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Abstract: In this study, we explore the application of the Moore-Spiegel chaotic
system in both image and voice encryption, considering the increasing importance of
data security in the digital age. The analysis of the chaotic system involves examining
phase diagrams, time series, bifurcation diagrams, Lyapunov exponent analysis, and
Poincaré maps to understand its dynamics. For image encryption, we evaluate the
system’s effectiveness through various analyses, including histogram analysis, correla-
tion analysis, entropy analysis, NPCR and UACI analysis, and noise attack analysis.
Similarly, for voice encryption, we assess it through various analyses, including wave-
form plots, FFT, spectrograms, correlation coefficients, entropy analysis, and RMSE.
The findings demonstrate the suitability of the Moore-Spiegel chaotic system for both
image and voice encryption, suggesting its potential as a data transmission masking
technique. The research includes numerical simulations conducted using Python to
support the proposed approach.
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1 Introduction

In recent times, ensuring the security and integrity of data transmitted through commu-
nication systems has become a significant focus for scientists. Research on chaos over
the past four decades has revealed its complex and unpredictable behavior in various
domains such as physics, climatology, chemistry, and biology. [1]

The Moore-Spiegel system, discovered in 1966, is a chaotic system that describes
aperiodic dynamics and has applications in understanding thermal dissipation and con-
vectively unstable fluids [2]. In 2017, the Moore-Spiegel synchronization circuit was
applied to a communication security system [3].

Numerous studies have explored the application of chaotic systems in encryption,
including image encryption using 1D, 2D, and 3D chaotic systems [4–6], as well as voice
encryption using the Jerk, Chua, and Bhalekar-Gejji chaotic systems [7–9]. While the
previous research demonstrates the potential of chaotic systems in encryption, further
optimization and security analysis are required.

This paper is structured as follows. Section 2 discusses the analysis of the Moore-
Spiegel Chaotic System, including phase diagrams, time series, bifurcation analysis, Lya-
punov exponent analysis, and Poincaré analysis. Section 3 explains the encryption and
decryption algorithms for digital images and voice using the Moore-Spiegel system. Sec-
tion 4 presents experimental results and analysis. For image encryption, we perform
histogram analysis, correlation analysis, entropy analysis, NPCR and UACI analysis,
and noise attack analysis. For voice encryption, we conduct voice signal plot analysis,
correlation coefficient analysis, voice entropy analysis, and Root Mean Squared Error
(RMSE) analysis. Finally, Section 5 concludes and provides a final assessment.

2 Moore-Spiegel Chaotic System and Basic Analysis

The Moore-Spiegel system is described by the following system of differential equations:
ẋ = y,

ẏ = z,

ż = −z + ay − x2y − bx.

(1)

The parameters and the initial conditions of Moore-Spiegel chaotic system are chosen as:
a = 9, b = 5, and (x0, y0, z0) = (2, 7, 4) so that the system shows the expected chaotic
behavior [2, 3, 10].

2.1 Phase diagram and time series

The signal plots of the Moore-Spiegel chaotic system with the constant parameters a = 9
and b = 5, and the initial condition of (2, 7, 4) were simulated using Python 3, as depicted
in Figure 1. The corresponding phase diagrams are illustrated in Figure 1. The graphs
obtained from the Moore-Spiegel system equations exhibit chaotic behavior, indicating
their suitability for digital image and voice encryption.

The utilization of phase diagrams and time series diagrams provides a solution for
analyzing the Moore-Spiegel system’s differential equation. These diagrams allow the
observation of the system’s movement characteristics. By examining the time series plot
of variables x, y, and z in Figure 2, it becomes evident that the Moore-Spiegel system
exhibits chaotic behavior.
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(a) (b) (c)

Figure 1: The 2D phase diagram of the Moore-Spiegel chaotic system; (a) y vs x, (b) z vs x,
(c) z vs y, with the parameter values a = 9, and b = 5.

Figure 2: The time series for the Moore-Spiegel chaotic system with the parameter values a = 9
and b = 5.

2.2 Bifurcation analysis

The bifurcation diagram represents the transition of a discrete dynamical system from
regular behavior to chaos [11]. Bifurcation analysis was carried out for the Moore-Spiegel
chaotic system using a fixed set of parameter values, starting from the initial condition of
(2, 7, 4). We perform 10,000 iterations with a time step of 0.01. The findings depicted in
Figure 3 illustrate the bifurcation diagram of the Moore-Spiegel system for the parameter
values within the range of 5.0 ≤ a ≤ 10.0, revealing the presence of chaotic dynamics
with periodic patterns. Similarly, Figure 4 illustrates the occurrence of chaotic behavior
with periodic patterns in the system when the parameter value falls within the range of
3.0 ≤ b ≤ 10.0.

(a) (b) (c)

Figure 3: Bifurcation diagram with the parameters b = 5 and a = varied; (a) x vs a, (b) y vs
a, (c) z vs a.
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(a) (b) (c)

Figure 4: Bifurcation diagram with the parameters a = 9, and b = varied; (a) x vs b, (b) y vs
b, (c) z vs b.

2.3 Lyapunov exponent

The Lyapunov exponent (λV ) is a metric employed in the realm of dynamical systems
theory to gauge how susceptible a system is to alterations in its initial conditions. We
employed a predefined set of parameter values and initialized the simulation with an
initial state of (2, 7, 4). Following that, we conducted 10,000 iterations with a time
increment of 0.01. Within the framework of the Moore-Spiegel chaotic system equations,
the variable vi(a, b) signifies the value of the x, y, or z component at time step i within
a simulation carried out with specific parameter values a, and b [12, 13]. The equation
for the Lyapunov Exponent is stated as follows:

λV (a, b) =
1

dt
ln

(
1

N

N−1∑
i=0

|vi(a, b)|

)
. (2)

The Lyapunov exponent formula allows us to understand the extent to which the
Moore-Spiegel chaotic system is sensitive to changes in its initial conditions and whether
the system tends toward chaotic or stable behavior over time. The strange attractor
shows three Lyapunov exponents with positive, zero, and negative values [3].

(a) (b)

Figure 5: The Lyapunov exponents when the parameters are varied as follows: (a) b = 5 and
a = varied, (b) a = 9 and b = varied.

Figure 5 illustrates chaotic behavior in the range of 5.0 ≤ a ≤ 10.0, with other
parameters held constant. The diagram displays periodic patterns amidst the chaos.
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Furthermore, within the range of 3.0 ≤ b ≤ 10.0, while keeping the other parameters
constant, the system exhibits diverse chaotic behaviors for different parameter values,
specifically a = 9 and b = 5. The system demonstrates limit point behavior due to the
presence of two negative Lyapunov exponents.

2.4 Poincare analysis

The Poincaré map provides insights into periodic and non-periodic systems. Periodic
systems exhibit a limited number of points with a repetitive structure, while non-periodic
systems have a larger number of points with an unpredictable structure, with some points
repeating.

(a) (b) (c)

Figure 6: Poincare map with the parameters a = 9, and b = 5; (a) x(n+1) vs x(n), (b) y(n+1)
vs y(n), (c) z(n+ 1) vs z(n).

Figure 6 shows the Poincaré map for the Moore-Spiegel system, where a = 9 and
b = 5. The map demonstrates chaotic behavior in the Moore-Spiegel chaotic system. It
is characterized by scattered points with an irregular structure, and some points show
repetition. The Poincaré map helps understand qualitative features of strange attractors
during chaotic states by revealing dense intersections and different trajectories in each
period. Analyzing the Poincaré map is crucial to comprehend the attractors’ qualitative
characteristics.

3 The Moore-Spiegel System Algorithm

3.1 Encryption algorithm

Input (Image) : Original Image (Bird, Landscape, Cat)
Input (Voice) : Original Voice
Output (Image) : Encrypted Image
Output (Voice) : Encrypted Voice

• Step 1: Import the required libraries.

• Step 2: To generate the pseudo-random key, you can create a function named
”secret-key” that utilizes the Moore-Spiegel chaotic system. For instance, you can
select a solution from differential equation (1) that demonstrates chaotic behavior,
such as x, y, or z, and use it as the basis for generating the pseudo-random key.
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• Step 3: Specify the initial conditions and the ”num” parameter responsible for
inducing chaos in accordance with differential equations (1). As an illustration,
you can set the initial condition to (x, y, z) = (2, 7, 4) and use parameters a = 9
and b = 5.

• Step 4 (Image): Load the decrypted image and extract its height and width to be
used in the ”secret key” function.

• Step 4 (Voice): Read the voice file and convert the voice data into NumPy array
format.

• Step 5: Iterate through each pixel (Image) or frame (Voice) in a loop.

• Step 6: Apply the XOR operation to encrypt the pixel (Image) or frame (Voice)
using the pseudo-random numbers generated from the ”secret key”.

• Step 7: Obtain the encrypted image or encrypted voice.

3.1.1 Decryption algorithm

Input (Image) : Encrypted Image
Input (Voice) : Encrypted Voice
Output (Image) : Decrypted Image (Bird, Landscape, Cat)
Output (Voice) : Decrypted Voice

• Step 1: Import the required libraries.

• Step 2: Read the encrypted image or encrypted voice file and extract its dimensions
or transform the voice data into a NumPy array.

• Step 3: Define the initial values and the ”num” parameter that result in chaotic
characteristics, similar to those in the encryption system. For instance, establish
the initial condition as (x, y, z) = (2, 7, 4), with parameters a = 9 and b = 5.

• Step 4: Produce a pseudo-random key through the development of a function named
the ”secret-key” that leverages the Moore-Spiegel chaotic system. For instance, opt
for a solution within differential equation (1), be it x, y, or z, that demonstrates
chaotic behavior to serve as the basis for the pseudo-random key.

• Step 5: Iterate through each pixel in the encrypted image or frame in the encrypted
voice file.

• Step 6: Decrypt the pixel (Image) or frame (Voice) by performing XOR opera-
tion between the encrypted pixel (Image) or frame (Voice) and the corresponding
pseudo-random number from the secret key.

• Step 7: Obtain the decrypted image or decrypted voice.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (5) (2023) 545–560 551

4 Experiment Results

In this section, we divide the experimental results into two parts: image encryption and
voice encryption.

4.1 Image encryption

In this part, we conducted an evaluation of the Moore-Spiegel chaotic system’s masking
approach, utilizing three unique images: Bird, Landscape, and Cat. Our analysis was
primarily focused on appraising the system’s effectiveness in encrypting and ensuring the
security of image files, as shown in Figure 7.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Application of the Moore-Spiegel chaotic system in Digital Image Encryption and
Decryption. (a, d, g) Original. (b, e, h) Encrypted. (c, f, i) Decrypted.

4.1.1 Histogram image encryption analysis

Histogram analysis portrays the distribution of pixel intensities graphically in an image.
It provides insights into the prevalence of different ranges of pixel intensities [14]. Pixels
in an original image have distinct and information rich diagonal bars. These diagonal
bars are vulnerable to attacks. To counter such attacks, the encryption algorithm should
ensure that the encrypted image has evenly distributed bars [15]. Figure 8, 9, 10 show
histogram analysis results for the original image, encrypted image, and decrypted image.
The original image’s histogram displays non-flat distribution with clustering tendencies
on the left and right sides. The histogram of the encrypted image indicates a successful
encryption with a flat distribution. The histogram of the decrypted image demonstrates
a successful decryption, restoring a similar distribution as in the original image.
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(a) (b) (c)

Figure 8: Histogram analysis of Bird image: (a) original, (b) encrypted, (c) decrypted.

(a) (b) (c)

Figure 9: Histogram analysis of Landscape image: (a) original, (b) encrypted, (c) decrypted.

(a) (b) (c)

Figure 10: Histogram analysis of Cat image: (a) original, (b) encrypted, (c) decrypted.

4.1.2 Correlation image encryption analysis

Correlation analysis measures the degree of correlation between multiple images using
a correlation coefficient ranging from -1 to 1. A correlation coefficient of 1 represents
a perfect positive relationship, 0 indicates no relationship, and -1 represents a perfect
negative relationship [1]. The correlation coefficient is calculated based on the relative
ranking of pixel intensities in the images, rather than their actual values. It can be
expressed mathematically as follows:

rxy =
Cov(x, y)√
(D(x)D(y))

, (3)

where

Cov(x, y) =
1

N

N∑
j=1

(xj − E(x))(yj − E(y)), (4)

E(x) =
1

N

N∑
j=1

Xj , (5)

D(x) =
1

N

N∑
j=1

(xj − E(x))2. (6)
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The correlation coefficient equation involves the expected values of variables x and y
denoted by E(x) and E(y), respectively. The term Cov represents the covariance between
the variables, while D(x) and D(y) indicate the standard deviations of x and y. The
variables xj and yj refer to the individual pixels in the first and second images, and N
represents the total number of pixels involved in the calculation [1].

Image Channel Original-Encrypted Original-Decrypted

Bird R -0.0056 1.0000
G 0.0288 0.9999
B -0.0078 1.0000

Average 0.0052 1.0000
Landscape R -0.0230 0.9999

G -0.0308 0.9999
B 0.0279 1.0000

Average -0.0087 0.9999
Cat R 0.0036 1.0000

G 0.0217 1.0000
B 0.0236 0.9999

Average 0.0163 1.0000

Table 1: Image correlation analysis.

Table 1 presents the results of correlation analysis conducted for the encrypted image
and decrypted image of the three images using RGB analysis. The correlation coef-
ficients between the pixels of the original images and the encrypted images are close
to zero, indicating a lack of correlation and successful image masking. On the other
hand, the correlation coefficients between the pixels of the original images and those of
the decrypted images show a perfect correlation, confirming the algorithm’s successful
execution.

4.1.3 Entropy image encryption analysis

Image entropy within the RGB channels serves as a statistical metric employed to eval-
uate the degree of uncertainty or randomness present in the distribution of pixel values
within each individual color channel (namely, Red, Green, and Blue) in the color im-
age. Entropy offers insights into the uniformity or concentration of information within
each channel. A heightened entropy value implies a more haphazard distribution of pixel
values, whereas a lower entropy value signifies a more structured or concentrated arrange-
ment of color distribution [16]. The calculation for determining the information entropy
value is defined by the following equation:

H(X) = −
N∑
i=1

p(xi) log2(p(xi)), (7)

in this context, H(X) stands for the entropy measure of the probability distribution
X, p(xi) signifies the likelihood of pixel value xi occurring within the distribution, N
corresponds to the total count of unique pixel values in the distribution, and log2(p(xi))
denotes the logarithm base-2 of the probability associated with pixel value xi.
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Based on Table 2, the entropy value for the encrypted image is higher than those
for the original and decrypted images. The higher the entropy value (closer to 8), the
higher the level of disorder in the information content of the image. This means that
the information contained in the encrypted image is irregular, random, and difficult to
comprehend.

Image Channel Original Encrypted Decrypted

Bird
R 7.35329 7.99193 7.35329
G 7.07455 7.99194 7.07455
B 7.83513 7.99198 7.83513

Landscape
R 7.84448 7.99202 7.84448
G 7.80162 7.99197 7.80162
B 7.04028 7.99200 7.04028

Cat
R 7.55674 7.99196 7.55674
G 7.55905 7.99203 7.55905
B 6.94755 7.99195 6.94755

Table 2: Image entropy values.

4.1.4 NPCR and UACI Analysis

1. NPCR (Normalized Pixel Change Rate): The NPCR (Normalized Pixel
Change Rate) calculates the proportion of the pixel alterations between two images
that have undergone encryption or decryption procedures. This parameter offers
insight into the extent of pixel modifications that occur as a result of applying
encryption or decryption algorithms [17] calculated by

NPCR =
Number of Changed Pixels

N ×M
× 100%, (8)

where N and M represent the dimensions of the image in pixels, and the ”Number
of Changed Pixels” is the count of pixel positions where the pixel values differ
between the two images.

2. UACI (Unified Average Changing Intensity): UACI quantifies the mean
intensity variation between two images that are being compared. Intensity change
is assessed by calculating the absolute difference between pixel values in the first and
second images, and this value is then averaged across all pixels. UACI offers insights
into the degree of intensity alterations that take place following an encryption or
decryption process [17]. The UACI is computed using the following formula:

UACI =
Sum of Intensity Differences

N ×M × L
× 100%, (9)

where N and M stand for the pixel dimensions of the image, L signifies the total
number of potential intensity levels for each pixel, which is typically 256 for an
8-bit image. The ”Sum of Intensity Differences” corresponds to the summation of
absolute disparities between corresponding pixel values in the two images.

In Table 3, the NPCR (%) column depicts the percentage of pixel changes between
the original image and the encrypted image, as well as between the original image and the
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decrypted image. The research results indicate significant pixel changes in the encrypted
image, with percentages of approximately 98.50 %, 97.32 %, and 97.99 %, highlighting a
noticeable transformation in the encrypted image compared to the original one.

Image
NPCR (%) UACI (%)

Original - Original - Original - Original -
Encrypted Decrypted Encrypted Decrypted

Bird 98.50 % 0.00 % 30.81 % 0.00 %
Landscape 97.32 % 0.00 % 29.65 % 0.00 %

Cat 97.99 % 0.00 % 23.32 % 0.00 %

Table 3: NPCR and UACI percentages.

Meanwhile, the UACI (%) column of Table 3 illustrates the percentage of the pixel
intensity changes between the original image and the encrypted image, as well as between
the original image and the decrypted image. The research findings also reveal significant
fluctuations in pixel intensity within the encrypted image. However, the decryption
process successfully restores the image to its original pixel intensity levels, as evidenced
by a UACI value of 0.00 % for all images. These findings provide an understanding of
the impact of encryption and decryption algorithms on pixel changes and pixel intensity
changes in the evaluated images.

4.1.5 Noise of attack image encryption analysis

The transmission of images may introduce distortions that can impact the final results.
Therefore, it is crucial to evaluate the algorithm’s performance against distortion attacks.
The Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are utilized to
measure the impact of noise on the decrypted image [18]. The equations for calculating
the MSE and PSNR are as follows:

PSNR = 10 log 10

(
Max2

i

MSE

)
, (10)

MSE =
1

M ×N

M∑
i=1

N∑
j=1

(Pij − Cij)
2. (11)

In the given statement, Pij represents the pixel value at the position i, j of the image
without noise. Cij represents the pixel value at the position i, j of the image with noise.
Maxi denotes the maximum pixel value in the image.

We used density variations to modify the impact of noise. The MSE values were
calculated by comparing the decrypted image after incorporating Salt and Pepper noise.
A higher PSNR value indicates less information loss, while a higher MSE value indicates
more information loss. In Table 4, it can be observed that at a density of 0.10, the MSE
value is higher and the PSNR value is lower. Conversely, at a density of 0.05, the MSE
value is lower and the PSNR value is higher.
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Image Variation of Density MSE PSNR

Bird 0.05 1148.51 17.53 dB
0.10 2300.34 14.51 dB

Landscape 0.05 1131.49 17.59 dB
0.10 2256.74 14.60 dB

Cat 0.05 1031.23 18.00 dB
0.10 2062.23 14.99 dB

Table 4: The MSE and PSNR values were calculated for the decrypted image with salt and
pepper noise.

4.2 Voice encryption

In this section, we tested the Moore-Spiegel chaotic masking system on three original
voice files to ensure robust encryption, preserving confidentiality and integrity against
unauthorized access and tampering.

4.2.1 Voice signal plot

Waveform plots visually represent the signal’s amplitude changes over time, aiding in-
terpretation. Each frame of the voice signal is then transformed from time to frequency
domain using FFT, enabling the analysis of voice characteristics such as high and low
frequencies and amplitude strength at each frequency. Spectrogram plots display the
signal’s frequency against time and are shown sequentially in Figures 11, 12, and 13.

(a) (b) (c)

Figure 11: Waveform graph; (a) voice 1 (”Terima Kasih” in Bahasa), (b) voice 2 (”Thank
You” in English), (c) voice 3 (”Arigatou” in Japanese).

(a) (b) (c)

Figure 12: FFT graph; (a) voice 1 (”Terima Kasih” in Bahasa), (b) voice 2 (”Thank You” in
English), (c) voice 3 (”Arigatou” in Japanese).
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(a) (b) (c)

Figure 13: Spectrogram graph ; (a) voice 1 (”Terima Kasih” in Bahasa), (b) voice 2 (”Thank
You” in English), (c) voice 3 (”Arigatou” in Japanese).

The three images show Waveform, FFT, and Spectrogram graphs for the original
voice, encrypted voice, and decrypted voice, respectively, for three different voices: voice
1 (Bahasa: ”Terima Kasih”), voice 2 (English: ”Thank You”), and voice 3 (Japanese:
”Arigatou”). The analysis reveals that the encrypted voice signal has a distinct pattern,
while the decrypted voice signal closely resembles the original voice signal. This demon-
strates the algorithm’s effectiveness in preserving the high quality of the recovered voice
signal.

4.2.2 Correlation voice encryption analysis

The correlation analysis in voice encryption is governed by equations (3), (4), (5), (6). For
voice encryption, the correlation analysis is performed with a similar methodology which
differs in terms of the parameters used. Cov(x, y) represents the covariance between the
original signal x and the encrypted signal y. D(x) and D(y) denote the variances of
signals x and y, respectively. N represents the number of voice samples. A low value of
the correlation coefficient rxy indicates a high-quality encryption [19].

Voice File Original-Encrypted Original-Decrypted

recording1.wav (Terima Kasih) -0.00389 1.0
recording2.wav (Thank You) -0.00055 1.0
recording3.wav (Arigatou) -0.00079 1.0

Table 5: Voice correlation analysis.

The correlation coefficients between the original and encrypted voice signals are close
to 0, indicating a lack of correlation, while the correlation coefficients between the original
and decrypted voice signals are close to 1, indicating a strong correlation. Please refer
to Table 5 for the specific values.

4.2.3 Entropy voice encryption analysis

In the realm of audio, entropy serves as a statistical metric employed to gauge the de-
gree of uncertainty or randomness present in the arrangement of audio sample values.
A heightened audio entropy signifies an increased diversity in audio sample values, po-
tentially indicating the presence of more intricate or unpredictable sounds. Conversely,
reduced entropy implies that the sound typically exhibits patterns or repetitions, with
limited fluctuations in sample values [20].
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The computation of audio entropy can be accomplished through Shannon’s entropy
formula, which is articulated as follows:

H(X) = −
N∑
i=1

p(xi) log2(p(xi)). (12)

In this formula, H(X) denotes the entropy of the probability distribution X representing
audio sample values, p(xi) stands for the likelihood of occurrence of audio sample value
xi within the distribution, and N signifies the count of distinct audio sample values in
the distribution. The provided algorithm calculates entropy for three different audio files:
the original voice recording, the encrypted voice, and the decrypted voice. This program
proves to be invaluable in the analysis of how audio information undergoes transforma-
tion during encryption and decryption procedures, shedding light on the complexity or
randomness level of the audio files. A higher entropy value indicates a greater degree of
variation in sample values within the audio.

Voice File Original Encrypted Decrypted

recording1.wav (Terima Kasih) 11.33927 15.76719 11.33927
recording2.wav (Thank You) 11.45686 15.76808 11.45686
recording3.wav (Arigatou) 11.69892 15.76718 11.69892

Table 6: Voice entropy value.

The findings derived from the Shannon Entropy table, as presented in Table 6, eluci-
date that the encryption procedure exerts a substantial influence on the degree of unpre-
dictability or randomness inherent in the audio data. This is evidenced by the notable
escalation in Shannon Entropy values following the encryption process. However, subse-
quent to the decryption phase, the audio data regains a level of unpredictability akin to
its original state, signifying the successful preservation of the fundamental information
within the audio data. This inference suggests that, within this specific context, the
encryption-decryption process can furnish additional security measures against unautho-
rized access to audio data while upholding the integrity of the data encapsulated within
the audio files.

4.2.4 Root mean squared error (RMSE)

The RMSE (Root Mean Squared Error) measures the deviation between the predicted
and actual values. A lower RMSE value is desirable as it indicates higher accuracy in the
model’s predictions. The ideal RMSE value depends on the specific problem and data
range. While there is no universally defined ideal value, a decreasing RMSE signifies
improved accuracy in the prediction model.

RMSE =

√∑ (xpred − xact)2

N
, (13)

where xpred is a predicted value, xact is an actual value and N is the total data. Ta-
ble 7 shows the comparison of RMSE values for voice decryption using low-level noise,
indicating that the algorithm performs well.
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Voice File Variaty Density RMSE

recording1.wav (Terima Kasih) 0.10 0.1002
0.01 0.0100

recording2.wav (Thank You) 0.01 0.1002
0.01 0.0100

recording3.wav (Arigatou) 0.10 0.1001
0.01 0.0100

Table 7: The RMSE values for decrypted voice with Gaussian noise.

5 Conclusion

The previous research on the Moore-Spiegel system in communication security was lim-
ited to synchronization circuits, without applying it to image and voice encryption. Anal-
ysis shows that the Moore-Spiegel chaotic system is ideal for data encryption due to its
unpredictability, randomness, and sensitivity to initial conditions, making it suitable
for generating random encryption keys. The proposed algorithm’s effectiveness has been
substantiated through various analyses, including histogram, correlation, entropy, NPCR
and UACI, and noise attack analyses for image and voice encryption. Further research
potential lies in developing encryption methods for videos or other complex subjects.
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