denoted by r), which satisfies p+1 =
(d+ r)!

d!r!
. By using the Galerkin

projection onto {ϕk}pk=0, the coefficients aij,k and bij,k can be written as follows:

aij,k =
⟨Aij(∆), ϕk(∆)⟩
⟨ϕk(∆), ϕk(∆)⟩⟩

, (9)
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bij,k =
⟨Bij(∆), ϕk(∆)⟩
⟨ϕk(∆), ϕk(∆)⟩

. (10)

By substituting the Polynomial Chaos expansion (Equations (6), (7), (8)) in the
stochastic linear system (5), where {ϕk} is the basis of an orthogonal polynomial, we get

p∑
k=0

ẋi,k(t)ϕk(∆) =
nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)ϕk(∆)ϕl(∆)

+
nu∑
j=1

p∑
k=0

bij,kϕk(∆)uj(t).
(11)

Applying the inner product on both sides with ϕm for m = 0, 1, 2, ..., p, we get

p∑
k=0

ẋi,k(t)⟨ϕk(∆), ϕm(∆)⟩ =
nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)⟨ϕk(∆)ϕl(∆), ϕm(∆)⟩

+
nu∑
j=1

p∑
k=0

bij,kuj(t)⟨ϕk(∆), ϕm(∆)⟩.
(12)

Since {ϕm} is an orthogonal basis, ⟨ϕk, ϕm⟩ = 0 for k ̸= m, Equation (12) becomes

ẋi,m(t)∥ϕm∥2 =
nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)⟨ϕk(∆)ϕl(∆), ϕm(∆)⟩

+
nu∑
j=1

bij,kuj(t)∥ϕm∥2.
(13)

Then divide (13) by ∥ϕm∥2 to get

ẋi,m(t) =

nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)Cklm +

nu∑
j=1

bij,muj(t), (14)

where Cklm =
⟨ϕkϕl, ϕm⟩
∥ϕm∥2

.

From (14), the deterministic differential equation is obtained as follows:

Ẋ = AX + BU , (15)

where
X =

[
X T

1 X T
2 · · · X T

nx

]T
,

U =
[
UT

1 UT
2 · · · UT

nu

]T
,

A = [Aij ] =
p∑

k=0

aij,kT k, i, j = 1, 2, ..., nx,

B = [Bij ] = bij , i = 1, 2, ..., nx; j = 1, 2, ..., nu.
And

T k =


Ck00 Ck10 · · · Ckp0

Ck01 Ck11 · · · Ckp1

...
...

. . .
...

Ck0p Ck1p · · · Ckpp


with the dimensions of X ,A,B, and U equal to nx(p + 1) × 1, nx(p + 1) × nx(p + 1),
nx(p+ 1)× nu, and nu × nu, respectively.
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4 Design of Model Predictive Control

MPC is a control system that can predict the future system output by considering both
the present input and output information. The advantages of the MPC method are that
it can handle multi-variable system control problems, has the ability to feed-forward
control to compensate for measured disturbances, and takes into account input and state
constraints [16] [17]. The basic MPC structure is presented in Figure 1 [17].

Figure 1: MPC Structure.

In this study, MPC is applied to a discrete deterministic system given in (16) and
(17):

X (k + 1) = AdX (k) +BdU(k), (16)

Y(k) = CX (k). (17)

In designing the MPC control in this study, the objective function formulation and
constraints were determined as prediction constraints using a dynamic system and limit
constraints on control inputs. By using Np = Nc, the MPC objective function can be
written as

J =
∑Np

j=1[(Yref (k + j|k)−Y(k + j|k))TQ(Yref (k + j|k)−Y(k + j|k))
+U(k + j − 1|k)TRU(k + j − 1|k)],

(18)

where Yref is the reference output and Y is the system output subject to

X (k + j + 1|k) = AdX (k + j|k) +BdU(k + j|k),
j = 0, 1, ..., Np − 1.

(19)

Y(k + j|k) = CX (k + j|k), j = 1, 2, ..., Np, (20)

Umin ≤ U(k + j|k) ≤ Umax, j = 0, 1, ..., Np − 1. (21)

By transforming the objective function (18) and constrains in equations (19), (20),
(21) into quadratic programming form, the problem formulation for MPC is written as
follows:

min
U

J(U) =
1

2
UTHU +UTf (22)
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subject to 
Umin

Umin

Umin

...
Umin

 ≤ U ≤


Umax

Umax

Umax

...
Umax

 , (23)

where

f = 2ΦT Q̄(FX (k|k)− Yref ),

H = 2(ΦT Q̄Φ+ R̄),

Q̄ =


Q 0 0 · · · 0
0 Q 0 · · · 0
0 0 Q · · · 0
...

...
...

. . .
...

0 0 0 0 Q


ny.Np×ny.Np

,

R̄ =


R 0 0 · · · 0
0 R 0 · · · 0
0 0 R · · · 0
...

...
...

. . .
...

0 0 0 0 R


nu.Np×nu.Np

,

F =


CAd

CA2
d

CA3
d

...

CANp

d


ny.Np×nx(p+1)

,

Φ =


CBd 0 0 · · · 0

CAdBd CBd 0 · · · 0
CA2

dBd CAdBd CBd · · · 0
...

...
...

. . .
...

CANp−1
d Bd CANp−2

d Bd CANp−3
d Bd · · · CBd


ny.Np×nu.Np

.

5 Simulation and Discussion

The MPC simulation aims to make the pitch rate follow the given reference, yref =
qref = 0◦/s. The value of the pitch rate of 0◦/s means that there is no difference or
change in the pitch angle every time, so it can be said that there is no movement on
the nose of the aircraft or it is in a stable condition. The parameter values used in the
simulation are Ts = 0, 05, x(0) = [30◦, 10◦/s, 15◦]T , Q = 10.000, R = 1, Umin = −25◦,
and Umax = 25◦.

This simulation used the value of polynomial order r = 3 and prediction horizon
Np = 10. The optimal control results (U∗) are applied to the stochastic state space of
the F-16 aircraft by generating the random variable ∆, which is Gaussian distributed
in 1000 simulations. The elevator control δec and the pitch rate output are obtained as
follows.
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(a) Control Input δec. (b) Pitch Rate Output.

Figure 2: Control Input & Pitch Rate Output (Np = 10, r = 3).

From Figure 2(a), it can be seen that the elevator deflection movement is still within
the given constrain, −25◦ ≤ δec ≤ 25◦. Changes in the ups and downs of the δec value
indicate the effort of the control input so that the output approaches the given reference,
namely qref = 0◦/s.

In Figure 2(b), the blue line is the pitch rate output, while the black dotted line
shows the mean of the pitch rate output by simulating 1000 times. From Figure 2(b), it
can be seen that the output of the pitch rate by simulating 1000 times and the mean of
pitch rate output both converge or approach the given reference, q = 0◦/ second. From
the simulation, the mean of the MAE (mean absolute error) by simulating 1000 times is
0, 78171.

5.1 Simulation with various prediction horizon values

The first simulation used the polynomial order value r = 3 and different prediction
horizon values (Np = 5, Np = 10, Np = 20). The simulation results of the elevator
deflection control δec and the mean of the pitch rate output by doing 1000 simulations
are shown in the following figures.
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(a) Control Input δec Simulation 1. (b) Pitch Rate Output Simulation 1.

Figure 3: Control Input & Pitch Rate Output for Different Prediction Horizon (Np = 5, 10, 20).

Based on Figure 3(b), different prediction horizon valuesNp affect the system’s output
response towards the given reference. For a smaller prediction horizon value Np = 5, from
the simulation, it looks longer to reach the reference pitch rate. To find out the difference
in system response with different prediction horizon values Np, the mean of MAE for each
prediction horizon value is given as follows.

Prediction Horizon (Np) MAE (degree/ s)
2 0, 79424
5 0, 78501
8 0, 78310
10 0, 78171
15 0, 78150
20 0, 78134

Table 2: MAE for Different Prediction Horizon Np.

5.2 Simulation with various orders of the polynomial

The second simulation used different Hermite polynomial orders (r = 2, r = 5, r = 8).
This simulation used the same prediction horizon value, Np = 20. The control input δec
and the mean pitch rate output are given by the following figures.
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(a) Control Input δec Simulation 2. (b) Pitch Rate Output Simulation 2.

Figure 4: Control Input & Pitch Rate Output for Different Polynomial Orders (r = 2, 5, 8).

From Figure 4(b), it can be seen that the pitch rate can approach the given reference
value for all polynomial order values. The simulation obtains the same pitch rate output
for 30 seconds simulation time by using the polynomial order r = 2, r = 5, r = 8. Based
on the simulation results, the same mean of the MAE value is obtained for different
polynomial orders (r = 2, r = 5, r = 8). The mean of MAE and computation time for
different polynomial orders are given in the following table.

Polynomial Orders (r) MAE (degree/s) Computation Time (s)
2 0, 78134 6, 10266
3 0, 78134 6, 41526
4 0, 78134 7, 65380
5 0, 78134 7, 93255
6 0, 78134 11, 39271
7 0, 78134 26, 17483
8 0, 78134 49, 87485

Table 3: MAE and Computation Time for Different Polynomial Orders r.

6 Conclusion

In this study, Polynomial Chaos and MPC are implemented for controlling the longitudi-
nal motion of the F-16 aircraft, which has uncertainty in the parameter system (∆). The
contribution of this paper is the random variables ∆ are assumed to be Gaussian dis-
tributed. The simulation results indicated that the Polynomial Chaos and MPC methods
could be implemented properly for the linear model of the F-16 aircraft with uncertain
stochastic parameters. This can be seen from the pitch rate output, which can follow and
satisfy the given reference (qref = 0◦/s). Based on the simulation results for different
prediction horizon values (Np), a larger Np gives a better pitch rate output response and
a smaller mean of MAE. Meanwhile, different orders of the Hermite polynomial do not
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significantly influence the result of control input and the pitch rate output. However, a
higher order of the Hermite Polynomial requires a longer computation time.
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