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Study of a Penalty Method for Nonlinear Optimization

Based on a New Approximate Function
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Abstract: The aim of this paper is to present a logarithmic penalty method for
solving nonlinear optimization. The line search is carried out by means of an ap-
proximate function if the descent direction is determined using a classical Newton
technique. Contrary to the line search method, which is costly in terms of computing
volume and demands a lot of time, the proposed approximate function enables easy
and quick computation of the displacement step. Numerous intriguing numerical ex-
periments, which are presented in the last section of this work, show that our new
approximate function is accurate and efficient.
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1 Introduction

Nonlinear optimization problems deal with the problem of optimizing an objective func-
tion in the presence of equality and inequality constraints. Furthermore, if all the func-
tions are linear, we obviously have a linear optimization problem. Otherwise, the problem
is called a nonlinear optimization problem.

This research field is motivated by the fact that several problems are collected from
practice such as engineering, medicine, business administration, economics, physical sci-
ences, and nonlinear dynamics and systems (see, e.g., [8, 9]).
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Quadratic optimization is a type of nonlinear optimization, where the objective func-
tion is quadratic. In order to solve this type, we propose a penalty approach without line
search based on approximate functions, which is the efficient method for determining the
displacement step. This study is supported by an important numerical simulation.

For this purpose, we consider the solution of the following quadratic programming
problem:

(P )

{
min q(x) = 1

2x
tQx+ ctx

x ∈ D,

with
D = {x ∈ Rn : Ax ≥ b}.

The following assumptions are made.
1. c ∈ Rn, Q is an Rn×n symmetric semidefinite matrix.
2. We know a point x0 ∈ Rn such that Ax0 > b.
3. b ∈ Rp, A is a (p× n) full rank matrix.
4. The set of optimal solutions of (P ) is nonempty and bounded.
In this paper, the problem (P ) is approximated by the problem (Pη), (η > 0),

(Pη)

{
min qη(x)

x ∈ Rn,

where the barrier function qη : Rn → (−∞,+∞] is defined by

qη(x) =

{
q(x)− η

∑m
i=1 ln < ei, Ax− b > if Ax− b > 0

+∞ otherwise,

where (e1, e2, ..., em) is the canonical base in Rm and η is a strictly positive barrier
parameter. Recall that the scalar product of x, y ∈ Rn is given by

⟨x, y⟩ = xty =

n∑
i=1

xiyi,

the Euclidean norm of y is

∥y∥ =
√
⟨x, y⟩ =

√√√√ n∑
i=1

y2i .

A classical Newton descent approach is used to solve this problem.
In our new approach, instead of minimizing qη, along the descent direction at a current

point x, we propose an approximate function G for which the optimal solution of the
displacement step α is obtained explicitly.

Let us minimize the function G so that

G (α) =
1

η
(qη(xη + αd)− qη(xη)) ≥ Ğ(α), ∀α > 0,

with G(0) = Ğ(0) = 0, G′(0) = Ğ′(0) < 0. The best quality of the approximations
Ğ of G is ensured by the condition G′′(0) = Ğ′′(0). The idea of this new approach
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consists in introducing one original process to calculate the displacement step α based on
minorant functions. Then we obtain an explicit approximation which leads to reducing
the objective, adding to this, it is economical and robust, contrary to the traditional
methods of line search.

The paper is organized as follows. In Section 1, we prove the perturbed problem
convergence to the initial one. We are interested in resolving the perturbed problem.
We describe our algorithm briefly and we present our main result by introducing a new
approximate function to compute efficiently the displacement step of the obtained penalty
algorithm. This approach is employed to evade line search methods and expedite the
algorithm’s convergence.

In Section 2, we present numerical tests on some different examples to illustrate the
effectiveness of the proposed approach and we compare it with the standard line search
method. A conclusion and future research are given in the last Section 3.

By assumption (1), its solutions set is nonempty and bounded, and as we know, (P )
is convex, consequently, in accordance with Bachir Cherif et al. [5], the strictly convex
problem (Pη) has unique optimal solution x∗η for each η > 0.

Since solving the problem (P ) is similar to solving the problem (Pη) when η tends to
0, our goal is to resolve the problem (Pη).

Firstly, we need to study the convergence of (Pη) to (P ).

Convergence of the Perturbed Problem (Pη) to (P )

Let the function ψ be defined on R× Rn by

ψ(η, x) =

 q (x) +
n∑

i=1

ξ(η, xi) if x ≥ 0, Ax ≥ b,

+∞ if not,

where ξ : R2 −→ (−∞,+∞] is a convex, lower semicontinuous and proper function given
by

ξ(η, t) =

 η ln (η)− η ln (α) if α > 0 and η > 0,
0 if α ≥ 0 and η = 0,
+∞ otherwise.

So, the function ψ is a convex, lower semicontinuous and proper function.
From [5], the strictly convex problem (Pη) admits a unique optimal solution x∗η for

each η. The solution of the problem (P ) reduces to the solution of the series of problems
(Pη). The sequence of the solutions xη of (Pη) should converge to the solution of (P )
when η tends to 0.

Now we are in a position to state the convergence result of (Pη) to (P ) which is proved
in Lemma 1 from [4].

Let η > 0, for all x ∈ D, we define

ψ(x, η) = qη(x).

Lemma 1.1 [4] Let η > 0. If xη is an optimal solution of the problem (Pη) such
that limη→0 xη = x∗, then x∗ is an optimal solution of the problem (P ).

Let η > 0, for all x ∈ D, we define ψ(x, η) = qη(x).
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Resolution of the Perturbed Problem

In this section, we are interested in finding the solution of the perturbed problem xk+1 =
xk + αkdk. For this purpose, we first use the Newton method to calculate the descent
direction dk. Then we obtain the displacement step αk by our new minorant function.
Finally, we describe a standard prototype algorithm.

1.1 Newton descent direction

The interior point methods of the logarithmic barrier type are developed for resolving
this type of problems based on the optimality conditions that are necessary and sufficient
since the problem (Pη) can be considered as the one without constraints.

As a result, ((xη)k = xk) is an optimal solution of (Pη) such that the following
condition is met:

∇qη(xη) = 0. (1)

Thus, xk+1 = xk + dk is the iteration of Newton, where dk is the descent direction
solution of the linear system

∇2qη(xη)dk = −∇qη(xη). (2)

Note 1. We insert a displacement step αk and we write

xk+1 = xk + αkdk

to ensure the strictly feasible iterate xk+1 = xk + dk.

1.2 Model algorithm

In this part, we present a brief algorithm of our approach to obtain an optimal solution
x̄ of the problem (P ) .

Begin algorithm

Initialization

Start with x0 being a strictly feasible solution of (P ) , η > 0, ε is a given precision
and k = 0.

While ∥∇qη(xk)∥ > ε do

– Resolve the system : ∇2qη(xk)dk = −∇qη(xk).
– Compute the displacement step αk.

– Take xk+1 = xk + αkdk and k = k + 1.

– Put η = ση, 0 < σ < 1.

End While
We have obtained a good approximate solution of the problem (P ).

End algorithm.

1.3 Computation of the displacement step

There are two main techniques used for computing the displacement step αk.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (5) (2023) 561–570 565

(1) Line search methods: The method of Goldstein-Armijo, Fibonacci, Wolfe, etc.
They are based on the unidimensional function’s minimization:

ϕ(α) = min
α>0

qη(xη + αd).

They are time-consuming and unfortunately very sensitive.

(2) Minorant function: The technique of the minorant function was first proposed
by Leulmi [10] for the positive semidefinite programming. This technique relies on
approximating the function

G(α) =
1

η
(qη(xη + αd)− qη(xη))

by another function whose minimum can be easily computed, which permits the
computation of the displacement step at each iteration in a relatively short time
and with a smaller number of instructions in contrast to the line search technique.

We start with the following lemma, and in the rest of the paper, we consider x instead
of xη.

Lemma 1.2 [14] The function G can be written as follows:

G(α) =
1

η
(
1

2
α2dtQd− αdtQd) + α(

m∑
i=1

yi − ||y||2)−
m∑
i=1

ln(1 + αyi) (3)

for all α ∈ [0, α̂] such that α̂ = mini∈I−{−1
yi
} and I = {i : yi < 0}, where

yi =
< ei, Ad >

< ei, Ax− b >
, i ∈ {1, ...,m}.

Now, we give the main result of the paper.

1.4 New approximate function

To introduce our new majorant function, we use the following well known inequality:(
∥y∥ −

n∑
i=1

yi

)
α− ln(1 + α∥y∥) +

n∑
i=1

ln(1 + αyi) ≤ 0. (4)

Replacing by the precedent inequality in (3), we obtain Ğ(α) ≤ G(α), then

Ğ(α) = δα− ln(1 + βα) +
1

2η
α̂2dtQd, α ∈ [0, α̂[ ,

with δ = −∥y∥(∥y∥ − 1) and β2 = ∥y∥.

Lemma 1.3 For α ∈ Iα = [0, α̂[, we have

Ğ(α) ≤ G(α).
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Proof. From inequality (4) and for α ∈ Iα, we have

α

m∑
i=1

yi −
m∑
i=1

ln (1 + αyi)− α∥y∥2 ≥ −α∥y∥ − α∥y∥2 − ln(1 + α∥y∥).

We have (−αdtQd) > 0 and

1

2η
α2dtQd <

1

2η
α̂2dtQd, ∀α ∈ Iα.

This produces

G(α) = α

n∑
i=1

yi − α∥y∥2 −
n∑

i=1

ln (1 + αyi) +
1

η
(
1

2
α2dtQd− αdtQd)

≥ −α(∥y∥2 − ∥y∥)− ln (1 + α∥y∥) + 1

2η
α̂2dtQd = Ğ(α).

Then

∀α ∈ Iα : G(α) ≥ Ğ(α).

Remark 1.1 We note that

Ğ′′(α) =
∥y∥2

(1− ∥y∥2)2
≥ 0,∀α ∈ [0, α̂[,

hence Ğ is convex, and if it admits a minimum, this minimum is global.

Minimization of the minorant function Ğ is defined and convex on [0, α̂[, then its global
minimum is reached when Ğ′(α) = 0, therefore finding the minimum of the function Ğ
is equivalent to solving the equation Ğ′(α) = 0. The solution of the later is the root of
the equation

α(∥y∥2 − ∥y∥3)− ∥y∥2 = 0. (5)

The root of the equation (5) is

α∗ = − (∥y∥ − 1)
−1 ∈ Iα,

which is the global minimum of the function Ğ.
The following lemma indicates that the interior point xk+1 generated in each iteration

k of the algorithm ensures the decreases of the function qη.

Lemma 1.4 The function qη significantly decrease from the iteration k to the itera-
tion k + 1, that is, if xk and xk+1 are two feasible solutions obtained at the iteration k
and k + 1, respectively, then

qη(xk+1) < qη(xk). (6)

Proof. Let xk and xk+1 be two feasible solutions obtained at the iteration k and
k + 1, respectively, we have

qη(xk+1) ≃ qη(xk) + ⟨∇qη(xk), xk+1 − xk⟩
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and

xk+1 = xk + αkdk, (7)

then

qη(xk+1)− qη(xk) ≃ ⟨∇qη(xk), αkdk⟩
≃ −αk

〈
∇2qη(xk)dk, dk

〉
< 0.

Hence,

qη(xk+1) < qη(xk),

which implies the claimed result.

2 Numerical Tests

We evaluate our algorithm’s efficiency based on our approximate function. We conducted
comparative numerical tests between our new two approximate functions (minorant func-
tion) and Armijo-Goldstein’s line search method.

For this, in this part, we present a comparative numerical tests on different examples
taken from the literature [1–3].

In the below tables, we reported the results obtained by implementing the algorithm
in MATLAB R2013a on I5, 8350 (3.6 GHz) with 8 Go RAM.

We have taken ε = 1.0e− 005.

We use the following designations:

- (itrat) represents the number of iterations necessary to obtain an optimal solution.

- (time) represents the time of computation in seconds (s).

- (stmin) represents the strategy of approximate functions introduced in this paper.

- (LS) represents the classical Armijo-Goldstein line search.

We consider the following quadratic problem:

α = min[q (x) : x ≥ 0, Ax ≥ b],

where q (x) = 1
2x

tQx+ ctx.

2.1 Examples

Example 01: The matrix Q is defined by

Q[i, j] =

 2j − 1 if i > j,
2i− 1 if i < j,
i (i+ 1)− 1 if i = j, i, j = 1, .., n,

A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n
0 otherwise.

c[i] = −1, c[i+m] = 0 and b[i] = 2, ∀i = 1, ..,m,

with n = 2m. We test this example for different values of n. The following table resumes
the obtained results:
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ex(m,n) stmin LS
itrat time itrat time

200× 400 10 5.99012 26 22.52401
300× 600 15 50.03129 35 97.10345
600× 1200 25 71.66481 48 224.32120
1000× 2000 30 122.27613 51 497.01165
1500× 3000 39 320.79313 78 1321.03278

Example 02: We defined the matrix Q by

Q[i, j] =
{ 1

i+j for i, j = 1, .., n,

A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n,
0 otherwise,

c[j] = 2j and b[i] = i2, ∀i = 1, ..,m,

with n = 2m. We test this example for different values of n.
The following table resumes the obtained results:

ex(m,n) stmin LS
itrat time itrat time

200× 400 9 9.01214 16 29.12331
300× 600 11 25.03119 27 84.15001
600× 1200 33 74.06481 55 153.92210
1000× 2000 39 198.07613 68 2213.11431
1500× 3000 58 401.09313 124 3121.11303

Example 03: Let us define the matrix Q by Q[1, 1] = 1,
Q[i, i] = i2 + 1,
Q[i, i− 1] = Q[i− 1, i] = i, i = 2, .., n,

A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n
0 otherwise,

c[j] = j and b[i] = i+1
2 , ∀i = 1, ..,m,

with n = 2m. We test this example for different values of n.
The following table resumes the obtained results:

ex(m,n) stmin LS
itrat time itrat time

200× 400 23 10.22544 38 22.52401
300× 600 32 41.02385 45 88.11235
600× 1200 39 91.10519 66 148.62103
1000× 2000 50 148.47512 70 2004.11257
1500× 3000 75 322.10134 101 2453.92312

Example 04: Let Q be the matrix define by Q[1, 1] = 1,
Q[i, i] = 4, i = 2, ..., n− 1,
Q[i, i− 1] = Q[i− 1, i] = 1, i = 2, .., n,
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A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n,
0 i ̸= j or (i+ 1) ̸= j,

c[j] = i+1
2 and b[i] = 4, ∀i = 1, ..,m and j = 1, .., n,

with n = 2m. We test this example for different values of n.
The following table resumes the obtained results:

ex(m,n) stmin LS
itrat time itrat time

200× 400 12 6.22544 21 34.32215
300× 600 25 81.02385 31 172.32550
600× 1200 36 122.10519 53 503.44316
1000× 2000 39 148.47512 67 2033.50062
1500× 3000 55 352.10134 132 3121.11303

Commentary. These experiments demonstrate clearly the impact of our approach on
the numerical behavior of the algorithm, expressed by the reduction of the number of
iterations and computation time. The number of iterations and the computing time
are considerably reduced in the approximate approaches in comparison with the line
search method. Always, in the problems of linear dynamics, we arrive to the problem of
optimization. Then we solve this problem by our approach. This is what we look forward
to in future.

3 Conclusion

In order to solve a quadratic optimization problem, this study provides a logarithmic
penalty method based on new approximate functions (minorant). As anticipated, the
minorant function strategy for computing the displacement step demonstrates its effec-
tiveness by lowering the computational cost when compared to the line search method.
This effectiveness is a result of the nature of the mentioned functions. The numerical
results demonstrate that our strategy reduces the cost of iteration for the quadratic op-
timization compared to the line search method. Proposing some other new majorant [5]
and minorant functions seems to be an interesting topic in the future in the different
class of optimization and we will apply our important results in different problems of
nonlinear dynamics problems.
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