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Abstract: In this paper, we study a singular parabolic reaction-diffusion system
with positive Dirichlet boundary conditions. It is shown that certain conditions are
sufficient to guarantee finite-time quenching and global existence of solutions. This
system appears in the modeling of the quenching phenomena.
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1 Introduction

Quenching refers to the process of rapidly cooling a material from a high temperature to a
lower temperature. This is done to alter the material’s physical or mechanical properties
such as hardness or strength. The rapid cooling prevents the material from undergoing
a gradual cooling process, which would allow the material to form larger crystals that
could weaken the material’s structure. Quenching can be accomplished using different
methods, including immersion in water, oil, or air, depending on the desired outcome.
The study of this important phenomenon began in 1975 with a paper by Kawarada [5],
where he studied a model in one space dimension. That paper was an introduction to
the large-scale studies of the quenching problem by many researchers in several scientific
fields. For a detailed survey, we refer to Chan [3], Levine [7], Rouabah et al. [13], Zouaoui
et al. [20].

By using reaction-diffusion models, researchers can simulate the behavior of quenching
processes and predict the resulting microstructure and mechanical properties of the metal.
This can help in the design of new quenching techniques and in the optimization of

∗ Corresponding author: mailto:salimbra@gmail.com

© 2023 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua499

mailto: salimbra@gmail.com
http://e-ndst.kiev.ua


500 S. DJEMAI AND S. MESBAHI

existing ones. For more research on the phenomenon of quenching via reaction-diffusion
systems, we refer the readers to Bonis [2], Ji et al. [4], Mesbahi [8], Mu et al. [11], Pei
and Li [12], Salin [14–16], Wang [17], Zheng and Song [18], Zheng and Wang [19] and the
references therein, where we will also find, in addition to the results by Mesbahi [9] and
[10], many theoretical and numerical methods frequently used to study such problems.

In biology, quenching is a process that involves the rapid cooling of a sample in
order to interrupt or halt certain biological processes. This procedure has several uses,
including stopping metabolic processes and preserving metabolite profile of a sample in
metabolomics. Protein synthesis and degradation can also be stopped for protein level
and modification analysis in cells or tissues, while RNA in cells or tissues can be preserved
for the analysis of gene expression. Moreover, microbial cultures can be preserved for
long-term storage or transport by rapidly cooling them to halt growth and metabolic
activity.

Quenching has many applications in medicine. One common medical application of
quenching is cryotherapy, where extreme cold to treat disease or injury is used. This
can include using liquid nitrogen to freeze and destroy cancerous tissue, or the use of
ice packs to reduce swelling and inflammation. Another application is controlling the
release of drugs from drug delivery systems. Rapid cooling of the system can halt or slow
down drug release, enabling sustained release over time. Furthermore, quenching can aid
in the preservation of biological samples such as blood or tissue samples for analysis or
storage. Rapid cooling can prevent degradation of the sample and preserve its integrity
for later use.

Quenching is also an important process in the manufacture of contact lenses. Typi-
cally, after the lenses are shaped, they undergo thermal quenching by being immersed in
cold water. This process helps in solidifying their structure and preventing any deforma-
tion or distortion during handling and further processing. Furthermore, it enhances the
mechanical and optical features of the lenses making them stronger, more resistant to
damage, and long-lasting. Chemical quenching is also used by manufacturers to adjust
the properties of the lenses. For instance, to crosslink the polymer chains in the lenses
or to enhance their strength and flexibility. For better understanding, we refer to Barka
et al. [1], Khurshid et al. [6].

In this work, we are interested in the study of the following reaction-diffusion sys-
tem with general singular terms and positive Dirichlet boundary conditions that can be
applied to the quenching phenomenon:

(u1)t −∆u1 = −f1 (u2) in (0, T )× Ω,
...

...
(um−1)t −∆um−1 = −fm−1 (um) in (0, T )× Ω,

(um)t −∆um = −fm (u1) in (0, T )× Ω,
u1 = u2 = · · · = um = 1 on (0, T )× ∂Ω,
u1 (0, x) = u10 (x) , . . . , um (0, x) = um0 (x) in Ω,

(1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary. The functions fj
(1 ≤ j ≤ m) are positive on (0, 1]. The initial data satisfy u10, u20, . . . , um0 ∈ C2 (Ω) ∩ C1

(
Ω
)
,

uj0 = 1, for all 1 ≤ j ≤ m, on ∂Ω,
0 < uj0 ≤ 1, for all 1 ≤ j ≤ m, in Ω.

(2)
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The rest of this paper is organized as follows. In the next section, we state our main
results. In the third section, we prove some important preliminary results. The fourth
section is devoted to the proof of the main results. The paper ends with a concluding
remarks and perspectives.

2 Statement of Main Results

2.1 Assumptions

For this model, the finite-time quenching phenomena are caused by singular nonlinearities
in the absorption terms of (1).

Definition 2.1 We say the solution (u1, . . . , um) of problem (1) quenches if
(u1, . . . , um) exists in the classical sense and is positive for all 0 ≤ t < T , and also
satisfies inf

t→T
min

x∈[0,1]
{(u1 (t, x) , . . . , um (t, x)} = 0. In this case, T is called quenching

time.

To study problem (1), we also assume that the positive functions fj : (0, 1] → (0,+∞),
1 ≤ j ≤ m, satisfy the following simple assumptions which allow them to be chosen from
a wide range:

(H1) The functions fj , 1 ≤ j ≤ m, are locally Lipschitz on (0, 1],

(H2) f
′
j (s) < 0 on (0, 1] for all 1 ≤ j ≤ m,

(H3) lim
s→0+

fj (s) = +∞ for all 1 ≤ j ≤ m.

In order to state our results more conveniently, we denote by φ the first eigenfunction
associated with the first eigenvalue λ1 of the problem{

∆φ+ λφ = 0 in Ω,
φ = 0 on ∂Ω,

normalized by
∫
Ω
φ(x)dx = 1, with φ(x) > 0 in Ω.

2.2 The main results

The following theorem gives us a sufficient condition for finite-time quenching.

Theorem 2.1 Under hypotheses (H1) − (H3), the solution of problem (1) quenches
in finite time for any initial data provided that λ1 is small enough.

Many quenching studies confirm that time-derivatives blow-up while the solution itself
remains bounded. We refer, for example, to Chan [3] and Kawarada [5]. Throughout
this paper, without any special explanation, we assume that the initial data u10, . . . , um0

satisfy
∆u10 − f1 (u20) < 0, . . . , ∆um0 − fm (u10) < 0 in Ω. (3)

Thus, the global existence of solutions can be described by the following theorem.

Theorem 2.2 If the diameter of Ω is small enough and the initial data satisfies
0 < ε ≤ u10, . . . , um0 ≤ 1 in Ω, then under hypotheses (H1)−(H3), the solution of problem
(1) does not quench in finite time. In this case, we say that the solution (u1, . . . , um)
exists globally.
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3 Preliminary Results

We will prove two important lemmas which we will use to prove our main results.

Lemma 3.1 Assume that the initial data satisfy (3), then (u1)t , . . . , (um)t < 0 in
(0, T )× Ω.

Proof. Let Ij (t, x) = (uj)t (t, x) for all 1 ≤ j ≤ m and (t, x) ∈ (0, T )× Ω. Differen-
tiating system (1) with respect to t, we have

∂
∂tI1 = ∆(u1)t − (u2)t f

′
1 (u2) in (0, T )× Ω,

...
...

∂
∂t (Im) (x, t) = ∆ (um)t − (u1)t f

′
m (u1) in (0, T )× Ω,

I1 = I2 = · · · = Im = 0 on (0, T )× ∂Ω,
Ij (0, x) < 0, for all 1 ≤ j ≤ m in Ω,

which, after simplification, gives

∂
∂tI1 −∆I1 = −I2f ′1 (u2) in (0, T )× Ω,
...

...
∂
∂tIm −∆Im = −I1f ′m (u1) in (0, T )× Ω,

I1 = I2 = · · · = Im = 0 on (0, T )× ∂Ω,
Ij (0, x) < 0, for all 1 ≤ j ≤ m in Ω.

(4)

By the comparison principle, we have, for all (t, x) ∈ (0, T )× Ω,

Ij (t, x) = (uj)t (t, x) < 0 for all 1 ≤ j ≤ m.

This shows that u1, . . . , um are strictly decreasing in time.
Now, we consider the radial solutions of problem (1) on Ω = Br ={

x ∈ RN : |x| < R
}
.

Lemma 3.2 Let (u1, . . . , um) be the global solution of problem (1) with
(u10, . . . , um0) ≡ (1, . . . , 1), u1, . . . , um ≥ b in (0,∞) × BR for some b ∈ (0, 1). Then
(u1, . . . , um) approaches uniformly from above to a solution (U1, . . . , Um) of the steady-
state problem 

∆U1 = f (U2) in BR,
...

...
∆Um−1 = f (Um) in BR,
∆Um = f (U1) in BR,
U1 = U2 = · · · = Um = 1 on ∂BR.

(5)

Proof. Since (1, . . . , 1) is a strict super-solution of problem (1), by Lemma 3.1, we
have (u1)t , . . . , (um)t < 0 in (0,∞)×BR. Define the functions

Qj (t, x) =

∫
BR

G (x, y)uj (t, y) dy, in (0,∞)×BR, for all 1 ≤ j ≤ m,
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whereG (x, y) is Green’s function associated with the operator−∆ on BR under Dirichlet
boundary conditions. Hence

∂

∂t
(Q1) =

∫
BR

G (x, y) (u1)t (t, y) dy

=

∫
BR

G (x, y)∆u1 (t, y) dy −
∫
BR

G (x, y) f1 (u2 (t, y)) dy,

...
∂

∂t
(Qm) =

∫
BR

G (x, y) (um)t (t, y) dy

=

∫
BR

G (x, y)∆um (t, y) dy −
∫
BR

G (x, y) fm (u1 (t, y)) dy,

this gives us

∂

∂t
(Q1) = 1− u1 (x, y)−

∫
BR

G (x, y) f1 (u2 (t, y)) dy,

...
∂

∂t
(Qm) = 1− um (x, y)−

∫
BR

G (x, y) fm (u1 (t, y)) dy.

It follows from (uj)t < 0 for all 1 ≤ j ≤ m, that

G (x, y) f1 (u2 (t, y)) , . . . , G (x, y) fm−1 (um (t, y)) and G (x, y) fm (u1 (t, y))

are nondecreasing with respect to t. According to the monotone convergence theorem
with

b ≤ Uj (x) = lim
t→0

uj (t, x) for all 1 ≤ j ≤ m,

we have

lim
t→0

∂

∂t
(Q1) = 1− U1 (x)−

∫
BR

G (x, y) f1 (U2 (y)) dy,

...

lim
t→0

∂

∂t
(Qm) = 1− Um (x)−

∫
BR

G (x, y) fm (U1 (y)) dy.

Furthermore, since Q1, . . . , Qm are bounded, (Q1)t , . . . , (Qm)t ≤ 0, and by
(u1)t , . . . , (um)t < 0, we have

lim
t→0

∂

∂t
(Qj) = 0 for all 1 ≤ j ≤ m,

which yields

U1 (x) = 1−
∫
BR

G (x, y) f1 (U2 (y)) dy,

...

Um (x) = 1−
∫
BR

G (x, y) fm (U1 (y)) dy,
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and therefore (U1, . . . , Um) is a solution of problem (5), and the uniform convergence is
ensured by Dini’s theorem.

4 Proofs of the Main Results

Proof. [of Theorem 2.1] Let (u1, . . . , um) be the solution of problem (1) with the
maximal existence time T . By the maximum principle, we have 0 ≤ uj ≤ 1 for all
1 ≤ j ≤ m, in (0, T )× Ω. Let

ψj (t) =

∫
Ω

(1− uj)φdx for all 1 ≤ j ≤ m, t ∈ [0, T ) (6)

and
Ψ (t) = ψ1 (t) + · · ·+ ψm (t) , t ∈ [0, T ) . (7)

By hypotheses (H1)− (H3) and the corresponding Taylor expansions, we can easily get

f1 (u2) ≥ δ (1− u2) + c1 , . . . , fm (u1) ≥ δ (1− u1) + cm, (8)

where δ, c1, . . . , cm are positive constants determined by f1 (u2) , . . . , fm (u1).
By a straight-forward computation and (8), we have

ψ′
1 (t) = −

∫
Ω

∆u1φdx+

∫
Ω

f1 (u2)φdx

=

∫
Ω

∆(1− u1)φdx+

∫
Ω

f1 (u2)φdx

≥ −λ1
∫
Ω

(1− u1)φdx+ δ

∫
Ω

(1− u2)φdx+ c1

∫
Ω

φdx

= −λ1ψ1 (t) + δψ2 (t) + c1.

In the same way, with ψ2 (t) , . . . , ψm (t), we finally get the following inequalities:

ψ′
1 (t) ≥ −λ1ψ1 (t) + δψ2 (t) + c1,

...

ψ′
m (t) ≥ −λ1ψm (t) + δψ1 (t) + cm.

Using (7), we get

Ψ′ (t) ≥ (δ − λ1)Ψ (t) + C , with C = c1 + · · ·+ cm. (9)

Since 0 ≤ uj ≤ 1 in (0, T )×Ω, then 0 ≤ 1−uj ≤ 1 in (0, T )×Ω, which clearly implies
by (6) that 0 ≤ ψj (t) ≤ 1 for all 1 ≤ j ≤ m, consequently, 1 ≤ Ψ(t) ≤ m. Since λ1 is
small enough, it is obvious that (δ − λ1)Ψ (t) + C > 0. Then, by (9), we have

dΨ

(δ − λ1)Ψ (t) + C
≥ dt , t ∈ [0, T ) ,

which gives, by integration from 0 to T,

t ≤


1

δ − λ1
log

(
(δ − λ1)Ψ (t) + C

(δ − λ1)Ψ (0) + C

)
if δ ̸= λ1,

1

C
(Ψ (t)−Ψ(0)) if δ = λ1.

(10)
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Now, letting t→ T− in (10) and combining lim
t→T−

Ψ(t) ≤ m, we get

T ≤


1

δ − λ1
log

(
m (δ − λ1) + C

(δ − λ1)Ψ (0) + C

)
if δ ̸= λ1,

1

C
(m−Ψ(0)) if δ = λ1.

(11)

Since 1 ≤ Ψ(t) ≤ m, we can easily arrive at the positivity of the right-hand side of (11),
which shows finite time quenching of the solutions in system (1). This ends the proof of
Theorem 2.1.

Proof. Consider the auxiliary system

∂
∂t ū1 = ∆ū1 − f (ū2) in (0, T )× Ω,
...

...
∂
∂t ūm = ∆ūm − f (ū1) in (0, T )× Ω,

ū1 = · · · = ūm = 1 on (0, T )× ∂Ω,
ū1 (0, x) = · · · = ūm (0, x) = 1 in Ω.

By the comparison principle, we have uj ≤ ūj for all 1 ≤ j ≤ m.

We first consider the following system:
∆ū∗1 = f1 (1) in BR,
...

...
∆ū∗m = fm (1) in BR,
ū∗1 = · · · = ū∗m = 1 on ∂BR.

By Green’s function, the solution is (ū∗1, . . . , ū
∗
m) denoted as follows:

ū∗j =
fj (1)

(
|x|2 −R2

)
2N

+ 1 , 1 ≤ j ≤ m

and

min ū∗j =
−fj (1)R2

2N
+ 1 , 1 ≤ j ≤ m.

Clearly, (ū∗1, . . . , ū
∗
m) is a super solution of (1). By Lemma 3.2, the solution (u1, . . . , um)

of (1) is global only if ū∗1, . . . , ū
∗
m > 0.

5 Concluding Remarks and Perspectives

This contribution advances mathematical research on quenching phenomena. The results
of this study can be used to study other singular reaction-diffusion phenomena. We
managed to overcome some difficulties and achieved very important results. This leads
us to think more about the problem and do further theoretical and numerical research
under other conditions. These efforts will advance quenching technology and modeling
in many scientific fields.
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