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Class of Nilpotent Distributions and N2-Distributions
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Abstract: This paper presents a sufficient condition for two vector fields X and Y
to have the squares noncommutative, i.e., [X2, Y 2] ̸= 0, in the case when X and Y
span a 3-nilpotent distribution. And when the nilpotent disributions of class 2 or 3
are spanned from more than two vector fields, it gives the same result.
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1 Introduction

The theory of subelliptic operators plays an important role in many applications in
nonlinear dynamics and system theory, robotics and mechanical systems, optimal control
of nonlinear systems, see [1, 9].

The subelliptic operator is a particular of case hypoelliptic differential equations.
Hypoelliptic equations involve operators that are neither purely elliptic (like Laplace’s
equation) nor hyperbolic (like the wave equation), but rather fall in between. These
equations often arise in the context of modeling systems with varying degrees of regularity
and smoothness.

An example is the study of heat conduction in materials with varying degrees of
conductivity, with a heat diffusion being non-uniform in all directions. The equation
∂
∂t −Lu = 0 gives a more efficient description in that direction, where u(x, t) is the heat
kernel and the subelliptic operator L is defined in the differential manifold. And the
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heat kernel characterizes the evolution of heat distribution over time in the context of
the operator’s structure.

A heat kernel of the subelliptic operator L = X2
1 + · · · +X2

k , where X1, · · · , Xk are
vector fields of Rn, with k ≤ n, is an important problem. A sufficient condition for the
hypo-ellipticity of the operator L is the bracket condition, see [2, 3, 6, 8]. If the squares
of the aforementioned vector fields commute, i.e., [X2

i , X
2
j ] = 0 for all Xi, Xj , then the

heat kernel of L is the product of heat kernels

etL = etX
2
1 · · · etX

2
k .

If they do not commute, the previous formula does not hold any more, and the heat
kernel should be found using a different method, see [4, 7, 12].

Ovidiu Calin and Der-Chen Chang in [5] give a sufficient condition for two vector
fields X and Y to have the squares noncommutative, i.e., [X2, Y 2] ̸= 0, in the following
result.

Theorem 1.1 [5]. Any distribution D = span{X,Y } of nilpotency class 2 is a
N2-Distribution, i.e., [X2, Y 2] ̸= 0.

In the present work, as the first result, in Theorem 3.1, we shall prove that in the case
of nilpotent distribution with the nilpotency class equal to 3, the squares of the vector
fields do not commute. In the second and third results of this work, Proposition 3.1 and
Proposition 3.2, we shall generalize the results of Theorem 1.1 and Theorem 3.1 for more
than two vector fields.

2 Preliminaries

In an n-dimensional smooth manifold M , we recall that a smooth distribution D of rank
m is a rank m subbundle of the tangent bundle TM [11]. We call the Nk-Distribution
a distribution spanned by two vector fields X and Y , which satisfies the condition
[Xk, Y k] ̸= 0 [5].

Let Γ(D) be a basis of the distribution D. We recall that the iterated commutator
sets Ck of vector fields obtained by k iterated Lie brackets of horizontal vector fields are

C1 ={[X,Y ]; X,Y ∈ Γ(D)},
...

Cn ={[C,Z]; C ∈ Cn−1, Z ∈ Γ(D)}.

A distribution D is called nilpotent if there is an integer k ≥ 1 such that C(k) = 0,
i.e., all the k iterated Lie brackets vanish. The smallest integer k is called the nilpotency
class of D which is called k-nilpotent, see page 47 in [6].

Example 2.1 (example of 3-nilpotent distribution [11]) The Martinet distribution in
R3 (with coordinates (x, y, z)) is the distribution generated by X and Y with

X = ∂x, Y = ∂y +
1

2
x2∂z,

the iterated commutators are
[X,Y ] = x∂z,
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[X, [X,Y ]] = ∂z, [Y, [X,Y ]] = 0,

and

[X, [X, [X,Y ]]] =0, [X, [Y, [X,Y ]]] = 0,

[Y, [X, [X,Y ]]] =0, [Y, [Y, [X,Y ]]] = 0.

It follows that this distribution is nilpotent of class 3.

3 Main Results

Theorem 3.1 Any distribution D = span{X,Y } of nilpotency class equal to 3 is a
N2-distribution, i.e., [X

2, Y 2] ̸= 0.

To prove this theorem, we use several lemmas, and we recall the following.
The distribution D = span{X,Y } is nilpotent of class 3 meaning that

[X,Y ] ̸= 0, (1)

[Y, [X,Y ]] ̸= 0 or [X, [X,Y ]] ̸= 0,

and

[X, [X, [X,Y ]]] = 0, [Y, [Y, [X,Y ]]] = 0, (2)

[X, [Y, [X,Y ]]] = 0, [Y, [X, [X,Y ]]] = 0. (3)

Lemma 3.1 In a distribution D = span{X,Y } of nilpotency class 3, we have

[X2, Y 2] = 0 =⇒ (XY )2 = (Y X)2. (4)

Proof. By developing the first equation of (3), we get

[X, [Y, [X,Y ]]] = 0 ⇐⇒ X2Y 2 − Y 2X2 − 2(XY )2 + 2(Y X)2 = 0

=⇒ X2Y 2 − Y 2X2 = 2((XY )2 − (Y X)2)

or
[X2, Y 2] = 0,

then (XY )2 = (Y X)2.

Lemma 3.2 In a distribution D = span{X,Y } of nilpotency class 3, we have

[X2, Y 2] = 0 =⇒ XYX2Y 2 = X2Y 2XY. (5)

Proof. The expansion of the equations (2) gives

X3Y − 3X2Y X + 3XYX2 − Y X3 = 0, (6)

Y 3X − 3Y 2XY + 3Y XY 2 −XY 3 = 0. (7)

Multiplying the right-hand side, then the left-hand side of the relation (6) by Y 2 and the
relation (7) by X2, we obtain

X3Y 3 − 3X2Y XY 2 + 3XYX2Y 2 − Y X3Y 2 = 0, (8)

Y 3X3 − 3Y 2XYX2 + 3Y XY 2X2 −XY 3X2 = 0, (9)

Y 3X3 − Y 2X3Y + 3Y 2X2Y X − 3Y 2XYX2 = 0, (10)

X3Y 3 −X2Y 3X + 3X2Y 2XY − 3X2Y XY 2 = 0. (11)
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By the subtractions of these equations, (8)-(9), (8)-(10), (11)-(10), we have found,
respectively,

X3Y 3 − Y 3X3 = 3X2Y XY 2 − 3XYX2Y 2 + Y X3Y 2 − 3Y 2XYX2

+ 3Y XY 2X2 −XY 3X2, (12)

X3Y 3 − Y 3X3 = 3X2Y XY 2 − 3XYX2Y 2 + Y X3Y 2 − Y 2X3Y

+ 3Y 2X2Y X − 3Y 2XYX2, (13)

X3Y 3 − Y 3X3 = X2Y 3X − 3X2Y 2XY + 3X2Y XY 2 − Y 2X3Y

+ 3Y 2X2Y X − 3Y 2XYX2. (14)

Subtracting the equations (12)-(13) gives

−3XYX2Y 2 + Y X3Y 2 + Y 2X3Y − 3Y 2X2Y X

−XY 3X2 + 3Y XY 2X2 −X2Y 3X + 3X2Y 2XY = 0.

In view of the fact that X2Y 2 = Y 2X2, the last equation becomes

−XYX2Y 2 + Y XX2Y 2 +X2Y 2XY −X2Y 2Y X = 0,

then
X2Y 2[X,Y ] = [X,Y ]X2Y 2. (15)

On the other hand, subtracting the equations (14)-(12) gives

−3XYX2Y 2 + Y X3Y 2 −X2Y 3X + 3X2Y 2XY = 0,

then
−[X,Y ]X2Y 2 +X2Y 2[X,Y ] + 2(X2Y 2XY −XYX2Y 2) = 0.

Using the relation (15), we obtain

XYX2Y 2 = X2Y 2XY.

Lemma 3.3 In a distribution D = span{X,Y } with the nilpotency class 3, we have

[X2, Y 2] = 0 =⇒ X2Y 2 = 3(XY )2. (16)

Proof. Multiplying the equation (6) in the proof of Lemma 3.2 by Y on two sides,
we obtain

Y X3Y 2 − 3Y X2Y XY + 3Y XY X2Y − Y 2X3Y = 0. (17)

Lemma 3.2 proves that
XYX2Y 2 = X2Y 2XY,

and interchanging X and Y , we get

Y XX2Y 2 = X2Y 2Y X,

then (17) becames
X2Y 2[X,Y ]− 3((XY )3 − (Y X)3) = 0,
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this implies that
(X2Y 2 − 3(XY )2)[X,Y ] = 0

but [X,Y ] ̸= 0, then
X2Y 2 = 3(XY )2.

Proof. (Proof of Theorem 3.1) We shall prove this theorem by contradiction, i.e.,
we assume that

[X2, Y 2] = 0. (18)

By developing [X,Y ]3 and using Lemma 3.1, we get

[X,Y ]3 = (XY )3 − (XY )2(Y X)− (XY )(Y X)(XY ) + (XY )(Y X)2

− (Y X)(XY )2 + (Y X)(XY )(Y X) + (Y X)2(XY )− (Y X)3

= 3(XY )3 − 3(Y X)3 − (XY )(Y X)(XY ) + (Y X)(XY )(Y X). (19)

Using Lemma 3.3, we get

(XY )(Y X)(XY ) = XY 2X2Y

= 3X(Y X)2Y

= 3XYXYXY = 3(XY )3,

(Y X)(XY )(Y X) = Y X2Y 2Y

= 3Y (XY )2X

= 3Y XY XYX

= 3(Y X)3.

The equation (19) becomes

[X,Y ]3 = 3(XY )3 − 3(Y X)3 − 3(XY )3 + 3(Y X)3 = 0,

then [X,Y ] = 0 is a contradiction. It turns out that (18) cannot hold. It follows that
the vector fields X and Y span a N2-distribution.

Example 3.1 [11] It is clear that the distribution D = Span{X,Y } is nilpotent of
class 3 so that

X = ∂x, Y = ∂y +
1

2
x2∂z,

and
[X2, Y 2] = 4x∂x∂y∂z + 2∂y∂z + 8x3∂x∂2

z + 12x2∂2
z ̸= 0.

For the second part of this paper, we need a new definition of Nk-distribution in the
case when the distribution is spanned by more than two vector fields.

Definition 3.1 Let D = span{X1, X2, · · · , Xm} with m ≤ n. We say that D is a
Nk-distribution if there exist Xi, Xj ∈ D such that [Xk

i , X
k
j ] ̸= 0.

In this proposition, we generalize Theorem 1.1 for more than two vector fields.
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Proposition 3.1 Let D = span{X1, · · · , Xm} be a distribution spanned by m-vector
fields of Rn (m ≤ n). Then if D is a nilpotent distribution of nilpotency class 2, then D
is a N2-distribution, i.e., ∃ Xi, Xj ∈ D such that [X2

i , X
2
j ] ̸= 0.

Proof. D is a nilpotent distribution of nilpotency class 2, then there exist Xi, Xj ∈ D
such that

[Xi, Xj ] ̸= 0

and
[Xi, [Xi, Xj ] = 0 and [Xj , [Xi, Xj ]] = 0.

Let us tackle a sub-distribution D′ = span{Xi, Xj}, from Theorem 1.1, we obtain that
in D′,

[X2
i , X

2
j ] ̸= 0,

or D′ ⊂ D, then we have in D,
[X2

i , X
2
j ] ̸= 0.

Example 3.2 [10] The distribution D = span{X,Y, Z} such that

X = ∂x, Y = ∂y, Z = x∂z

is nilpotent of class 2,

[X,Y ] = 0, [Y, Z] = 0, [X,Z] = ∂z

and

[Y, [X,Y ]] = 0, [X, [X,Y ]] = 0,

[X, [X,Z]] = 0, [Y, [Y,Z]] = 0,

[Z, [X,Y ]] = 0.

On the other hand, we have

[X2, Z2] = 4x∂x∂2z + 2∂2z ̸= 0.

In the next proposition, we generalize Theorem 3.1 for more than two vector fields.

Proposition 3.2 Let D = span{X1, · · · , Xm} be a distribution spanned by m-vector
fields of Rn (m ≤ n). Then if D is a nilpotent distribution of nilpotency class 3, then D
is a N2-distribution, i.e., ∃ Xi, Xj ∈ D such that [X2

i , X
2
j ] ̸= 0.

Proof. D is a nilpotent distribution of nilpotency class 3, then there exist Xi, Xj ∈ D
such that

[Xi, Xj ] ̸= 0

and

[Xi, [Xi, [Xi, Xj ]]] = 0, [Xj , [Xj , [Xi, Xj ]]] = 0,

[Xi, [Xj , [Xi, Xj ]]] = 0, [Xj , [Xi, [Xi, Xj ]]] = 0.

We remark that in the proof of Theorem 3.1, we do not use the iterated brackets of
degree two (C2). Let us tackle a sub-distribution D′ = span{Xi, Xj}, from Theorem 1.1,
we obtain that in D′,

[X2
i , X

2
j ] ̸= 0,

or D′ ⊂ D, then we have in D,
[X2

i , X
2
j ] ̸= 0.
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4 Conclusion

In summary, the heat kernel of a subelliptic operator captures the essential dynamic
behavior of heat diffusion within a system defined by that operator. It describes how the
initial heat distribution changes over time due to the conduction process governed by the
operator’s structure. The heat kernel provides insights into the temporal evolution of heat
within the context of the subelliptic operator, connecting the mathematical description
of heat conduction with the dynamic behavior of the system.

Unfortunately, the only method to find the solution of this kernel, is that the square
of the vector fields commutes (sufficient condition).

Ovidiu Calin and Der-Chen Chang in [5] give a sufficient condition for two vector
fields X and Y to have the squares noncommutative (distribution spanned with two
vectors fields).

In this work, we have given an extension for more than two vector fields, and we have
proposed a new sufficient condition for the noncommutative squares of the vectors fields
in the case of distribution of nilpotency class 3. This result offers less computation and
excellent description for the methods of finding the heat kernel of the sum of squares
operator.
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