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Abstract: The underwater vehicle has been developed by many countries to be
one kind of defense technology. This unmanned underwater vehicle is usually called
the Remotely Operated Underwater Vehicle (ROV). The ROV is commonly used for
underwater exploration and as a defense vehicle. The ROV can move by using six
degrees of freedom (6-DOF) and requires a control system in order for the ROV to
move as intended. In this paper, a controller was synthesized in the 6-DOF Evacuation
ROV linear model with the Sliding Mode Control (SMC) and Sliding PID (SPID)
methods. The contribution of the paper provides an analysis of numerical study and
stability analysis by using the Lyapunov function for the performance of both control
system methods. The focus of this paper is the comparison between the performance
of SMC and SPID on the AUV linear model, of which SPID is a combination of SMC
and PID. The simulation results show that the SMC and SPID methods have a good
stability and small error of about 0.1% - 4%. Further, the results show that the SPID
method is more stable than SMC.
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1 Introduction

Underwater robots are widely developed by many countries as one of their defense tech-
nologies. The underwater defense technology is very important for a country in keeping
and maintaining its marine wealth. This underwater robot is usually called the Remotely
Operated Underwater Vehicle (ROV). The ROV is commonly used for marine security
systems, assisting evaluation on at-sea accidents, and underwater exploration [1]. The
ROV has two kinds of motions, namely, the translational and rotation motions on the
x-, y-, and z-axes. Two parts of the ROV functioning to control the ROV motion are
the propulsion system and the fin system. The propulsion system is used to regulate the
angular velocity of the ROV, and the fin system is used to adjust the angle of the fin and
the rudder position. The development of the ROV was initiated in the 1970s together
with the initial investigation of the usefulness of the ROV system, and in 1970-1980,
the ROV technology development and experiments were carried out. In 1980-1990, the
experiments using prototypes were done, then in 1990-2000, the ICT-based ROV was
developed.

This encouraged researches to improve the technology for innovations, in particular
on the controller design of unmanned vehicles. The development of the controllers aimed
to organize the actuator such that the unmanned vehicle can be stable in its motion as
expected. Several studies related to the AUV control system began in the 2000s when
Chiu et al. [2] used a fuzzy control sliding mode with a 2-DOF model. In 2002, W.
Naeem [3] used a predictive control model for a nonlinear 2-DOF (surge and yaw) model.
Kim and Ura [4] used the R-One Robot AUV with a length of 8.3 meters, a diameter
of 1.2 meters, and a mass of 4400 kg with PID. Repoulias and Papadopoulos [5] used
partial state-feedback in nonlinear 3-DOF (surge, sway and yaw) models. Lapierre and
Soesanto [6] used the Infante AUV with a length of 4,215 m and a mass of 23 Kg with
path-following control. Akcaya et al. [7] used SMC in a 3-DOF linear model. Rezazadegan
et al. [8] used an adaptive nonlinear controller in the 5-DOF model. Oktafianto et al. [9]
used SMC in the linear model of AUV. Herlambang et al. [10] used the PID controller
method to control the movement of the 6-DOF linear model applied to UNUSAITS AUV,
Nurhadi et al. [11] used the SMC method to control the Surge, Heave and Pitch Motions
in the 3-DOF nonlinear model, in 2020, Herlambang et al. [12] used SPID Control in the
6-DOF linear model of the AUV, and also used the Linear Quadratic Regulator (LQR)
for the linear motion system of the AUV [14].

The focus of this paper was to compare two control methods: SMC and SPID for 6-
DOF motion control, of which the SPID controller is a combination of the SMC and PID
controllers. This study used the 6-DOF liner model, and the linear model was obtained by
linearization of the nonlinear 6-DOF model. The result of this study was the comparison
of the stability performance of SMC and SPID shown by numerical simulation on the
response results of both methods. The stability obtained by both methods was quite
significant with an error of 0.1%-4% with a settling time of 0.1-1 second.

In order to analyze an ROV, it is necessary to consider the axis system which com-
prises the Earth Fixed Frame (EFF) and Body Fixed Frame (BFF) that are displayed
in Figure 1 [14]. The motion of the ROV has 6 degrees of freedom (6 DOF) comprising
3 degrees of freedom in the direction of translational motions on the x-, y-, and z-axes
and 3 degrees of freedom in the rotational motions on the x-, y- and z-axes. The gen-
eral description of an ROV with 6 DOF can be expressed in (1), where represents the
position and orientation vectors over the EFF and v represents the linear and angular
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velocities over the BFF. The details have been described in [15].

2 Remotely Operated Underwater Vehicle (ROV)

In order to analyze an ROV, it is necessary to consider the axis system which comprises
the Earth Fixed Frame (EFF) and Body Fixed Frame (BFF) that are displayed in Figure
1 [14]. The motion of the ROV has 6 degrees of freedom (6 DOF) comprising 3 degrees of
freedom in the direction of translational motions on the x-, y-, and z-axes and 3 degrees
of freedom in the rotational motions on the x-, y- and z-axes. The general description of
an ROV with 6 DOF can be given as (1) [15]

η = [ηT1 , η
T
2 ]

T , η1 = [x, y, z]T , η2 = [∅, θ,Ψ]T ,

v = [vT1 , v
T
2 ]

T , v1 = [u, v, w]T , v2 = [p, q, r]T ,

τ = [τT1 , τT2 ]T , τ1 = [X,Y, Z]T , τ2 = [K,M,N ]T .

(1)

This study uses the prototype of the Evacuation ROV, and the specifications of the
Evacuation ROV are: the weight is 16 kg, the length is 2 meter and the diameter is 300
mm [15]. The properties of the Evacuation ROV are displayed in Figure 2 and Table 1.

Figure 1: ROV Motion with Six Degrees of Freedom [20].

Figure 2: Profile of Evacuation ROV.
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Table 1: Specification of the Evacuation ROV.
Weight 15 Kg

Overall Length 900 mm
Beam 300 mm

Controller Wired Control ArduSUB with Joystick
Sensors Depth Sensor, Sonar

Camera TTL Camera

Lighting 1500 LM, 145◦ Beam Dimmable
Battery 11.8 V Li Po 5200 mAh

Material Carbon Fiber

Main Propulsion T200 Motor Thruster Include Propeller
Maneuver Propulsion T200 Motor Thruster Include Propeller

Service Speed 1, 6 knots

Operation Depth 5− 10 m

Variable η represents the vector position and orientation w.r.t. EFF, whereas τ rep-
resents the force vectors and moments that are working on the ROV w.r.t. BFF, namely
surge (u), sway (v), heave (w), roll (p), pitch (q) and yaw (r). The total forces and
moments which are working on the ROV can be gained by combining hydrostatic, hydro-
dynamic and thrust forces. In this case, we assumed that the diagonal inertia tensor (Io)
is zero, in order to obtain the total forces and moments of the whole model as follows.

Surge:

m[u̇− vr + wq − xG(q
2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = Xres +X|u|uu|u|+

Xu̇u̇+Xwqwq +Xqqqq +Xvrvr +Xrrrr +Xprop, (2)

Sway:

m[v̇ − wp+ ur − yG(r
2 + p2) + zG(qr − ṗ) + xG(pq + ṙ)] = Yres + Y|v|vv|v|+

Yr|r|r|r|+ Yv̇ v̇ + Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv + Yuuδru
2δr, (3)

Heave:

m[ẇ − uq + vp− zG(p
2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Zres + Z|w|ww|w|+

Zq|q|q|q|+ Zẇẇ + Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw + Zuuδsu
2δs, (4)

Roll:

Ixṗ+ (Iz − Iy)qr +m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)]Kres+

Kp|p|p|p|+Kṗṗ+Kprop, (5)

Pitch:

Iy q̇ + (Ix − Iz)rp+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] = Mres +Mw|w|w|w|+
Mq|q|q|q|+Mẇẇ +Mq̇ q̇ +Muquq +Mvpvp+Mrprp+Muwuw +Muuδsu

2δs. (6)

3 Linearization

In general, it is difficult to design a controller for nonlinear systems (2)-(6). Therefore,
the non-linear ROV model is linearized by using the Jacobi matrix. The general equations
of the non-linear ROV model can be written as
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ẋ(t) = f(x(t), u(t), t),

y(t) = g(x(t), u(t), t),
(7)

and the Jacobi matrix is defined as

∂f(x̄, ū, t)

∂x
=



∂f1(x̄,ū,t)
∂x1

∂f1(x̄,ū,t)
∂x2

. . . ∂f1(x̄,ū,t)
∂xn

∂f2(x̄,ū,t)
∂x1

∂f2(x̄,ū,t)
∂x2

. . . ∂f2(x̄,ū,t)
∂xn

...
...

. . .
...

∂fn(x̄,ū,t)
∂x1

∂fn(x̄,ū,t)
∂x2

. . . ∂fn(x̄,ū,t)
∂xn


. (8)

When the Jacobi matrix shown in (8) is used to linearize the ROV equation of motion
for 6-DOF, then we obtain the following equation:

∂f(x̄, ū, t)

∂x
=



∂f1(x̄,ū,t)
∂u

∂f1(x̄,ū,t)
∂v

∂f1(x̄,ū,t)
∂w

∂f1(x̄,ū,t)
∂p

∂f1(x̄,ū,t)
∂q

∂f1(x̄,ū,t)
∂r

∂f2(x̄,ū,t)
∂u

∂f2(x̄,ū,t)
∂v

∂f2(x̄,ū,t)
∂w

∂f2(x̄,ū,t)
∂p

∂f2(x̄,ū,t)
∂q

∂f2(x̄,ū,t)
∂r

∂f3(x̄,ū,t)
∂u

∂f3(x̄,ū,t)
∂v

∂f3(x̄,ū,t)
∂w

∂f3(x̄,ū,t)
∂p

∂f3(x̄,ū,t)
∂q

∂f3(x̄,ū,t)
∂r

∂f4(x̄,ū,t)
∂u

∂f4(x̄,ū,t)
∂v

∂f4(x̄,ū,t)
∂w

∂f4(x̄,ū,t)
∂p

∂f4(x̄,ū,t)
∂q

∂f4(x̄,ū,t)
∂r

∂f5(x̄,ū,t)
∂u

∂f5(x̄,ū,t)
∂v

∂f5(x̄,ū,t)
∂w

∂f5(x̄,ū,t)
∂p

∂f5(x̄,ū,t)
∂q

∂f5(x̄,ū,t)
∂r

∂f6(x̄,ū,t)
∂u

∂f6(x̄,ū,t)
∂v

∂f6(x̄,ū,t)
∂w

∂f6(x̄,ū,t)
∂p

∂f6(x̄,ū,t)
∂q

∂f6(x̄,ū,t)
∂r


, (9)

where the functions f1, f2, f3, f4, f5 and f6 are

f1 = {Xres +X|u|uu|u|+Xwqwq +Xqqqq +Xvrvr +Xrrrr +Xprop −m[−vr+

wq − xG(q
2 + r2) + pqyG + przG]}/{m−Xu̇}, (10)

f2 = {Yres + Y|v|vv|v|+ Yr|r|r|r|+ Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv+

Yuuδru
2δr −m[−wp+ ur − yG(r

2 + p2) + qr zG + pq xG]}/{m− Yv̇}, (11)

f3 = {Zres + Z|w|ww|w|+ Zq|q|q|q|+ Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw+

Zuuδsu
2δs −m[−uq + vp− zG(p

2 + q2) + rp xG + rq yG]}/{m− Zẇ}, (12)

f4 =
Kres +Kp|p|p|p|+Kprop − ((Iz − Iy)qr +m[yG(−uq + vp)− zG(−wp+ ur)])

Ix −Kṗ
,

(13)

f5 = {Mres +Mw|w|w|w|+Mq|q|q|q|+Mẇẇ +Muquq +Mvpvp+Mrprp+Muwuw+

Muuδsu
2δs − ((Ix − Iz)rp+m[zG(−vr + wq)− xG(−uq + vp)])}/{Iy −Mq̇},

(14)

f6 = {Nres +Nv|v|v|v|+Nr|r|r|r|+Nv̇ v̇ +Nurur +Nwpwp+Npqpq +Nuvuv+

Nuuδru
2δr − ((Iy − Iz)pq +m[xG(−wp+ ur)− yG(−vr + wq)])}/{Iz −Nṙ}.

(15)



524 T. HERLAMBANG, et al.

The linear model obtained from the above process is as follows:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(16)

where

A = Jx =



1 0 0 0 mzG
m−Xu̇

−myG

m−Xu̇

0 1 0 − mzG
m−Yv̇

0 (mxG−Yṙ)
m−Yv̇

0 0 1 myG

m−Zẇ
− (mxG+Zq̇)

m−Zẇ
0

0 − m zG
Ix−Kṗ

m yG

Ix−Kṗ
1 0 0

m zG
Iy−Mq̇

0 − (m xG+Mẇ)
Iy−Mq̇

0 1 0

− myG

Iz−Nṙ

(mxG−Nv̇)
Iz−Nṙ

0 0 0 1



−1

×


a1 b1 c1 d1 e1 g1
a2 b2 c2 d2 e2 g2
a3 b3 c3 d3 e3 g3
a4 b4 c4 d4 e4 g4
a5 b5 c5 d5 e5 g5
a6 b6 c6 d6 e6 g6

 ,

B = Ju =



1 0 0 0 mzG
m−Xu̇

−myG

m−Xu̇

0 1 0 − mzG
m−Yv̇

0 (mxG−Yṙ)
m−Yv̇

0 0 1 myG

m−Zẇ
− (mxG+Zq̇)

m−Zẇ
0

0 − m zG
Ix−Kṗ

m yG

Ix−Kṗ
1 0 0

m zG
Iy−Mq̇

0 − (m xG+Mẇ)
Iy−Mq̇

0 1 0

− myG

Iz−Nṙ

(mxG−Nv̇)
Iz−Nṙ

0 0 0 1



−1

×


A1 B1 C1 D1 E1 G1

A2 B2 C2 D2 E2 G2

A3 B3 C3 D3 E3 G3

A4 B4 C4 D4 E4 G4

A5 B5 C5 D5 E5 G5

A6 B6 C6 D6 E6 G6

 ,

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , D = 0.
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4 Sliding Mode Control

SMC is a controller that is robust w.r.t. internal and external disturbances. As such,
SMC has been widely used in many applications. In order to apply SMC to a system,
we need to proceed according to the algorithm presented in Figure 3.

Construct the function of switching S(x, t) based on the tracking error

Construct the sliding surface

Calculate the estimation of controller value â

Apply the following control law a = â − Ksgn(S)

Use the obtained value of â in the control law

Calculate the value of K

Replace the signum function by a saturation function

Figure 3: Algorithm of Sliding Mode Control.

5 Sliding PID

The design of the Sliding-PID control system is a combination of SMC and PID. In this
study, the system first passes through SMC, then the result is optimized by the PID
controller. The process works as follows. The notation e represents the error signal, i.e.,
the difference between the output and the reference. The error signal is substituted into
the sliding surface equation S = ė+ λe for some λ ∈ R. Then the value of S is used by
the PID to determine the input signal u. This scheme is shown in the block diagram in
Figure 4.

6 Control System Design

Designing the SMC control system for the 6-DOF linear model involves creating control
equations for surge, sway, heave, roll, pitch and yaw, obtained by the SMC Algorithm
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Figure 4: Block Diagram of SPID.

described in the previous section. From (16), the status of surge can be written as follows:

u̇ = aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1 + CC1δs1+

DD1Kprop + EE1δs2 +GG1δr2 . (17)

To find the control of the surge, the tracking error of surge is determined as follows:

ũ = u− ud,

where ud is a constant function. Since the system has order 1, the switching function is
formed as follows:

S(u, t) =

(
d

dt

)n−1

ũ, with n = 1,

S(u, t) =

(
d

dt

)1−1

ũ,

S(u, t) = ũ = u− ud.

The derivative of S is
Ṡ(u, t) = u̇− u̇d. (18)

Since ud is a constant function, one has u̇d = 0. By subtituting the equation (17) into
(18), we get

Ṡ(u, t) = aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1 + CC1δs1+

DD1Kprop + EE1δs2 +GG1δr2 . (19)

Next, the value of X̂prop is determined from the equation (19), when the value of Ṡ = 0,
as follows:

aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1 + CC1δs1+

DD1Kprop + EE1δs2 +GG1δr2 = 0. (20)

Then the obtained X̂prop is

X̂prop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
. (21)

Since we require that the control law has to satisfy the condition of sliding, we have

Xprop = X̂prop −K1sgn(S), (22)
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then from the equation (21) and (22), it is obtained that

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
−K1sgn(S). (23)

By substituting the equation (23) into (19), it is obtained that

Ṡ(u, t) = −AA1K1sgn(S). (24)

Next, the value of K1 is set up by substituting the equation (24) into the following
equation to meet the sliding condition, that is,

SṠ ≤ −η|S|, (25)

−SAA1K1sgn(S) ≤ −η|S|,

−AA1K1sgn(S) ≤ −η|S|
S,

K1 ≥ η

AA1sgn(S)
. (26)

From the equation (26), the value of K1 is obtained as follows:

K1 =

∣∣∣∣max
η

AA1

∣∣∣∣ . (27)

Next, in order to minimize chattering, a boundary layer is used by replacing the function
of signum (sgn) into the function of saturation (sat) as follows:

Xprop = X̂prop −K1sat

(
S

ϕ

)
. (28)

Thus, the design of the SMC control of surge, obtained by substituting the equations
(21) and (27) into the equation (28), is as follows:

Xprop =−
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r+BB1δr1+CC1δs1+DD1Kprop+EE1δs2

AA1

)
− GG1δr2

AA1
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat

(
S

ϕ

)
. (29)

Furthermore, the state equations for sway, heave, roll, pitch and yaw are as follows:

v̇ = aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop +BB2δr1 + CC2δs1+

DD2Kprop + EE2δs2 +GG2δr2 (30)

ẇ = aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop +BB3δr1 + CC3δs1+

DD3Kprop + EE3δs2 +GG3δr2 (31)

ṗ = aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1 + CC4δs1+

DD4Kprop + EE4δs2 +GG4δr2 (32)

q̇ = aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r +AA3Xprop +BB5δr1 + CC5δs1+

DD5Kprop + EE5δs2 +GG5δr2 (33)

ṙ = aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1 + CC6δs1+

DD6Kprop + EE6δs2 +GG6δr2 . (34)
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In the same way as obtaining the surge input control with the switching function, control
law, sliding conditions and applying the boundary layer, the input controls for sway,
heave, roll, pitch and yaw are as follows:

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r

BB2

)
−(

AA2Xprop + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2
BB2

)
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat(S

ϕ

)
,

(35)

δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r

CC3

)
−(

AA3Xprop +BB3δr1 +DD3Kprop + EE3δs2 +GG3δr2
CC3

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat(S

ϕ

)
,

(36)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r

DD4

)
−(

AA4Xprop +BB4δr1 + CC4δs1 + EE4δs2 +GG4δr2
DD4

)
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat(S

ϕ

)
,

(37)

δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r

EE5

)
−(

AA3Xprop +BB5δr1 + CC5δs1 +DD5Kprop +GG5δr2
EE5

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat(S

ϕ

)
,

(38)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r

GG6

)
−(

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2
GG6

)
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat(S

ϕ

)
.

(39)

The design of the SPID control system for the 6-DOF linear model first passes the
SMC control system equation, then the result is optimized by the PID controller whose
proportional, integral and derivative values are shown in Table 2. Once the control
system equations are obtained, they are connected to the 6-DOF linear model on the
block diagram shown in Figure 5 (right).

Table 2: Proportional, Integral and Derivative Values of SPID.

Kp Ki Kd

Surge 2.1 0 0
Sway 2.01 0 0
Heave 2.01 0 0

Roll 2.01 0 0

Pitch 2.1 0 0
Yaw 2.1 0 0
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Figure 5: The Left Panel Displays the ROV Block Diagram Using the SMC Control System.
The Right Panel Displays the ROV Block Diagram Using the SPID Control System.

7 Computational Results

In the simulation, the response ratio of SMC and SPID control systems for surge, sway,
heave, roll, pitch and yaw motion was obtained. The setpoint of surge is 1 m/s, those
of sway and heave are 1 m/s, while the setpoint for roll rotation motion is 1 rad/s, and
those of pitch and yaw are -1 rad/s. From the simulation results, the comparison of time
delay, rise time, peak time and settling time was obtained. The simulation results by
SMC and SPID control systems are shown in Figure 6.

The comparison of the surge responses in Figure 6 (top left) is the result of AUV
simulation by SMC and SPID control systems. The results of both methods show simi-
larity of the delay time of 0.03 s, the rise time of 0.05 s, the peak time of 0.08 s, and the
settling time of 1 s. SMC and SPID are stable at the setpoint of 1 m/s at time of 1 s.
When viewed from the resulted error, SPID is 3.4%, while SMC is 4.15%. Figure 6 (top
right) shows the similarities for the delay time, rise time, peak time and settling time.
That is, the delay time is 0.037 s, the rise time is 0.065 s, the peak time is 0.07 s, and
the settling time is 0.1 s. SMC and SPID are stable at the setpoint -1 m/s at 0.1 s. In
terms of the resulted error, that of SPID is 0.09% and that of SMC is 0.11%. In Figure
6 (middle left), it is shown that the results of both methods have similarity for a delay
time, that is, a delay time of 0.037 s. SMC has a rise time of 0.15 s and a settling time of
0.2 s, while SPID has a rise time of 0.25 s and a settling time of 0.25 s. SMC and SPID
are stable at the setpoint 1 m/s at 0.2 s. SMC and SPID on the heave response do not
have a peak time and maximum overshoot. As regards the error generated, that of SMC
is 0.19% and that of SPID is 0.8%.

The comparison of the roll response in Figure 6 (middle right) is the result of the
simulation of the AUV with SMC and SPID control systems. The results of both methods
show similarity of a delay time of 0.04 s, rise time of 0.12 s, and settling time of 0.12 s.
The response generated by the SMC and SPID methods is stable at the setpoint 1 rad/s
at 0.12 s. SMC and SPID on the roll response do not have a peak time and maximum
overshoot. In terms of the error generated, that of SMC is 0.42%, while that of SPID is
0.6%, so SMC is better than SPID for the roll response. Figure 6 (bottom left) shows that
the response results by SMC and SPID methods are stable at the setpoint -1 rad/s, the
SMC settling time at 1.5 s, while that of SPID at 1.25 s. As regards the error generated,
that of SPID is 4.3% while that of SMC is 4.58%, so SPID is better than SMC but it
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has a higher overshoot. Figure 6 (bottom right) shows that the results of both methods
show similarity in a delay time of 0.002 s, rise time of 0.082 s, peak time of 0.07 s, and
settling time of 0.2 s. The results of SMC and SPID methods are stable at the setpoint
-1 rad/s at 0.2 s. As regards the error generated, that of SMC is 3.66%, while that of
SPID is 4.77%, so the the SMC method is better than the SPID one. And, the SMC
method has a lower overshoot than the SPID one.

The comparison of delay time, rise time, peak time, maximum overshoot, settling
time, and error in responses, respectively, by the default PID control system, identical
PID, SMC and SPID is shown in Table 3 for surge, sway, heave response. Meanwhile,
the comparison for responses in roll, pitch, and yaw is shown in Table 4. From this
comparison of responses, it can be concluded that the best control system for the AUV is
seen from the error and the settling time. The SPID method is more stable for the surge,
sway and pitch motion, while the SMC method is more stable for the heave, roll and
yaw motion. Next, it can be checked by making stability analysis using the Lyapunov
method.

Figure 6: Response of the Surge, Sway, Heave, Roll, Pitch and Yaw Motions by Using SMC
and SPID Control Systems.
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Table 3: Specifications of the Transient Responses in the Surge, Sway, and Heave Motions.
Surge Sway Heave

SMC SPID SMC SPID SMC SPID

Delay Time 0.03 s 0.029 s 0.037 s 0.037 s 0.045 s 0.045 s
Rise Time 0.05 s 0.046 s 0.065 s 0.065 s 0.15 s 0.25 s

Peak Time 0.08 s 0.08 s 0.07 s 0.07 s 0 s 0 s

Maximum Peak 1.7 m/s 1.85 m/s -1.1 m/s -1.2 m/s 0 m/s 0 m/s
Settling Time 1 s 1 s 0.1 s 0.1 s 0.2 s 0.25 s

Error 4.15% 3.4% 0.11% 0.9% 0.19% 0.8%

Table 4: Specification of the Transient Responses in the Roll, Pitch, and Yaw Motions.
Roll Pitch Yaw

SMC SPID SMC SPID SMC SPID

Delay Time 0.04 s 0.04 s 0.01 s 0.01 s 0.002 s 0.002 s
Rise Time 0.12 s 0.12 s 0.2 s 0.2 s 0.082 s 0.082 s

Peak Time 0 s 0 s 0.075 s 0.074 s 0.07 s 0.07 s

Maximum Peak 0 m/s 0 m/s -5.2 m/s -5.8 m/s 18 m/s 21 m/s
Settling Time 0.12 s 0.12 s 1.5 s 1.25 s 0.2 s 0.2 s

Error 0.42% 0.6% 4.58% 4.3% 3.66% 4.77%

8 Stability Analysis

A candidate of the Lyapunov function for the ROV linear system with 6-DOF is

V (u, v, w, p, q, r) =
1

2
u2 +

1

2
v2 +

1

2
w2 +

1

2
p2 +

1

2
q2 +

1

2
r2. (40)

We will show that V (u, v, w, p, q, r) is a Lyapunov function that satisfies the stability
criteria.

For the Lyapunov candidate function in equation (40), it will be proven that the
candidate function with the SMC and SPID control system in the linear model is the
Lyapunov function and the equilibrium point is asymptotically stable.

1. For (u, v, w, p, q, r) = (0, 0, 0, 0, 0, 0), we obtain V (u, v, w, p, q, r) = 0, whereas
for (u, v, w, p, q, r) ̸= (0, 0, 0, 0, 0, 0), we obtain V (u, v, w, p, q, r) > 0. Then
V (u, v, w, p, q, r) has been proven to be positive definite for SMC and SPID.

2. The function V is continuous and it has a continuous first partial derivative at
S. The function V in (40) is a quadratic function, then it is easy to see that the
quadratic function is continuous. As a consequence, the partial derivative is also
continuous.
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3. The third requirement of the SMC method is as follows:

V̇ (u, v, w, p, q, r) =
∂V

∂u
u̇+

∂V

∂v
v̇ +

∂V

∂w
ẇ +

∂V

∂p
ṗ+

∂V

∂q
q̇ +

∂V

∂r
ṙ

= uu̇+ vv̇ + wẇ + pṗ+ qq̇ + rṙ

= u(aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1+

CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2) + v(aa2u+ bb2v + cc2w+

dd2p+ ee2q + gg2r +AA2Xprop +BB2δr1 + CC2δs1 +DD2Kprop+

EE2δs2 +GG2δr2) + w(aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r+

AA3Xprop +BB3δr1 + CC3δs1 +DD3Kprop + EE3δs2 +GG3δr2)+

p(aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1+

CC4δs1 +DD4Kprop + EE4δs2 +GG4δr2) + q(aa5u+ bb5v + cc5w+

dd5p+ ee5q + gg5r +AA3Xprop +BB5δr1 + CC5δs1 +DD5Kprop+

EE5δs2 +GG5δr2) + r(aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r+

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2 +GG6δr2).
(41)

We take

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
−K1sgn(S),

(42)

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r

BB2

)
−(

AA2Xprop + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2
BB2

)
−K2sgn(S),

(43)

δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r

CC3

)
−(

AA3Xprop +BB3δr1 +DD3Kprop + EE3δs2 +GG3δr2
CC3

)
−K3sgn(S),

(44)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r

DD4

)
−(

AA4Xprop +BB4δr1 + CC4δs1 + EE4δs2 +GG4δr2
DD4

)
−K4sgn(S),

(45)
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δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r

EE5

)
−(

AA3Xprop +BB5δr1 + CC5δs1 +DD5Kprop +GG5δr2
EE5

)
−K5sgn(S),

(46)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r

GG6

)
−(

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2
GG6

)
−K6sgn(S).

(47)

Substitute equations (42)-(47) into equation (41), then we obtain

V̇ (u, v, w, p, q, r) = u(−AA1K1sgn(S)) + v(−BB2K2sgn(S)) + w(−CC3K3sgn(S))+

p(−DD4K4sgn(S)) + q(−EE5K5sgn(S)) + r(−GG6K6sgn(S)) ≤
(−AA1K1)u+ (−BB2K2)v + (−CC3K3)w + (−DD4K4)p+

(−EE5K5)q + (−GG6K6)r.

We take K1 =
∣∣∣ 1
AA1

∣∣∣ η, K2 =
∣∣∣ 1
BB2

∣∣∣ η, K3 =
∣∣∣ 1
CC3

∣∣∣ η, K4 =
∣∣∣ 1
DD4

∣∣∣ η, K5 =
∣∣∣ 1
EE5

∣∣∣ η,
K6 =

∣∣∣ 1
GG6

∣∣∣ η. Then we obtain

V̇ (u, v, w, p, q, r) ≤ (−η)|u|+ (−η)|v|+ (−η)|w|+ (−η)|p|+ (−η)|q|+ (−η)|r|
≤ −η(|u|+ |v|+ |w|+ |p|+ |q|+ |r|).

From the above requirements, the function V is the function of Lyapunov and the
system is asymptotically stable.

The third characteristics of the SPID method is as follows:

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
+(

Kp1u+Ki1
1

2
u2 +Kd1u̇

)
, (48)

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r

BB2

)
−(

AA2Xprop + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2
BB2

)
+
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Kp2v +Ki2

1

2
v2 +Kd2v̇

)
, (49)

δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r

CC3

)
−(

AA3Xprop +BB3δr1 +DD3Kprop + EE3δs2 +GG3δr2
CC3

)
+(

Kp3w +Ki3
1

2
w2 +Kd3ẇ

)
, (50)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r

DD4

)
−(

AA4Xprop +BB4δr1 + CC4δs1 + EE4δs2 +GG4δr2
DD4

)
+(

Kp4p+Ki4
1

2
p2 +Kd4ṗ

)
, (51)

δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r

EE5

)
−(

AA3XpropBB5δr1 + CC5δs1 +DD5Kprop +GG5δr2
EE5

)
+(

Kp5q +Ki5
1

2
q2 +Kd5q̇

)
, (52)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r

GG6

)
−(

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2
GG6

)
+(

Kp6r +Ki6
1

2
r2 +Kd6ṙ

)
. (53)

Then equations (48)-(53) will be substituted to Xprop , δr1 , δs1 , Kprop , δs2 and δr2
in equation (41). The following equation is obtained:

V̇ (u, v, w, p, q, r)=u

(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1(Kp1u+Ki1

1
2
u2)

1−AA1Kd1
+

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
1−AA1Kd1

)
+

v

(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop

1−BB2Kd2
+

BB2(Kp2v +Ki2
1
2
v2) + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2

1−BB2Kd2

)
+

w

(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop

1− CC3Kd3
+

BB3δr1 + CC3(Kp3w +Ki3
1
2
w2) +DD3Kprop + EE3δs2 +GG3δr2

1− CC3Kd3

)
+
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p

(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop

1−DD4Kd4

+
BB4δr1 + CC4δs1 +DD4(Kp4p+Ki4

1
2
p2) + EE4δs2 +GG4δr2

1−DD4Kd4

)
+

q

(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r +AA3Xprop

1− EE5Kd5
+

BB5δr1 + CC5δs1 +DD5Kprop + EE5(Kp5q +Ki5
1
2
q2) +GG5δr2

1− EE5Kd5

)
+

r

(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1

1−GG6Kd6
+

CC6δs1 +DD6Kprop + EE6δs2 +GG6(Kp6r +Ki6
1
2
r2)

1−GG6Kd6

)
(54)

Next, we take

K7 =

∣∣∣∣aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1

(
Kp1u+Ki1

1

2
u2

)
+BB1δr1+

CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2 | η1,

K8 =

∣∣∣∣aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop +BB2

(
Kp2v +Ki2

1

2
v2
)
+

CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2 | η2,
K9 = |aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop +BB3δr1+

CC3

(
Kp3w +Ki3

1

2
w2

)
+DD3Kprop + EE3δs2 +GG3δr2

∣∣∣∣ η3,
K10 = |aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1 + CC4δs1+

DD4

(
Kp4p+Ki4

1

2
p2
)
+ EE4δs2 +GG4δr2

∣∣∣∣ η4,
K11 = |aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r| η5,
K12 = |aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1 + CC6δs1+

DD6Kprop + EE6δs2 +GG6

(
Kp6r +Ki6

1

2
r2
)∣∣∣∣ η6,

where η1 = 1
1−AA1Kd1

, η2 = 1
1−BB2Kd2

, η3 = 1
1−CC3Kd3

, η4 =
1

1−DD4Kd4
, η5 = 1

1−EE5Kd5
and η6 = 1

1−GG6Kd6
. Furthermore,

AA1,Kd1, AA2,Kd2, AA3,Kd3, AA4,Kd4, AA5,Kd5, AA6,Kd6 > 1. It follows that
1 − AA1Kd1 < 0, 1 − BB2Kd2 < 0, 1 − CC3Kd3 < 0, 1 − DD4Kd4 < 0,
1−EE5Kd5 < 0 and 1−GG6Kd6 < 0. Then we obtain that V̇ (u, v, w, p, q, r) ≤ 0.

According to the above requirements, the function V (u, v, w, p, q, r) = 1
2u

2+ 1
2v

2+
1
2w

2 + 1
2p

2 + 1
2q

2 + 1
2r

2 is the Lyapunov fuction and the system is asymptotically
stable.

If V (x) → ∞ when x → ∞, then the Lyapunov function is globally asymptotically
stable. The above Lyapunov function is V (u, v, w, p, q, r) = 1

2u
2 + 1

2v
2 + 1

2w
2 +

1
2p

2 + 1
2q

2 + 1
2r

2. It will be proven that V (u, v, w, p, q, r) → ∞ when u → ∞,
v → ∞, w → ∞, p → ∞, q → ∞ and r → ∞. Since V (u, v, w, p, q, r) = 1

2u
2 +
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1
2v

2 + 1
2w

2 + 1
2p

2 + 1
2q

2 + 1
2r

2 is a quadratic function, if u → ∞, v → ∞, w → ∞,
p → ∞, q → ∞ and r → ∞, then V (u, v, w, p, q, r) → ∞. Thus, the Lyapunov
function V (u, v, w, p, q, r) = 1

2u
2 + 1

2v
2 + 1

2w
2 + 1

2p
2 + 1

2q
2 + 1

2r
2 is asymptotically

stable. In conclusion, the stability analysis of the SMC and SPID control systems
has the stability property of being globally asymptotically stable.

9 Conclusions

Based on the simulation analysis of the SMC and SPID methods, it can be concluded that
both methods have good stability for the ROV linear model with an error of about 0.09%
- 4.5%. In terms of the delay time, rise time, peak time, maximum peak, and settling
time, both methods have similarities. As regards the stability ratio for each motion
performed, the SPID method is more stable for the surge, sway, and pitch motion, while
the SMC method is more stable for the heave, roll and yaw motion.
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