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Solvability of Nonlinear Elliptic Problems with

Degenerate Coercivity in Weighted Sobolev Space

Y. Akdim 1, S. Lalaoui Rhali 2 and Y. Oumouacha 2∗
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Abstract: In this paper, we investigate the existence of our entropy solution for the
nonlinear elliptic equation

− div[ω(x)a(x, u,∇u)] = f − divF, in Ω,

in the setting of the weighted Sobolev space W 1,p
0 (Ω, ω). We focus on the case where

the operator has a degenerate coercivity and f ∈ L1(Ω), F ∈ [Lp′(Ω, ω1−p′)]N .

Keywords: nonlinear elliptic equations; degenerate coercivity; entropy solutions;
weighted Sobolev spaces.

Mathematics Subject Classification (2010): 35J60; 35J70; 46E35; 70K99;
93-02.

1 Introduction

Partial differential equations have many applications in various areas of engineering,
mathematics, physics, and other applied sciences (see for instance [8, 20]). In the last
years, there has been an increasing interest in the study of various mathematical problems
in weighted Sobolev spaces motivated by many considerations in applications (see [1, 2,
5, 10,11] and the references therein).

Let Ω be a bounded smooth subset of RN with N ≥ 2 and 1 < p < ∞. We are
interested in proving the existence of entropy solutions to the following elliptic Dirichlet
problem:

(P)

{
−div[ω(x)a(x, u,∇u)] = f − divF, in Ω,

u(x) = 0, on ∂Ω.

∗ Corresponding author: mailto:youssef.oumouacha@usmba.ac.ma

© 2023 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua461
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Here a(x, s, ξ) : Ω × R × RN → RN is a Carathédory function satisfying the following
conditions:

a(x, s, ξ).ξ ≥ α

(1 + |s|)θ(p−1)
|ξ|p (1)

for some α > 0 and some real number θ such that 0 ≤ θ < 1.
As far as the datum f and F are concerned, we will assume that f belongs to the

space L1(Ω), and F ∈ [Lp′
(Ω, ω1−p′

)]N with (1/p+ 1/p′ = 1).
Problems like (P) have been studied by many authors in the non-weighted case.

In [18], Leone and Porretta studied the nonlinear elliptic problem

Bu = f(x) − div(F ) in Ω

in the setting of Sobolev spaces, where Bu = −div(a(x, u,∇u)) is a Leray-Lions op-
erator from W 1,p

0 (Ω) to W−1.p′
(Ω), they demonstrated the existence of entropy solu-

tions. In addition, Alvino et al. [4] have proved that the nonlinear elliptic equations
− div(a(x, u,∇u)) = f admit the entropy solutions under assumption (1).

Notice that the existence of a weak solution for the Dirichlet problem (P) has been
obtained by Cavalheiro in [12] under the condition

a(x, s, ξ).ξ ≥ α|ξ|p, (2)

and by assuming that f/ω ∈ Lp′
(Ω, ω). Also, he discussed in [11] the existence of our

entropy solution when f ∈ L1(Ω).
Our objective in this work is to study the problem (P) when the operator satisfies

assumption (1) instead of (2). The main difficulties that arise in our study are due, on the
one hand, to the fact that the differential operator A(u) = −div(ω(x)a(x, u,∇u)), which
is well defined between W 1,p

0 (Ω, ω) and its dual W−1,p′
(Ω, ω1−p′

), may not be coercive on
W 1,p

0 (Ω, ω) when u is large. This imposes that, even if the datum is extremely regular,
the classical methods used to demonstrate the existence of a solution to problem (P)
cannot be used.

On the other hand, f only belongs to L1(Ω), making it difficult to show the existence
of a weak solution. To get around this difficulty, we will use in this paper the concept of
entropy solutions. This concept was introduced in [7], and then used by many authors
to study elliptic equations (see [2–4,6, 10,18]).

The structure of this paper is as follows. In Section 2, we recall some preliminary
results which will be used later. In Section 3, we give the assumptions on the data, then
we state the main results which will be proved in Section 4.

2 Preliminaries

In this section, we provide a brief facts about the weighted Sobolev space as well as some
Ap-weight features. Let ω = ω(x) be a weight function, that is, 0 < ω <∞, and a locally
integrable function on RN . By integration, each weight ω generates a measure on the
measurable subsets of RN . This measure is denoted by µ and defined as follows:

µ(S) =

∫
S
ω(x)dx

for a measurable set S ⊂ RN .
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Definition 2.1 Let ω be a weight and 1 < p < ∞. We say that ω belongs to
Ap-weight if there exists a positive constant Cω,p such that, for every ball B ⊂ RN ,(

1

|B|

∫
B
ωdx

)(
1

|B|

∫
B
ω1/(1−p)dx

)p−1

≤ Cω,p if p > 1,

where |.| denotes the N -dimensional Lebesgue measure in RN .

Lemma 2.1 [16]. Let B be a ball in RN and S be a measurable subset of B. If
ω ∈ Ap, 1 < p <∞, then (

|S|
|B|

)p

≤ Cω,p
µ(S)

µ(B)
.

Remark 2.1 If µ(S) = 0, then |S| = 0. Thus, for every sequence (un) in B that
converges µ-a.e. to some u, we have un −→ u a.e.

The weighted Lebesgue space Lp(Ω, ω) is defined for every weight ω and 1 ≤ p < ∞
by

Lp(Ω, ω) =
{
u = u(x) : uω1/p ∈ Lp(Ω)

}
,

and it is endowed with the norm

∥u∥Lp(Ω,ω) =

(∫
Ω

|u(x)|pω(x)dx

)1/p

.

Definition 2.2 Let Ω be a bounded open subset of RN , 1 < p <∞ and let ω be an
Ap-weight. The weighted Sobolev space W 1,p(Ω, ω) is defined as the set of all functions
u ∈ Lp(Ω, ω) with weak derivatives ∂u

∂xi
∈ Lp(Ω, w), for all i = 1, . . . , N .

The norm of u in W 1,p(Ω, ω) is given by

∥u∥W 1,p(Ω,ω) =

(∫
Ω

|u|pω(x)dx+

∫
Ω

|∇u|pω(x)dx

) 1
p

. (3)

The space W 1,p
0 (Ω, ω) is defined as the closure of C∞

0 (Ω) with respect to the norm

∥u∥W 1,p
0 (Ω,ω) =

(∫
Ω

|∇u|pω(x)dx

) 1
p

. (4)

A compact imbedding is required because we are working with compactness methods
to find solutions to nonlinear elliptic equations. As a result, we assume also that the
domain Ω is smooth.

Theorem 2.1 [13]. Let Ω be a bounded smooth domain. For ω ∈ Ap, we have the
compact embedding

W 1,p
0 (Ω, ω) ↪→↪→ Lp(Ω, ω).

Theorem 2.2 [14]. Let Ω be a bounded open subset of RN . Take 1 < p <∞ and a
function ω ∈ Ap. There exist positive constants CΩ and δ such that for all u ∈ C∞

0 (Ω)
and all η satisfying 1 ≤ η ≤ N

N−1 + δ,

∥u∥Lηp(Ω,ω) ≤ CΩ∥|∇u|∥Lp(Ω,ω). (5)
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Definition 2.3 Let ω be a weight function and let q be a positive real number. The
weighted Marcinkievicz space Mq(Ω, ω) is the set of all measurable functions f : Ω → R
such that the function

Φf (k) = µ({x ∈ Ω : |f(x)| > k}) k > 0,

satisfies, for some positive constant C, an estimate of the form Φf (k) ≤ Ck−q.

Remark 2.2 It follows from [17] that if 1 ≤ q < p and Ω ⊂ RN is a bounded set,
then

Lp(Ω, ω) ⊂ Mp(Ω, ω) and Mp(Ω, ω) ⊂ Lq(Ω, ω).

3 Basic Assumptions and Main Result

3.1 Basic assumptions

Let Ω be an open bounded smooth domain of RN (N ≥ 2), p > 1 and ω ∈ Ap. Let
a : Ω × R × RN → RN be a Carathéodry function (that is, a(., s, ξ) is measurable on Ω
for every (t, ξ) in R × RN , and a(x, ., .) is continuous on R × RN for almost every x in
Ω). Assume that

a(x, s, ξ) · ξ ≥ b(|s|)|ξ|p (6)

for almost every x in Ω and for every (s, ξ) ∈ R× RN , where

b(s) =
α

(1 + s)θ(p−1)
(7)

for some 0 ≤ θ < 1 and some α > 0;

|a(x, s, ξ)| ≤ l0(x) + l1(x)|s|p−1 + l2(x)|ξ|p−1 (8)

for almost every x in Ω and for every (s, ξ) ∈ R×RN , where l0, l1 and l2 are non-negative
functions, with l0 ∈ Lp′

(Ω, ω) and l1, l2 ∈ L∞(Ω);

[a(x, s, ξ) − a(x, s, ξ′)] · (ξ − ξ′) > 0 (9)

for almost every x in Ω and for every s ∈ R, for every ξ, ξ′ for every ξ, ξ′ in RN with
ξ ̸= ξ′. As regards the source term, we assume that

f ∈ L1(Ω) and F ∈ [Lp′
(Ω, ω1−p′

)]N . (10)

3.2 Main result

We first give the definition of an entropy solution of problem (P). For a given constant
k > 0, the truncation function Tk : R → R is defined by

Tk(s) = max{−k,min{k, s}}.

We denote by T 1,p
0 (Ω, ω) the set of all measurable functions u : Ω → R such that for

every k > 0, the truncated function Tk(u) belongs to W 1,p
0 (Ω, ω).

Let u ∈ T 1,p
0 (Ω, ω), then there exists a unique measurable function v : Ω → RN such

that
∇Tk(u) = vχ{|u|<k}. (11)

If u ∈ T 1,p
0 (Ω, ω), the weak gradient ∇u of u is defined as the unique function v which

satisfies (11).
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Definition 3.1 A function u ∈ T 1,p
0 (Ω, ω) is an entropy solution of the problem (P)

if ∫
Ω

ωa(x, u,∇u) · ∇Tk(u− v)dx =

∫
Ω

fTk(u− v)dx+

∫
Ω

F · ∇Tk(u− v)dx (12)

for every k > 0 and for every v ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω).

The main result proved in this paper is the following.

Theorem 3.1 Assume that the Carathéodry function a satisfies (6)-(9). Then there
exists an entropy solution u of the problem (P).

Proposition 3.1 The entropy solution u of the problem (P) satisfies

u ∈ Mr(Ω, ω) with r = η(p− 1)(1 − θ), (13)

|∇u| ∈ Ms(Ω, ω) with s =
pη(p− 1)(1 − θ)

r + θ(p− 1) + 1
, (14)

where η is a constant such that 1 ≤ η ≤ N
N−1 + δ.

4 Proof of the Main Result

4.1 Useful lemmas

Lemma 4.1 Let u ∈ T 1,p
0 (Ω, ω), where ω ∈ Ap, 1 < p < ∞. Let 1 ≤ λ < p, and

suppose that u satisfies ∫
{|u|<k}

|∇u|pωdx ≤Mkλ, ∀k > 0. (15)

Then u belongs to Mr(Ω, ω) with r = η(p−λ) (where 1 ≤ η ≤ N
N−1 + δ). More precisely,

there exists C > 0 such that
Φu(k) ≤ CMηk−r.

Proof. For 0 < ε ≤ k, we have {x ∈ Ω : |u| ≥ ε} = {x ∈ Ω : |Tk(u)| ≥ ε}. Thus

µ({x ∈ Ω : |u| > ε}) = µ({x ∈ Ω : |Tk(u)| ≥ ε})

=

∫
{|Tk(u)|≥ε}

ω(x)dx

=
1

εηp

∫
{|Tk(u)|≥ε}

εηpω(x)dx

≤ 1

εηp

∫
{|Tk(u)|≥ε}

|Tk(u)|ηpω(x)dx

≤ 1

εnp
∥Tk(u)∥ηpLηp(Ω,ω) .

By Theorem 2.2 and inequality (15), we get

∥Tk(u)∥Lηp(Ω,ω) ≤ CΩ ∥|∇Tk(u)∥Lp(Ω,ω) ≤ CΩ(Mkλ)1/p,
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which implies that

µ({x ∈ Ω : |u| > ε}) ≤ 1

εηp
C(Mkλ)η.

Therefore, by taking ε = k, we have

µ({x ∈ Ω : |u| > k}) ≤ 1

kηp
C(Mkλ)η = CMηk−η(p−λ) = CMηk−r.

Lemma 4.2 Assume that the hypothesis in Lemma 4.1 holds true. Then |∇u| ∈
Ms(Ω, ω), where s = pr/(r+ λ) (with r as in Lemma 4.1 ). More precisely, there exists
C > 0 such that

Φ∇u(k) ≤ CM (r+ηλ)/(r+λ)k−s.

Proof. We set for every k, ρ > 0, the function

Ψ(k, ρ) = µ ({x ∈ Ω : |∇u|p > ρ, |u| > k}) .

It is clear that the function ρ → Ψ(k, ρ) is decreasing. Thus for k > 0 and ρ > 0, we
obtain

Ψ(0, ρ) ≤ 1

ρ

∫ ρ

0

Ψ(0, s)ds ≤ Ψ(k, 0) +
1

ρ

∫ ρ

0

(Ψ(0, s) − Ψ(k, s))ds. (16)

From Lemma 4.1, we have
Ψ(k, 0) ≤ CMηk−r. (17)

Now, observe that

Ψ(0, s) − Ψ(k, s) = µ ({x ∈ Ω : |∇u|p > s, |u| > 0}) − µ ({x ∈ Ω : |∇u|p > s, |u| > k})

= µ ({x ∈ Ω : |∇u|p > s, |u| ≤ k}) .

Hence, we get by using Proposition 6.24 in [15] that∫ ∞

0

(Ψ(0, s) − Ψ(k, s))ds =

∫ ∞

0

µ ({x ∈ Ω : |∇u|p > s, |u| ≤ k}) ds

=

∫
{|u|<k}

|∇u(x)|pω(x)dx

≤Mkλ.

(18)

Going back to (16) and using (17) and (18), we obtain

Ψ(0, ρ) ≤ CMηk−r +
1

ρ
Mkλ. (19)

A minimization of the right-hand side of (19) in k gives

Ψ(0, ρ) ≤ CM (r+ηλ)/(r+λ)ρ−r/(r+λ).

Setting ρ = hp, we obtain

Ψ(0, hp) = µ ({x ∈ Ω : |∇u| > h}) ≤ CM (r+ηλ)/(r+λ)h−rp/(r+λ) = CM (r+ηλ)/(r+λ)h−s,

where s = rp/(r + λ).
Let n ∈ N, and define, for u in W 1,p

0 (Ω, ω), the differential operator

An(u) = −div[ω(x)a(x, Tn(u),∇u)].
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Lemma 4.3 The operator An maps W 1,p
0 (Ω, ω) into its dual W−1,p′

(Ω, ω1−p′
).

Moreover, An is bounded, pseudomonotone and coercive in the following sense:

< Anv, v >

∥v∥W 1,p
0 (Ω,ω)

−→ +∞ if ∥v∥W 1,p
0 (Ω,ω) −→ +∞, v ∈W 1,p

0 (Ω, ω).

Proof. By (8), we deduce that for every u in W 1,p
0 (Ω, ω),∫

Ω

(
ω|a(x, Tn(u),∇u)|

)p′

ω1−p′
dx

≤
∫
Ω

(
l0 + l1|Tn(u)|p/p

′
+ l2|∇u|p/p

′
)p′

ωdx

≤ C
[
∥l0∥p

′

L′(Ω,ω) +
(
CΩ∥l1∥p

′

L∞(Ω) + ∥l2∥p
′

L∞(Ω)

)
∥u∥p

W 1,p
0 (Ω,ω)

]
,

which means that ωa(x, Tn(u),∇u) belongs to
(
Lp′

(Ω, ω1−p′
)
)N

. Therefore

An(u) ∈W−1,p′
(Ω, ω1−p′

), ∀n ∈ N.

Thanks to Hölder’s inequality and (8), we have for all u, v ∈W 1,p
0 (Ω, ω),

|⟨Anu, v⟩| ≤
(
C
[
∥l0∥p

′

L′(Ω,ω) +
(
CΩ∥l1∥p

′

L∞(Ω) + ∥l2∥p
′

L∞(Ω)

)
∥u∥p

W 1,p
0 (Ω,ω)

])1/p′

× ∥v∥W 1,p
0 (Ω,ω).

Thus An is bounded from W 1,p
0 (Ω, ω) to W−1,p′

(Ω, ω1−p′
).

For the coercivity, by using (6), we get for every u ∈W 1,p
0 (Ω, ω),

⟨Anu, u⟩ =

∫
Ω

ωa(x, Tn(u),∇u) · ∇udx

≥
∫
Ω

ωb(|Tn(u)|)|∇u|pdx

≥ b(n)∥u∥p
W 1,p

0 (Ω,ω)
.

Hence, the operator An is coercive.
It remains to show that An is pseudomonotone. We thus consider a sequence uj in

W 1,p
0 (Ω, ω) such that

uj ⇀ u, in W 1,p
0 (Ω, ω),

Anuj ⇀ ψn, in W−1,p′
(Ω, ω1−p′

),

lim supj→∞ ⟨Anuj , uj⟩ ≤ ⟨ψn, u⟩.
(20)

We shall prove that
ψn = Anu and ⟨Anuj , uj⟩ → ⟨Anu, u⟩.

Firstly, since W 1,p
0 (Ω, ω) ↪→↪→ Lp(Ω, ω), one has

uj → u in Lp(Ω, ω) for a subsequence denoted again by (uj)j .
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Due to the boundedness of the sequence (uj)j in W 1,p
0 (Ω, ω), and using the growth

assumption (8), we have that ωa(x, Tn(uj),∇uj) is bounded in
(
Lp′

(Ω, ω1−p′
)
)N

.

Therefore, there exists a function ϕ ∈ Lp′
(Ω, ω1−p′

) such that

ωa(x, Tn(uj),∇uj) ⇀ ϕ weakly in
(
Lp′

(Ω, ω1−p′
)
)N

. (21)

It is clear that, for all v ∈W 1,p
0 (Ω, ω),

⟨ψn, v⟩ = lim
j→+∞

⟨Anuj , v⟩

= lim
j→+∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇vdx

=

∫
Ω

ϕ · ∇vdx.

(22)

Hence, by hypotheses, we have

lim sup
j→+∞

< Anuj , uj > = lim sup
j→+∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx

≤
∫
Ω

ϕ · ∇udx.
(23)

On the other hand, by (9),

[a(x, Tn(uj),∇uj) − a(x, Tn(uj),∇u))] · ∇(uj − u) > 0.

Hence∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx >
∫
Ω

ωa(x, Tn(uj),∇uj) · ∇udx

+

∫
Ω

ωa(x, Tn(uj),∇u) · (∇uj −∇u)dx.

(24)

Using (21), we get

lim inf
j→+∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx ≥
∫
Ω

ϕ · ∇u. (25)

By using (23) and (25), we get

lim
j→∞

∫
Ω

ωa(x, Tn(uj),∇uj) · ∇ujdx =

∫
Ω

ϕ · ∇udx. (26)

As a result of (22) and (26), we get

⟨Anuj , uj⟩ → ⟨ψn, u⟩ as j −→ +∞.

Yet, due to (26) and the strong convergence ωa(x, Tn(uj),∇u) → ωa(x, Tn(u),∇u)

in
(
Lp′

(Ω, ω1−p′
)
)N

, we deduce that

lim
j→+∞

∫
Ω

(ωa(x, Tn(uj),∇uj) − ωa(x, Tn(uj),∇u)) · (∇uj −∇u) dx = 0,
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and so, by virtue of Lemma 3.2 in [1],

∇uj → ∇u a.e. in Ω,

we deduce then that ωa(x, Tn(uj),∇uj) converges to ωa(x, Tn(u),∇u) weakly in(
Lp′

(Ω, ω1−p′
)
)N

. This implies that ψn = Anu.

4.2 Approximate problem

We consider the sequence of approximate problems

(Pn)

{
An(un) = fn − divF in Ω,

un = 0 on ∂Ω,

where (fn) is a sequence of functions in C∞
0 (Ω) which is strongly convergent to f in

L1(Ω) such that ∥fn∥L1(Ω) ≤ ∥f∥L1(Ω).

Since the source term fn−div(F ) belongs to the dual space W−1,p′
(Ω, ω1−p′

), in view
of Lemma 4.3, the operator An is pseudomonotone, and by Theorem 2.7 in [19], there
exists at least one solution un ∈W 1,p

0 (Ω, ω) of problem (Pn) in the sense that∫
Ω

ωa(x, Tn(un),∇un).∇vdx =

∫
Ω

fnvdx+

∫
Ω

F.∇vdx (27)

for every v ∈W 1,p
0 (Ω, w).

By choosing v = Tk(un) in (27), we can take n > k, then applying (6) in the first
term and using Hölder’s then Young’s inequalities in the last one, we obtain

b(k)

∫
Ω

|∇Tk(un)|pωdx ≤ k∥f∥L1(Ω) +
b(k)

2

∫
Ω

|∇Tk (un)|p ωdx+ C1

∫
Ω

∣∣∣∣Fω
∣∣∣∣p′

ωdx.

Thus we have the estimate∫
Ω

|∇Tk(un)|pωdx ≤ C2(1 + k)θ(p−1)+1. (28)

4.3 Local convergence of un in µ-measure

Combining the previous estimation with Lemma 4.1, we conclude that un ∈ Mr(Ω, ω)
with r = η(p−1)(1−θ), we also have that µ({x ∈ Ω : |un(x)| > k}) is bounded uniformly
in n for every k > 0, that is,

µ({x ∈ Ω : |un(x)| > k}) ≤ Ck−r, (29)

and by Lemma 4.2, we have that the sequence (|∇un|) is bounded in Ms(Ω, ω) with
s = pr

r+θ(p−1)+1 . Our objective now is to prove that un → u locally in µ−measure. For

that, we will use the same reasoning as in the proof of Theorem 2.11 in [10] (see also
Theorem 6.1 in [7]). Let ρ > 0, we have

{|un − um| > ρ} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un) − Tk(um)| > ρ}
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so that

µ({|un−um| > ρ}) ≤ µ({|un| > k})+µ({|um| > k})+µ({|Tk(un)−Tk(um)| > ρ}). (30)

Fix ε > 0. From (29), there exists kε = k such that

µ({|un| > k}) + µ({|um| > k}) ≤ ε

2
.

Since (∇Tk(un)) is bounded in Lp
loc(Ω, ω) for all k > 0 and Tk(un) belongs to W 1,p

0 (Ω, ω),
we can assume that (Tk(un)) is a Cauchy sequence in Lq(Ω∩BR, ω) for any q < pη = p∗

and any R > 0 and

Tk(un) → Tk(u) in Lp
loc(Ω, ω) and a.e.

Then

µ({|Tk(un) − Tk(um)| > ρ} ∩BR) =

∫
{|Tk(un)−Tk(um)|>ρ}∩BR

ωdx

≤ k−q

∫
Ω∩BR

|Tk(un) − Tk(um)|qωdx ≤ ε

2

for all n,m ≥ n0(k, ρ,R). It follows that (un) is a Cauchy sequence in µ-measure. As a
consequence, there exist a function u and a subsequence, still denoted by un, such that

un → u µ-a.e. in Ω, (31)

then by Remark 2.1, one has

un → u a.e. in Ω. (32)

Using (31) and (28), we have

Tk (un) ⇀ Tk(u) weakly in W 1,p
0 (Ω, ω) for every k > 0,

Tk (un) → Tk(u) strongly in Lp(Ω, ω) and µ -a.e. in Ω for every k > 0.
(33)

Hence, Tk(u) ∈W 1,p
0 (Ω, ω).

Furthermore, by the weak lower semicontinuity of the norm W 1,p
0 (Ω, ω), estimate (28)

still holds for u, that is,∫
Ω

|∇Tk(u)|pωdx ≤ C(1 + k)θ(p−1)+1, ∀k > 0.

Applying again Lemma 4.1 and Lemma 4.2, we find that u ∈ Mr(Ω, ω) and |∇u| ∈
Ms(Ω, ω).

4.4 Strong convergence of truncations

Our aim now is prove that

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω, ω) for all k > 0. (34)
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For n > k, we write

I(n) =

∫
Ω

ω[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))] · ∇(Tk(un) − Tk(u))dx

=

∫
Ω

ωa(x, Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u))dx

−
∫
Ω

ωa(x, Tk(un),∇Tk(u)) · ∇(Tk(un) − Tk(u))dx

=I1(n) − I2(n).

Keeping in mind that (6) implies that a(x, s, 0) = 0, we get

I1(n) =

∫
{|un|<k}

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

=

∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

−
∫
{|un|≥k}

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx.

Observing that ∇Tk(un) = 0 on the set {|un| ≥ k}, we obtain

I(n) =

∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

+

∫
{|un|≥k}

ωa(x, Tn(un),∇un) · ∇Tk(u)dx

−
∫
Ω

ωa(x, Tk(un),∇Tk(u)) · ∇(Tk(un) − Tk(u))dx.

We take Tk(un) − Tk(u) as a test function in (27) and we get∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx

=

∫
Ω

fn(Tk(un) − Tk(u))dx+

∫
Ω

F · ∇(Tk(un) − Tk(u))dx.

By the almost convergence of un and using the strong convergence of fn in L1(Ω), we
obtain

lim
n→∞

∫
Ω

fn(Tk(un) − Tk(u))dx = 0.

Also, since F belongs to
(
Lp′

(Ω, ω1−p′
)
)N

and by (33), we obtain

lim
n→∞

∫
Ω

F · ∇(Tk(un) − Tk(u))dx = 0.

Therefore

lim
n→∞

∫
Ω

ωa(x, Tn(un),∇un) · ∇(Tk(un) − Tk(u))dx = 0. (35)
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Using the growth assumption (8), for every u in W 1,p
0 (Ω, ω), we have that

ω|a(x, Tn(u),∇u)| is bounded Lp′
(Ω, ω1−p′

). Therefore, it converges weakly to some
g in Lp′

(Ω, ω1−p′
) and we have

lim
n→∞

∫
{|un|≥k}

ωa(x, Tn(un),∇un) · ∇Tk(u)dx =

∫
{|u|≥k}

g · ∇Tk(u) = 0. (36)

By virtue of Vitali’s theorem, we obtain

ω(x)a(x, Tn(un),∇Tk(u)) → ω(x)a(x, u,∇Tk(u)) strongly in
(
Lp′

(Ω, ω1−p′
)
)N

.

It follows from (33) that

lim
n→∞

∫
Ω

ωa(x, Tk(un),∇Tk(u)) · ∇(Tk(un) − Tk(u))dx = 0. (37)

Bringing together (35)-(37), we conclude that

lim
n→∞

I(n) = 0.

Now we can apply Lemma 3.2 in [1] to get (34). Hence, for every fixed k > 0, we have

ωa(x, Tk(un),∇Tk(un)) → ωa(x, Tk(u),∇Tk(u)) in (Lp′
(Ω, ω1−p′

))N . (38)

4.5 Passage to the limit

We will now demonstrate that u satisfies (12). Let v ∈ W 1,p
0 (Ω, ω) ∩ L∞(Ω). Testing

(27) with ψn = Tk (un − v), we get∫
Ω

ωa (x, Tn(un),∇un) · ∇ψndx =

∫
Ω

fnψndx+

∫
Ω

F · ∇ψndx.

If M = k + ∥v∥L∞(Ω) and n > M , then∫
Ω

ωa (x, Tn(un),∇un) · ∇Tk (un−v) dx=

∫
Ω

ωa(x, Tn(un),∇TM (un)) · ∇Tk(un − v)dx

=

∫
Ω

ωa(x, TM (un),∇TM (un)) · ∇Tk(un − v)dx.

Thus, we can write∫
Ω

ωa(x, TM (un),∇TM (un))·∇Tk(un−v)dx =

∫
Ω

fnTk(un−v)dx+

∫
Ω

F ·∇Tk(un−v)dx.

(39)
Hence we can pass to the limit as n tends to infinity, using (33) and (38), we obtain∫

Ω

ωa(x, u,∇u) · ∇Tk(u− v)dx =

∫
Ω

fTk(u− v)dx+

∫
Ω

F · ∇Tk(u− v)dx

for every v ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω) and for every k > 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (5) (2023) 461–474 473

Example 4.1 We put ourselves in the situation N = 2, p = 3. Let Ω ={
(x, y) ∈ R2 : x2 + y2 < 1

}
, the weight function ω(x, y) =

(
x2 + y2

)−1/2
is such

that ω ∈ A3. And the function f(x, y) = cos(xy)

(x2+y2)1/3
∈  L1(Ω) and F (x, y) =((

x2 + y2
)

sin(xy),
(
x2 + y2

)−1/3
cos(xy)

)
∈

[
L

3
2 (Ω, ω− 1

2 )
]2

. The Carathéodory func-

tion is defined as follows: a : Ω × R × R2 → R2, a((x, y), s, ξ) = ξ√
1+|s|

. Therefore, by

virtue of Theorem 3.1, the problem{
−div [ω(x, y)a((x, y), u,∇u)] = f(x, y) − divF (x, y) in Ω,

u(x, y) = 0, on ∂Ω,

has an entropy solution.

5 Conclusion

Through this work, we were able to demonstrate the existence and regularity of solutions
for some nonlinear elliptic equations of the form − div[ω(x)a(x, u,∇u)] = f − divF , in
the framework of the weighted Sobolev spaces. The novelty here is that the operator
A(u) = - div[ω(x)a(x, u,∇u)] is a nonlinear degenerate elliptic operator in the sense that
the Carathéodory function a(·, ·, ·) satisfies the degenerate coercivity (6) instead of the
case where A is a uniformly elliptic operator, that is, when b is the constant function. Let
us point out that this work can be seen as a generalization of the work in [11] and [18].
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Abstract: The proposed study presents a collocation method to address two types
of two-dimensional Volterra integral equations (2D VIEs): nonlinear first kind and
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linear second kind equations. A convergent algorithm using the Taylor polynomials
is developed to construct a collocation solution that approximates the solution of 2D
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the results of different methods and demonstrate the proposed approach’s accuracy
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1 Introduction

The nonlinear 2D VIE of the first kind, which includes an unknown function u, can be
represented in a standard form as follows:∫ τ

0

∫ z

0

κ(τ, z, t, s)H(u(t, s))dsdt = f(τ, z), (τ, z) ∈ D, (1)

where D is a subset of R2 defined as [0, T ] × [0, Z], f and κ are smooth functions on
their corresponding domains. Additionally, H is a continuous inverse function that is
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nonlinear with respect to u. To solve equation (1), we substitute ω(t, s) = H(u(t, s)) and
obtain the linear equation∫ τ

0

∫ z

0

κ(τ, z, t, s)ω(t, s)dsdt = f(τ, z), (τ, z) ∈ D. (2)

To obtain an approximation for ω, we transform the first kind VIE (2) into the second
kind VIE (3) by differentiating equation (2) with respect to z and τ . This transformation
technique aligns with the strategies used in various nonlinear systems analyses. It allows
researchers and practitioners to simplify the problem while retaining essential character-
istics, thus aiding the analysis and comprehension of complex nonlinear systems. This
conversion technique is effective only under the conditions that f(τ, 0) = f(0, z) = 0 and
κ(τ, z, τ, z) ̸= 0 for (τ, z) ∈ D, and results in a linear 2D VIE of the following form:

ω(τ, z) = g(τ, z) +

∫ τ

0

κ1(τ, z, t)ω(t, z)dt+

∫ z

0

κ2(τ, z, s)ω(τ, s)ds

+

∫ τ

0

∫ z

0

κ3(τ, z, t, s)ω(t, s)dsdt, (τ, z) ∈ D,

(3)

where the functions g, κ1, κ2 and κ3 are given smooth functions defined on their corre-
sponding domains by

κ1(τ, z, t) := −∂κ

∂τ
(τ, z, t, z)/κ(τ, z, τ, z), κ2(τ, z, s) := −∂κ

∂z
(τ, z, τ, s)/κ(τ, z, τ, z),

κ3(τ, z, t, s) := − ∂2κ

∂τ∂z
(τ, z, t, s)/κ(τ, z, τ, z), g(τ, z) :=

∂2f

∂τ∂z
(τ, z)/κ(τ, z, τ, z).

The solution for (1) can be approximated as H−1(ω(t, s)) = u(t, s). The existence and
uniqueness of the solution for equation (1), using H(u(t, s)) = ω(t, s) and equation (3),
have been proposed in [1].

The applications of VIEs extend to a diverse range of fields, including physical and
engineering domains, population dynamics, economics and finance, fluid dynamics, and
heat transfer. By providing a method to efficiently and accurately solve nonlinear integral
equations, we contribute to the modeling and analyzing complex nonlinear systems. Our
algorithm’s ability to handle nonlinearity is directly relevant to nonlinear dynamics, as
it provides a means to understand and predict the behaviors of such systems. However,
solving these equations has motivated mathematicians to develop reliable methods for
their solutions [2–10]. In [2], a method based on applying 2D block-pulse functions
was utilized to solve nonlinear 2D VIEs of the first kind. An Euler-type technique was
discussed in [1]. The Chelyshkov polynomial strategy for solving (1) was considered in [6].
In [7], the Tau technique was employed to approximate the solution of (2). Nemati and
Ordokhani [8] used operational matrices of Legendre polynomials to approximate the
solution of a class of (1), specifically when H = un and n is a positive integer. In [9], a
multi-step method was implemented for the numerical solution of nonlinear 2D VIEs of
the first kind. A special case of (3) for κ1 = κ2 = 0 is considered in [10].

This paper presents an extension of the collocation method proposed in previous
works such as [11–14], to solve equations (1) and (3) by utilizing Taylor’s theorem in two
variables. Additionally, the method is straightforward to implement, and the iterative
formulas used to obtain the approximate solution do not require solving any algebraic
equations. This showcases the possibility of our method to address broader challenges in
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nonlinear dynamics that involve integral equations, paving the way for its adaptation in
various related problem domains.

The remainder of this paper is structured as follows: the next section outlines our
approach to approximating the solution of equation (3) through the Taylor polynomials.
Section 3 focuses on the convergence analysis. To demonstrate the validity of our theo-
retical results, we provide several numerical examples in Section 4. Finally, in Section 5,
we present our conclusion and offer suggestions for future research.

2 Description of the Method

In this section, we approximate solutions of 2D VIE (3) in the space

S
(−1)
p−1,p−1(ΠN,M ) = {v : vn,m = v|Dn,m

∈ πp−1,p−1, n = 0, 1, ..., N − 1;m = 0, 1, ...,M − 1}
of the real bivariate polynomial spline functions of degree (at most) p − 1 in τ and z.
Its dimension is NMp2. Here, ΠN = {τi = ih, i = 0, 1, ..., N} and ΠM = {zj = jk, j =
0, 1, ...,M} denote, respectively, uniform partitions of the intervals [0, T ] and [0, Z] with
the step sizes given by h = T

N and k = Z
M . These partitions defined a grid for D

ΠN,M = ΠN ×ΠM = {(τn, zm), 0 ≤ n ≤ N, 0 ≤ m ≤ M}. Set the subintervals
σn = [τn; τn+1), n = 0, 1, ..., N − 2; σN−1 = [τN−1, τN ],
δm = [zm; zm+1),m = 0, 1, ...,M − 2; δM−1 = [zM−1, zM ], and Dn,m := σn × δm for
all n = 0, 1, ..., N − 1;m = 0, 1, ...,M − 1.

To defined the collocation solution, we use the Taylor polynomial on each rectangle
Dn,m;n = 0, 1, ..., N − 1;m = 0, 1, ...,M − 1. Note that the solution ω of (3) is known at
the point(0, 0): ω(0, 0) = g(0, 0).

2.1 Taylor collocation solution in D0,0

We approximate ω in the rectangle D0,0 by the polynomial

v0,0(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+jω(0, 0)

∂τ i∂zj
τ izj , (τ, z) ∈ D0,0, (4)

where
∂i+jω(0, 0)

∂τ i∂zj
is the exact value of

∂i+jω

∂τ i∂zj
at the point (0, 0). We differentiate

equation (3) j times with respect to z and i times with respect to τ , we obtain

∂i+jω(0, 0)

∂τ i∂zj
= ∂

(i)
1 ∂

(j)
2 g(0, 0)

+

j∑
l=0

i−1∑
q=0

q∑
η=0

(
j

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j−l)
2 κ1(τ, z, τ)

]τ=0

z=0

∂η+lω(0, 0)

∂τη∂zl

+

j−1∑
r=0

r∑
l=0

i∑
η=0

(
r

l

)(
i

η

)
∂i−η

∂τ i−η

[
∂r−l

∂zr−l

(
∂
(j−1−r)
2 κ2(τ, z, z)

)]τ=0

z=0

∂η+lω(0, 0)

∂τη∂zl

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂i−1−q

∂τ i−1−q

∣∣∣∣
t=τ

(
∂r−l

∂zr−l

[
∂
(j−1−r)
2 κ3(τ, z, t, z)

])]τ=0

z=0

× ∂η+lω(0, 0)

∂τη∂zl
.
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2.2 Taylor collocation solution in Dn,0

We approximate ω in the rectangles Dn,0, n = 1, ..., N − 1 by the polynomials

vn,0(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+j v̂n,0(τn, 0)

∂τ i∂zj
(τ − τn)

izj , (τ, z) ∈ Dn,0, (5)

where v̂n,0 is the exact solution of the integral equation

v̂n,0(τ, z) = g(τ, z) +

∫ z

0

κ2(τ, z, s)v̂n,0(τ, s)ds

+

n−1∑
ξ=0

∫ τξ+1

τξ

κ1(τ, z, t)vξ,0(t, z)dt+

∫ τ

τn

κ1(τ, z, t)v̂n,0(t, z)dt

+
n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

0

κ3(τ, z, t, s)vξ,0(t, s)dsdt+

∫ τ

τn

∫ z

0

κ3(τ, z, t, s)v̂n,0(t, s)dsdt.

(6)

We differentiate (6) j times with respect to z and i times with respect to τ , we obtain

∂i+j v̂n,0(τn, 0)

∂τ i∂zj
= ∂

(i)
1 ∂

(j)
2 g(τn, 0)

+

n−1∑
ξ=0

j∑
l=0

(
j

l

)∫ τξ+1

τξ

[
∂
(i)
1 ∂

(j−l)
2 κ1(τ, z, t)

]τ=τn

z=0

∂lvξ,0(t, 0)

∂zl
dt

+

j∑
l=0

i−1∑
q=0

q∑
η=0

(
j

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j−l)
2 κ1(τ, z, τ)

]τ=τn

z=0

∂η+lv̂n,0(τn, 0)

∂τη∂zl

+

j−1∑
r=0

r∑
l=0

i∑
η=0

(
r

l

)(
i

η

)
∂i−η

∂τ i−η

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ2(τ, z, z)]

]τ=τn

z=0

∂η+lv̂n,0(τn, 0)

∂τη∂zl

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ τξ+1

τξ

∂i

∂τ i

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ3(τ, z, t, z)]

]τ=τn

z=0

∂lvξ,0(t, 0)

∂zl
dt

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂i−1−q

∂τ i−1−q

∣∣∣∣
t=τ

(
∂r−l

∂zr−l

[
∂
(j−1−r)
2 κ3(τ, z, t, z)

])]τ=τn

z=0

× ∂η+lv̂n,0(τn, 0)

∂τη∂zl
.

2.3 Taylor collocation solution in Dn,m

We approximate ω by vn,m in Dn,m, n = 0, 1, ..., N − 1 and m = 1, ...,M − 1, so that

vn,m(τ, z) =

p−1∑
i+j=0

1

i!j!

∂i+j v̂n,m(τn, zm)

∂τ i∂zj
(τ − τn)

i(z − zm)j , (τ, z) ∈ Dn,m, (7)
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where v̂n,m is the exact solution of the integral equation

v̂n,m(τ, z) = g(τ, z) +

n−1∑
ξ=0

∫ τξ+1

τξ

κ1(τ, z, t)vξ,m(t, z)dt+

∫ τ

τn

κ1(τ, z, t)v̂n,m(t, z)dt

+

m−1∑
ρ=0

∫ zρ+1

zρ

κ2(τ, z, s)vn,ρ(τ, s)ds+

∫ z

zm

κ2(τ, z, s)v̂n,m(τ, s)ds

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ τξ+1

τξ

∫ zρ+1

zρ

κ3(τ, z, t, s)vξ,ρ(t, s)dsdt

+

n−1∑
ξ=0

∫ τξ+1

τξ

∫ z

zm

κ3(τ, z, t, s)vξ,m(t, s)dsdt+

m−1∑
ρ=0

∫ τ

τn

∫ zρ+1

zρ

κ3(τ, z, t, s)vn,ρ(t, s)dsdt

+

∫ τ

τn

∫ z

zm

κ3(τ, z, t, s)v̂n,m(t, s)dsdt.

(8)

We differentiate (8) j times with respect to z and i times with respect to τ , we obtain

∂i+j v̂n,m(τn, zm)

∂τ i∂zj
= ∂

(i)
1 ∂

(j)
2 g(τn, zm)

+

n−1∑
ξ=0

j∑
l=0

(
j

l

)∫ τξ+1

τξ

∂
(i)
1 ∂

(j−l)
2 κ1(τn, zm, t)

∂lvξ,m(t, zm)

∂zl
dt

+

j∑
l=0

i−1∑
q=0

q∑
η=0

(
j

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j−l)
2 κ1(τ, z, τ)

]τ=τn

z=zm

∂η+lv̂n,m(τn, zm)

∂τη∂zl

+

m−1∑
ρ=0

i∑
η=0

(
i

η

)∫ zρ+1

zρ

∂
(i−η)
1 ∂

(j)
2 κ2(τn, zm, s)

∂ηvn,ρ(τn, s)

∂τη
ds

+

j−1∑
r=0

r∑
l=0

i∑
η=0

(
r

l

)(
i

η

)
∂i−η

∂τ i−η

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ2(τ, z, z)]

]τ=τn

z=zm

∂η+lv̂n,m(τn, zm)

∂τη∂zl

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ τξ+1

τξ

∫ zρ+1

zρ

∂
(i)
1 ∂

(j)
2 κ3(τn, zm, t, s)vξ,ρ(t, s)dsdt

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ τξ+1

τξ

∂i

∂τ i

[
∂r−l

∂zr−l
[∂

(j−1−r)
2 κ3(τ, z, t, z)]

]τ=τn

z=zm

∂lvξ,m(t, zm)

∂zl
dt

+

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ zρ+1

zρ

∂q−η

∂τ q−η

[
∂
(i−1−q)
1 ∂

(j)
2 κ3(τ, z, τ, s)

]τ=τn

z=zm

∂ηvn,ρ(τn, s)

∂τη
ds

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂τ q−η

[
∂i−1−q

∂τ i−1−q

∣∣∣∣
t=τ

(
∂r−l

∂zr−l

[
∂
(j−1−r)
2 κ3(τ, z, t, z)

])]τ=τn

z=zm

× ∂η+lv̂n,m(τn, zm)

∂τη∂zl
.
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3 Study of Convergence and Error of the Numerical Method

We consider the space L∞(D) with the norm

∥φ∥L∞(D) = inf {C ∈ R : |φ(τ, z)| ≤ C for a.e. (τ, z) ∈ D} < ∞.

The following lemmas will be used in proving the convergence of the presented method.

Lemma 3.1 (Gronwall-type inequality [2]) Let ω(τ, z) and p(τ, z) be non-negative
continuous functions in Ω = [a, b]× [c, d], and let p(τ, z) be nondecreasing in each of the
variables in Ω and satisfy the following inequality:

ω(τ, z) ≤ p(τ, z) + κ

∫ τ

a

ω(t, z)dt+ κ

∫ z

c

ω(τ, s)ds+ κ

∫ τ

a

∫ z

c

ω(t, s)dsdt, (τ, z) ∈ Ω,

where κ is a positive constant. Then there exists a positive constant ν such that

ω(τ, z) ≤ νp(τ, z).

Lemma 3.2 (Discrete Gronwall-type inequality [15]) Let {kj}nj=0 be a given non-

negative sequence and the sequence {εn} satisfy ε0 ≤ p0 and εn ≤ p0+
∑n−1

j=0 kjεj , n ≥ 1,
with p0 ≥ 0. Then

εn ≤ p0 exp

n−1∑
j=0

kj

 , n ≥ 1.

Lemma 3.3 (Discrete Gronwall-type inequality of two variables [1]) Let ωn,m be a
given non-negative sequence, and let b1, b2, b3 and β be independent of h and k and strictly
positive. If the sequence ωn,m satisfies

ωn,m ≤ hb1

n−1∑
ξ=0

ωξ,m + kb2

m−1∑
ρ=0

ωn,ρ + hkb3

n−1∑
ξ=0

m−1∑
ρ=0

ωξ,ρ + β,

for all n = 0, 1, ..., N,m = 0, 1, ...,M , then

ωn,m ≤ βexp(γ(Nh+Mk),

where γ = 1
2

(
b1 + b2 +

√
(b1 + b2)2 + 4b3

)
.

Theorem 3.1 Let g, κ1, κ2 and κ3 be p times continuously differentiable on their

respective domains. Then (4),(5),(7) define a unique approximation v ∈ S
(−1)
p−1,p−1(ΠN,M ),

and the resulting error function e(τ, z) = ω(τ, z)− v(τ, z) satisfies

∥e∥L∞(D) ≤ C(h+ k)p,

where C is a finite constant independent of h and k.

Proof. Define the error e(τ, z) on Dn,m by en,m(τ, z) = ω(τ, z) − vn,m(τ, z) for all
n = 0, 1, ..., N − 1 and m = 0, 1, ...,M − 1 .
There exists a constant C independent of h and k such that

∥en,m∥L∞(Dn,m) ≤ C(h+ k)p
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for all n = 0, 1, . . . , N − 1 and m = 1, . . . ,M − 1.
First, let (τ, z) ∈ D0,0, we obtain from (4),

|e0,0(τ, z)| ≤
∑

i+j=p

1

i!j!

∥∥∥∥ ∂i+jω

∂τ i∂zj

∥∥∥∥hikj .

When using a more direct generalization of the procedures utilized in Lemma 3.6 in [10],

there exists a positive number α(p) such that
∥∥∥∂i+j v̂n,m

∂τ i∂zj

∥∥∥ ≤ α(p) for all n = 0, 1, . . . , N−1,

m = 0, . . . ,M − 1 and i+ j = 0, ..., p, where v̂0,0(τ, z) = ω(τ, z) for (τ, z) ∈ D0,0. Hence,

|e0,0(τ, z)| ≤ α(p)
∑

i+j=p

1

i!j!
hikj =

α(p)

p!︸ ︷︷ ︸
C1

(h+ k)p.

Second, let (τ, z) ∈ Dn,0, for all n = 1, . . . , N − 1, we have from (6),

|ω(τ, z)− v̂n,0(τ, z)| ≤
n−1∑
ξ=0

hκ∥eξ,0∥L∞(Dξ,0) +

n−1∑
ξ=0

hkκ∥eξ,0∥L∞(Dξ,0)

+ κ

∫ τ

τn

|ω(t, z)− v̂n,0(t, z)|dt+ κ

∫ z

0

|ω(τ, s)− v̂n,0(τ, s)|ds

+ κ

∫ τ

τn

∫ z

0

|ω(t, s)− v̂n,0(t, s)|dsdt,

where κ = max{∥κi∥L∞(D), i = 1, 2, 3}, then by Lemma 3.1

|ω(τ, z)− v̂n,0(τ, z)| ≤

n−1∑
ξ=0

hκ∥eξ,0∥L∞(Dξ,0) +

n−1∑
ξ=0

hkκ∥eξ,0∥L∞(Dξ,0)

 ν

≤
n−1∑
ξ=0

hκ(1 + Z)ν︸ ︷︷ ︸
λ1

∥eξ,0∥L∞(Dξ,0),

which implies that

∥en,0∥L∞(Dn,0) ≤ ∥ω − v̂n,0∥+ ∥v̂n,0 − vn,0∥

≤
n−1∑
ξ=0

hλ1∥eξ,0∥L∞(Dξ,0) +
α(p)

p!
(h+ k)p,

then, by Lemma 3.2, we have

∥en,0∥L∞(Dn,0) ≤
α(p)

p!
exp(Tλ1)︸ ︷︷ ︸
C2

(h+ k)p.
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Third, let (τ, z) ∈ Dn,m for all n = 0, . . . , N −1 and m = 1, . . . ,M −1, we have from (8),

|ω(τ, z)− v̂n,m(τ, z)| ≤
n−1∑
ξ=0

hκ∥eξ,m∥+
m−1∑
ρ=0

kκ∥en,ρ∥+ κ

∫ τ

τn

∫ z

zm

|ω(t, s)− v̂n,m(t, s)|dsdt

+

n−1∑
ξ=0

m−1∑
ρ=0

hkκ∥eξ,ρ∥+
n−1∑
ξ=0

hkκ∥eξ,m∥+
m−1∑
ρ=0

hkκ∥en,ρ∥

+ κ

∫ τ

τn

|ω(t, z)− v̂n,m(t, z)|dt+ κ

∫ z

zm

|ω(τ, s)− v̂n,m(τ, s)|ds,

then by Lemma 3.1,

|ω(τ, z)− v̂n,m(τ, z)| ≤
n−1∑
ξ=0

hκ(1 + k)ν︸ ︷︷ ︸
λ2

∥eξ,m∥+
m−1∑
ρ=0

k κ(1 + h)ν︸ ︷︷ ︸
λ3

∥en,ρ∥

+

n−1∑
ξ=0

m−1∑
ρ=0

hk κν︸︷︷︸
λ4

∥eξ,ρ∥,

which implies that

∥en,m∥ ≤∥ω − v̂n,m∥+ ∥v̂n,m − vn,m∥

≤
n−1∑
ξ=0

hλ2∥eξ,m∥+
m−1∑
ρ=0

kλ3∥en,ρ∥+
n−1∑
ξ=0

m−1∑
ρ=0

hkλ4∥eξ,ρ∥+
α(p)

p!
(h+ k)p,

using Lemma 3.3, we obtain

∥en,m∥ ≤ α(p)

p!
exp(γ3(T + Z))︸ ︷︷ ︸

C3

(h+ k)p

such that γ3 = 1
2

(
λ2 + λ3 +

√
(λ2 + λ3)2 + 4λ3

)
.

Thus, the proof is completed by taking C = max{C1, C2, C3}. □

4 Numerical examples

In this section, we present numerical experiments that assess the performance of the
Taylor collocation method (TCM) for solving problems of the form (1) in Example 4.4
and the form (2) in Examples 4.1–4.3. We also compare the TCM results with those
obtained using other methods such as the multi-step method [9], Euler-type method,
and Trapezoidal method [1], Chelyshkov polynomials method [6], bivariate shifted Leg-
endre functions method [16], and two-dimensional block-pulse functions method [17]. In
each example, we compare the TCM solution with the results obtained from previous
references. Our numerical experiments were conducted using Maple version 17 and a PC
with Intel Core i7-2630QM CPU @2.00 GHz and 8,00 Go of RAM, running MS Windows
7 operating system. We observed that the TCM produces more accurate results than the
previous methods.
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(τ, z) N = M = 10,p = 3 N = M = 20,p = 3 N = M = 10, p = 4
(0.1, 0.1) 1.73e− 06 5.99e− 07 2.59e− 06
(0.2, 0.2) 1.84e− 05 5.29e− 06 2.20e− 05
(0.3, 0.3) 6.23e− 05 1.68e− 05 7.02e− 05
(0.4, 0.4) 1.34e− 04 3.53e− 05 1.47e− 04
(0.5, 0.5) 2.28e− 04 5.85e− 05 2.46e− 04
(0.6, 0.6) 3.29e− 04 8.35e− 05 3.52e− 04
(0.7, 0.7) 4.27e− 04 1.07e− 04 4.55e− 04
(0.8, 0.8) 5.14e− 04 1.28e− 04 5.46e− 04
(0.9, 0.9) 5.85e− 04 1.45e− 04 6.21e− 04
(1.0, 1.0) 1.86e− 03 3.17e− 04 5.93e− 04

Table 1: Absolute errors function for Example 4.1.

Example 4.1 Consider the linear 2D VIE of the first kind∫ τ

0

∫ z

0

(τz + 1)ω(t, s)dsdt = f(τ, z), τ, z ∈ [0, 1]. (9)

By differentiating both sides of equation (9), we obtain

ω(τ, z) = g(τ, z)−
∫ τ

0

zω(t, z)

τz + 1
dt−

∫ z

0

τω(τ, s)

τz + 1
ds−

∫ τ

0

∫ z

0

ω(t, s)

τz + 1
dsdt, (10)

where g(τ, z) = −3τ2+(2+3τ+3τz)τez

2(1+τz) , which has the exact solution ω(τ, z) = τez.

A comparison between the approximate and exact solutions is shown in Table 1
by applying the TCM to equation (10) at some points with p = 3, 4 and (N,M) =
(10, 10), (20, 20).

Example 4.2 Consider the linear 2D VIE of the first kind [9](
τ2z2 + 2 sin(τz)− 2τz cos(τz)

2z2

)
sin(z) =

∫ τ

0

∫ z

0

(sin(zt) + 1)ω(t, s)dsdt

for τ, z ∈ [0, 1], and the exact solution is ω(τ, z) = τ cos(z). This equation is equivalent
to the following linear 2D VIE of the second kind:

ω(τ, z) = τ cos(z) +
τ2 sin(z) cos(τz)

sin(τz) + 1
−

∫ z

0

τ cos(τz)

sin(τz) + 1
ω(τ, s)ds.

The numerical results for p = 4 and N = M = 15 of the TCM and the numerical results
obtained by using the multi-step method [9] are compared in Table 2.

Example 4.3 Consider the linear 2D VIE of the first kind [1]

f(τ, z) =

∫ τ

0

∫ z

0

(sin(z + t) + sin(τ + s) + 3)ω(t, s)dsdt, τ, z ∈ [0, 2],

where g(τ, z) is chosen so that the exact solution is ω(τ, z) = cos(τ + z).
In Table 3, the numerical results for p = 3 and h = k = 0.1, 0.05 of the present

method (TCM) are compared with the numerical results obtained by using the Euler-type
method (EM) and Trapezoidal method (TM) [1], Chelyshkov polynomials method (2D-
CPs) [6], bivariate shifted Legendre functions method [16] and two-dimensional block-
pulse functions method (2D BPFs) [17].
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(τ, z) multi-steps method present method
(2−7, 2−7) 2.38e− 07 2.00e− 12
(2−6, 2−6) 1.90e− 06 4.00e− 11
(2−5, 2−5) 1.57e− 05 1.24e− 09
(2−4, 2−4) 2.25e− 06 3.97e− 08
(2−3, 2−3) 1.51e− 07 1.88e− 07
(2−2, 2−2) 1.92e− 07 2.66e− 07
(2−1, 2−1) 6.16e− 07 8.87e− 08

Table 2: Comparison of the absolute errors of Example 4.2.

TCM EM [1] TM [1] Method in [16] 2D-BPFs [17]
(τ, z) h = 0.05 h = 0.05 h = 0.05 M = 4 m = 32
(1, 1) 8.57e− 07 4.06e− 02 9.80e− 04 4.96e− 06 6.08e− 02
(1, 2) 2.29e− 05 1.23e− 02 5.47e− 04 5.98e− 06 4.00e− 03
(2, 1) 2.29e− 05 1.23e− 02 5.47e− 04 9.87e− 03 4.00e− 03
(2, 2) 4.27e− 05 4.06e− 02 2.03e− 03 1.22e− 05 4.74e− 02
∥e∥∞ 4.27e− 05 5.49e− 02 2.03e− 03 / /

TCM 2D-CPs [6]
(τ, z) h = 0.1 h = 0.05 N = 2 M = 4

(0.1, 0.1) 2.77e− 07 3.78e− 08 7.41e− 03 4.77e− 06
(0.2, 0.2) 9.38e− 07 1.18e− 07 4.43e− 04 2.10e− 05
(0.3, 0.3) 1.63e− 06 2.03e− 07 5.40e− 03 7.20e− 06
(0.4, 0.4) 2.14e− 06 2.67e− 07 6.65e− 03 8.20e− 06
(0.5, 0.5) 2.33e− 06 2.91e− 07 4.48e− 03 6.40e− 06
(0.6, 0.6) 2.09e− 06 2.62e− 07 5.43e− 05 6.90e− 06
(0.7, 0.7) 1.28e− 06 1.60e− 07 4.80e− 03 1.20e− 05
(0.8, 0.8) 2.85e− 07 3.66e− 08 7.93e− 03 5.00e− 06
(0.9, 0.9) 2.80e− 06 3.58e− 07 7.08e− 03 3.00e− 05
(1, 1) 6.85e− 06 8.59e− 07 2.77e− 04 1.80e− 06

Table 3: Comparison of the absolute errors for Example 4.3.

Example 4.4 Consider the nonlinear 2D VIE of the first kind [17]

1

9
(eτ+z − eτ+4z − e7τ+z + e7τ+4z) =

∫ τ

0

∫ z

0

2eτ+zω3(t, s)dsdt

for τ, z ∈ [0, 1], and the exact solution is ω(τ, z) = eτ+2z. This equation is equivalent to
the following linear 2D VIE of the second kind:

u(τ, z) = g(τ, z)−
∫ τ

0

u(t, z)dt−
∫ z

0

u(τ, s)ds−
∫ τ

0

∫ z

0

u(t, s)dsdt,

where u = ω3. In Table 4, the numerical results for p = 3 and N = M = 64 of
the TCM are compared with the numerical results obtained by using the Chelyshkov
polynomials method (2D CPs) [6], bivariate shifted Legendre functions method [16] and
two-dimensional block-pulse functions method (2D BPFs) [17].
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(2−i, 2−i) 2D-BPFs [17] Method in [16] 2D-CPs [6] Present method
i = 1 1.0e− 1 2.6e− 6 3.5e− 5 6.1e− 6
i = 2 4.6e− 2 4.6e− 6 2.0e− 6 2.6e− 6
i = 3 2.9e− 2 6.3e− 7 1.5e− 5 1.3e− 6
i = 4 2.3e− 2 1.2e− 5 1.2e− 5 7.2e− 7
i = 5 2.0e− 2 3.8e− 6 5.9e− 5 3.7e− 7
i = 6 3.1e− 2 9.0e− 6 9.6e− 5 1.9e− 7

Table 4: Comparison of the absolute errors of Example 4.4.

5 Conclusion

In this paper, the problem expressed in (1) is transformed into a linear 2D VIE of the
second kind, which is given by (3). A collocation method using the Taylor polynomials
is developed to solve the 2D VIE of the second kind. The convergence and error analysis
of this method are investigated, and numerical examples are provided to illustrate its
effectiveness and accuracy. The numerical results confirm the theoretical estimates, and
comparisons with other methods are presented. This method can be easily generalized
and applied to a system of 2D VIEs of the first and second kinds.
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Abstract: Dynamical systems can be stochastic or uncertain because of some as-
sumptions or distractions that limit the problem. This occurs when the system is
obtained from data using system identifiers with various uncertainties. One example
of a system that contains uncertainty parameters is the longitudinal motion of the
aircraft model. The longitudinal motion of the aircraft requires control, so in this
study, control was applied using the Model Predictive Control (MPC) method. Be-
fore applying control to the aircraft model, the Polynomial Chaos expansion will be
applied to the state space model to get the deterministic model. The simulation uses
different prediction horizons (Np) and polynomial orders (r). Based on the simula-
tion results, it was found that the pitch rate output can approach the given pitch rate
reference.

Keywords: polynomial chaos; hermite polynomial; model predictive control.
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1 Introduction

Mathematical models are the representations of phenomena or realities written in math-
ematical equations. The process of constructing a mathematical model of reality or a
problem is called mathematical modelling [1]. Mathematical models can be written in
the dynamic system [2]. A dynamic system is a system that changes or experiences
dynamics over time. In practice, dynamic systems are not always deterministic. The
dynamic system can be stochastic because there are assumptions to limit the problem
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or disturbances. Uncertainty in the parameters occurs if the system parameters are not
known. This can also happen when the system model is obtained from the data using
system identification so that the system’s transfer function has an uncertainty range [3].

One of the methods for approximating linear dynamic systems with parameter un-
certainty is the Polynomial Chaos method. By using the Polynomial Chaos method, the
stochastic system will be transformed into a deterministic system with a larger dimen-
sion state space [4]. Research on the Polynomial Chaos method in dynamical systems
was conducted by Bhattacharya [5] in 2014. This research develops a control design
using the Robust State Feedback Control method with probabilistic system parameters.
In this study, the Polynomial Chaos method approach was applied to the F-16 aircraft
model. Based on the simulation results, it was found that by using the Polynomial Chaos
method, the control design showed good consistency. Another study discussing the Poly-
nomial Chaos method was conducted by Tadiparthi and Bhattacharya [6] in 2020. In
this research, the Robust Linear Quadratic Regulator (LQR) algorithm was developed
with a control design based on the Polynomial Chaos method.

Model Predictive Control (MPC) is an advanced process control method that is widely
applied in industrial processes. Research on the Robust Model Predictive Control (MPC)
method was conducted by Asfihani, et al. [7] in 2019. In this study, the Robust MPC
method was applied to a linear model of Unmanned Surface Vehicle (USV) motion.
Robust MPC is used to control Dubin’s track tracking [8, 9]. In this study, sea waves
are considered as a disturbance. The simulation results show that the Robust MPC
method can guide ships to follow the trajectory and reject disturbances. Another study
discussing the MPC method was conducted in 2020 by Asfihani, et al. [10]. The MPC
method is applied to control the missile. The MPC aims to minimize the time it takes
for the missile to reach a moving target. The simulation results show that the fastest
time to reach the target is 20 seconds, when the horizon prediction value is 10 and given
a constraint on the state.

Based on the previous research described above, the Polynomial Chaos and Model
Predictive Control (MPC) are applied for the longitudinal motion of the F-16 aircraft
control. In this paper, the nonlinear aircraft model is taken from Stevens, et al. [11].
The Taylor expansion is employed for linearization so that a linear model is obtained
based on the coefficient data of the F-16 aircraft. The longitudinal motion model of the
F-16 aircraft contains stochastic uncertainty in the parameter, so the Polynomial Chaos
method is applied to the linear model [4,12] to obtain a deterministic model. The previous
studies in [4–6] assumed that the random variables ∆ were uniformly distributed. In this
study, it is assumed that the distribution of the random variables is Gaussian. Then the
control will be applied to a deterministic state space with the MPC method.

This paper is constructed as follows. The longitudinal motion model of the aircraft
is defined in Section 2. Then Section 3 explains the Polynomial Chaos method to trans-
form stochastic state space into deterministic state space. Section 4 explains the MPC
design implemented in the deterministic state space obtained from the Polynomial Chaos
method. Next, Section 5 deals with discussions based on the simulation result. And last,
Section 6 provides the conclusion.

2 Linear Model of Longitudinal Motion of the Aircraft

Longitudinal motion is the movement of the aircraft in a vertical direction such as climb-
ing or swooping. The control affecting the aircraft’s longitudinal motion response is the
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elevator deflection [13]. The condition when the elevator angle is negative causes the tail
of the plane to go down and the nose to go up (pitch angle is positive) [14].

In this study, the F-16 longitudinal motion model is used in the form of a stochastic

state space that contains uncertainty parameters. The state variable x =
[
α q xe

]T
consists of the angle of attack (α), pitch rate (q), and elevator state (xe) that captures
the actuator dynamics. The control input (u) is in the form of an elevator command or
an elevator deflection with an angle in degrees (δec). So the stochastic state space for
the longitudinal motion of the aircraft is written as follows [4, 12]:

ẋ = A(∆)x + Bu, α̇
q̇
ẋe

 =

−0, 6398 0, 9378 −0, 0014
a21(∆) a22(∆) a23(∆)

0 0 −20, 2000

α
q
xe

+

 0
0

20, 2

 [
δec

]
(1)

with the output in the form of the pitch rate (q) so that the output equation is as follows:

y = Cx =

[
0

180

π
0

]α
q
xe

 , (2)

where

a21(∆) = −1, 5679(1 + 0, 1∆),
a22(∆) = −0, 8791(1 + 0, 1∆),
a23(∆) = −0, 1137(1 + 0, 1∆).

The stochastic uncertainty parameter in the longitudinal motion model of the F-16
aircraft is shown byA(∆), a matrix function of the random variable ∆. Random variables
∆ are assumed to be Gaussian distributed.

The random variable ∆ represents the pitch of the plane. This relates to the derived
coefficients of the aircraft pitching moment. The pitching moment is the moment that
pivots on the pitch axis/Y axis [14]. The random variables a21(∆), a22(∆), and a23(∆)
represent the derived coefficients of pitch stiffness, pitch damping plane, and the power
of the elevator control [11].

3 Polynomial Chaos Method

Polynomial Chaos is a deterministic approach used to handle uncertainty evolution when
probabilistic uncertainty exists in the system parameters. [15]. Let ∆ : Ω → Rd be a
random variable and L2(Ω,F , P ) be the set of all random variables ξ over the probability

space (Ω,F ,P) such that

∫
Ω

|ξ|2 dP < ∞. The second-order general process of

X ∈ L2(Ω,F ,P) can be written in Polynomial Chaos as follows [6]:

X(ω) =

∞∑
i=0

xiϕi(∆(ω)), (3)

where ω denotes the sample point and ϕ(∆) represents the general Polynomial Chaos
(gPC) basis with degree p over the random variable ∆.
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For a random variable ∆ with a given distribution, a family of the orthogonal basis
functions {ϕi} can be selected such that its weight function f(x) exhibits a similar form
as the probability density function, i.e.,∫

D∆

ϕi(x)ϕj(x)f(x) dx = E[ϕi(∆)ϕj(∆)] = E[ϕ2
i (∆)]δij = ⟨ϕi, ϕj⟩, (4)

where E[·] represents the expectation relative to the probability measure denoted by P
and pdf f .

The relation between the choice of polynomials and given ∆ distribution can be seen
in Table 1.

Random Variable ∆ Polynomial Choice
Beta Jacobi

Gamma Laguerre
Uniform Legendre
Gaussian Hermite

Table 1: The Relation between Polynomial Choices and the ∆(ω) Distribution.

A stochastic linear system is defined as follows:

ẋ(t,∆) = A(∆)x(t,∆) +B(∆)u(t), (5)

where x ∈ Rnx ,u ∈ Rnu . The system in Equation (5) contains probability uncertainties
in its system parameters.

By applying the general finite-order Polynomial Chaos expansion, we get [6]

x̂i(t,∆) =

p∑
k=0

xi,k(t)ϕk(∆) = x̃i(t)
TΦ(∆), (6)

Âij(∆) =

p∑
k=0

aij,kϕk(∆) = ãT
ijΦ(∆), (7)

B̂ij(∆) =

p∑
k=0

bij,kϕk(∆) = b̃
T

ijΦ(∆), (8)

where x̃i(t), ãij , b̃ij ,Φ(∆) ∈ Rp is defined as

x̃i(t) =
[
xi,0(t) · · · xi,p(t)

]T
,

ãij =
[
aij,0 · · · aij,p

]T
,

b̃ij =
[
bij,0 · · · bij,p

]T
,

Φ(∆) =
[
ϕ0(∆) · · · ϕp(∆)

]T
.

The value of p is determined by the dimension of ∆ (d) and the order of the orthogonal

polynomial {ϕk} (denoted by r), which satisfies p+1 =
(d+ r)!

d!r!
. By using the Galerkin

projection onto {ϕk}pk=0, the coefficients aij,k and bij,k can be written as follows:

aij,k =
⟨Aij(∆), ϕk(∆)⟩
⟨ϕk(∆), ϕk(∆)⟩⟩

, (9)
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bij,k =
⟨Bij(∆), ϕk(∆)⟩
⟨ϕk(∆), ϕk(∆)⟩

. (10)

By substituting the Polynomial Chaos expansion (Equations (6), (7), (8)) in the
stochastic linear system (5), where {ϕk} is the basis of an orthogonal polynomial, we get

p∑
k=0

ẋi,k(t)ϕk(∆) =
nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)ϕk(∆)ϕl(∆)

+
nu∑
j=1

p∑
k=0

bij,kϕk(∆)uj(t).
(11)

Applying the inner product on both sides with ϕm for m = 0, 1, 2, ..., p, we get

p∑
k=0

ẋi,k(t)⟨ϕk(∆), ϕm(∆)⟩ =
nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)⟨ϕk(∆)ϕl(∆), ϕm(∆)⟩

+
nu∑
j=1

p∑
k=0

bij,kuj(t)⟨ϕk(∆), ϕm(∆)⟩.
(12)

Since {ϕm} is an orthogonal basis, ⟨ϕk, ϕm⟩ = 0 for k ̸= m, Equation (12) becomes

ẋi,m(t)∥ϕm∥2 =
nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)⟨ϕk(∆)ϕl(∆), ϕm(∆)⟩

+
nu∑
j=1

bij,kuj(t)∥ϕm∥2.
(13)

Then divide (13) by ∥ϕm∥2 to get

ẋi,m(t) =

nx∑
j=1

p∑
k=0

p∑
l=0

aij,kxi,l(t)Cklm +

nu∑
j=1

bij,muj(t), (14)

where Cklm =
⟨ϕkϕl, ϕm⟩
∥ϕm∥2

.

From (14), the deterministic differential equation is obtained as follows:

Ẋ = AX + BU , (15)

where
X =

[
X T

1 X T
2 · · · X T

nx

]T
,

U =
[
UT

1 UT
2 · · · UT

nu

]T
,

A = [Aij ] =
p∑

k=0

aij,kT k, i, j = 1, 2, ..., nx,

B = [Bij ] = bij , i = 1, 2, ..., nx; j = 1, 2, ..., nu.
And

T k =


Ck00 Ck10 · · · Ckp0

Ck01 Ck11 · · · Ckp1

...
...

. . .
...

Ck0p Ck1p · · · Ckpp


with the dimensions of X ,A,B, and U equal to nx(p + 1) × 1, nx(p + 1) × nx(p + 1),
nx(p+ 1)× nu, and nu × nu, respectively.
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4 Design of Model Predictive Control

MPC is a control system that can predict the future system output by considering both
the present input and output information. The advantages of the MPC method are that
it can handle multi-variable system control problems, has the ability to feed-forward
control to compensate for measured disturbances, and takes into account input and state
constraints [16] [17]. The basic MPC structure is presented in Figure 1 [17].

Figure 1: MPC Structure.

In this study, MPC is applied to a discrete deterministic system given in (16) and
(17):

X (k + 1) = AdX (k) +BdU(k), (16)

Y(k) = CX (k). (17)

In designing the MPC control in this study, the objective function formulation and
constraints were determined as prediction constraints using a dynamic system and limit
constraints on control inputs. By using Np = Nc, the MPC objective function can be
written as

J =
∑Np

j=1[(Yref (k + j|k)−Y(k + j|k))TQ(Yref (k + j|k)−Y(k + j|k))
+U(k + j − 1|k)TRU(k + j − 1|k)],

(18)

where Yref is the reference output and Y is the system output subject to

X (k + j + 1|k) = AdX (k + j|k) +BdU(k + j|k),
j = 0, 1, ..., Np − 1.

(19)

Y(k + j|k) = CX (k + j|k), j = 1, 2, ..., Np, (20)

Umin ≤ U(k + j|k) ≤ Umax, j = 0, 1, ..., Np − 1. (21)

By transforming the objective function (18) and constrains in equations (19), (20),
(21) into quadratic programming form, the problem formulation for MPC is written as
follows:

min
U

J(U) =
1

2
UTHU +UTf (22)
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subject to 
Umin

Umin

Umin

...
Umin

 ≤ U ≤


Umax

Umax

Umax

...
Umax

 , (23)

where

f = 2ΦT Q̄(FX (k|k)− Yref ),

H = 2(ΦT Q̄Φ+ R̄),

Q̄ =


Q 0 0 · · · 0
0 Q 0 · · · 0
0 0 Q · · · 0
...

...
...

. . .
...

0 0 0 0 Q


ny.Np×ny.Np

,

R̄ =


R 0 0 · · · 0
0 R 0 · · · 0
0 0 R · · · 0
...

...
...

. . .
...

0 0 0 0 R


nu.Np×nu.Np

,

F =


CAd

CA2
d

CA3
d

...

CANp

d


ny.Np×nx(p+1)

,

Φ =


CBd 0 0 · · · 0

CAdBd CBd 0 · · · 0
CA2

dBd CAdBd CBd · · · 0
...

...
...

. . .
...

CANp−1
d Bd CANp−2

d Bd CANp−3
d Bd · · · CBd


ny.Np×nu.Np

.

5 Simulation and Discussion

The MPC simulation aims to make the pitch rate follow the given reference, yref =
qref = 0◦/s. The value of the pitch rate of 0◦/s means that there is no difference or
change in the pitch angle every time, so it can be said that there is no movement on
the nose of the aircraft or it is in a stable condition. The parameter values used in the
simulation are Ts = 0, 05, x(0) = [30◦, 10◦/s, 15◦]T , Q = 10.000, R = 1, Umin = −25◦,
and Umax = 25◦.

This simulation used the value of polynomial order r = 3 and prediction horizon
Np = 10. The optimal control results (U∗) are applied to the stochastic state space of
the F-16 aircraft by generating the random variable ∆, which is Gaussian distributed
in 1000 simulations. The elevator control δec and the pitch rate output are obtained as
follows.
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(a) Control Input δec. (b) Pitch Rate Output.

Figure 2: Control Input & Pitch Rate Output (Np = 10, r = 3).

From Figure 2(a), it can be seen that the elevator deflection movement is still within
the given constrain, −25◦ ≤ δec ≤ 25◦. Changes in the ups and downs of the δec value
indicate the effort of the control input so that the output approaches the given reference,
namely qref = 0◦/s.

In Figure 2(b), the blue line is the pitch rate output, while the black dotted line
shows the mean of the pitch rate output by simulating 1000 times. From Figure 2(b), it
can be seen that the output of the pitch rate by simulating 1000 times and the mean of
pitch rate output both converge or approach the given reference, q = 0◦/ second. From
the simulation, the mean of the MAE (mean absolute error) by simulating 1000 times is
0, 78171.

5.1 Simulation with various prediction horizon values

The first simulation used the polynomial order value r = 3 and different prediction
horizon values (Np = 5, Np = 10, Np = 20). The simulation results of the elevator
deflection control δec and the mean of the pitch rate output by doing 1000 simulations
are shown in the following figures.
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(a) Control Input δec Simulation 1. (b) Pitch Rate Output Simulation 1.

Figure 3: Control Input & Pitch Rate Output for Different Prediction Horizon (Np = 5, 10, 20).

Based on Figure 3(b), different prediction horizon valuesNp affect the system’s output
response towards the given reference. For a smaller prediction horizon value Np = 5, from
the simulation, it looks longer to reach the reference pitch rate. To find out the difference
in system response with different prediction horizon values Np, the mean of MAE for each
prediction horizon value is given as follows.

Prediction Horizon (Np) MAE (degree/ s)
2 0, 79424
5 0, 78501
8 0, 78310
10 0, 78171
15 0, 78150
20 0, 78134

Table 2: MAE for Different Prediction Horizon Np.

5.2 Simulation with various orders of the polynomial

The second simulation used different Hermite polynomial orders (r = 2, r = 5, r = 8).
This simulation used the same prediction horizon value, Np = 20. The control input δec
and the mean pitch rate output are given by the following figures.
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(a) Control Input δec Simulation 2. (b) Pitch Rate Output Simulation 2.

Figure 4: Control Input & Pitch Rate Output for Different Polynomial Orders (r = 2, 5, 8).

From Figure 4(b), it can be seen that the pitch rate can approach the given reference
value for all polynomial order values. The simulation obtains the same pitch rate output
for 30 seconds simulation time by using the polynomial order r = 2, r = 5, r = 8. Based
on the simulation results, the same mean of the MAE value is obtained for different
polynomial orders (r = 2, r = 5, r = 8). The mean of MAE and computation time for
different polynomial orders are given in the following table.

Polynomial Orders (r) MAE (degree/s) Computation Time (s)
2 0, 78134 6, 10266
3 0, 78134 6, 41526
4 0, 78134 7, 65380
5 0, 78134 7, 93255
6 0, 78134 11, 39271
7 0, 78134 26, 17483
8 0, 78134 49, 87485

Table 3: MAE and Computation Time for Different Polynomial Orders r.

6 Conclusion

In this study, Polynomial Chaos and MPC are implemented for controlling the longitudi-
nal motion of the F-16 aircraft, which has uncertainty in the parameter system (∆). The
contribution of this paper is the random variables ∆ are assumed to be Gaussian dis-
tributed. The simulation results indicated that the Polynomial Chaos and MPC methods
could be implemented properly for the linear model of the F-16 aircraft with uncertain
stochastic parameters. This can be seen from the pitch rate output, which can follow and
satisfy the given reference (qref = 0◦/s). Based on the simulation results for different
prediction horizon values (Np), a larger Np gives a better pitch rate output response and
a smaller mean of MAE. Meanwhile, different orders of the Hermite polynomial do not
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significantly influence the result of control input and the pitch rate output. However, a
higher order of the Hermite Polynomial requires a longer computation time.
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Abstract: In this paper, we study a singular parabolic reaction-diffusion system
with positive Dirichlet boundary conditions. It is shown that certain conditions are
sufficient to guarantee finite-time quenching and global existence of solutions. This
system appears in the modeling of the quenching phenomena.
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1 Introduction

Quenching refers to the process of rapidly cooling a material from a high temperature to a
lower temperature. This is done to alter the material’s physical or mechanical properties
such as hardness or strength. The rapid cooling prevents the material from undergoing
a gradual cooling process, which would allow the material to form larger crystals that
could weaken the material’s structure. Quenching can be accomplished using different
methods, including immersion in water, oil, or air, depending on the desired outcome.
The study of this important phenomenon began in 1975 with a paper by Kawarada [5],
where he studied a model in one space dimension. That paper was an introduction to
the large-scale studies of the quenching problem by many researchers in several scientific
fields. For a detailed survey, we refer to Chan [3], Levine [7], Rouabah et al. [13], Zouaoui
et al. [20].

By using reaction-diffusion models, researchers can simulate the behavior of quenching
processes and predict the resulting microstructure and mechanical properties of the metal.
This can help in the design of new quenching techniques and in the optimization of
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existing ones. For more research on the phenomenon of quenching via reaction-diffusion
systems, we refer the readers to Bonis [2], Ji et al. [4], Mesbahi [8], Mu et al. [11], Pei
and Li [12], Salin [14–16], Wang [17], Zheng and Song [18], Zheng and Wang [19] and the
references therein, where we will also find, in addition to the results by Mesbahi [9] and
[10], many theoretical and numerical methods frequently used to study such problems.

In biology, quenching is a process that involves the rapid cooling of a sample in
order to interrupt or halt certain biological processes. This procedure has several uses,
including stopping metabolic processes and preserving metabolite profile of a sample in
metabolomics. Protein synthesis and degradation can also be stopped for protein level
and modification analysis in cells or tissues, while RNA in cells or tissues can be preserved
for the analysis of gene expression. Moreover, microbial cultures can be preserved for
long-term storage or transport by rapidly cooling them to halt growth and metabolic
activity.

Quenching has many applications in medicine. One common medical application of
quenching is cryotherapy, where extreme cold to treat disease or injury is used. This
can include using liquid nitrogen to freeze and destroy cancerous tissue, or the use of
ice packs to reduce swelling and inflammation. Another application is controlling the
release of drugs from drug delivery systems. Rapid cooling of the system can halt or slow
down drug release, enabling sustained release over time. Furthermore, quenching can aid
in the preservation of biological samples such as blood or tissue samples for analysis or
storage. Rapid cooling can prevent degradation of the sample and preserve its integrity
for later use.

Quenching is also an important process in the manufacture of contact lenses. Typi-
cally, after the lenses are shaped, they undergo thermal quenching by being immersed in
cold water. This process helps in solidifying their structure and preventing any deforma-
tion or distortion during handling and further processing. Furthermore, it enhances the
mechanical and optical features of the lenses making them stronger, more resistant to
damage, and long-lasting. Chemical quenching is also used by manufacturers to adjust
the properties of the lenses. For instance, to crosslink the polymer chains in the lenses
or to enhance their strength and flexibility. For better understanding, we refer to Barka
et al. [1], Khurshid et al. [6].

In this work, we are interested in the study of the following reaction-diffusion sys-
tem with general singular terms and positive Dirichlet boundary conditions that can be
applied to the quenching phenomenon:

(u1)t −∆u1 = −f1 (u2) in (0, T )× Ω,
...

...
(um−1)t −∆um−1 = −fm−1 (um) in (0, T )× Ω,

(um)t −∆um = −fm (u1) in (0, T )× Ω,
u1 = u2 = · · · = um = 1 on (0, T )× ∂Ω,
u1 (0, x) = u10 (x) , . . . , um (0, x) = um0 (x) in Ω,

(1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary. The functions fj
(1 ≤ j ≤ m) are positive on (0, 1]. The initial data satisfy u10, u20, . . . , um0 ∈ C2 (Ω) ∩ C1

(
Ω
)
,

uj0 = 1, for all 1 ≤ j ≤ m, on ∂Ω,
0 < uj0 ≤ 1, for all 1 ≤ j ≤ m, in Ω.

(2)
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The rest of this paper is organized as follows. In the next section, we state our main
results. In the third section, we prove some important preliminary results. The fourth
section is devoted to the proof of the main results. The paper ends with a concluding
remarks and perspectives.

2 Statement of Main Results

2.1 Assumptions

For this model, the finite-time quenching phenomena are caused by singular nonlinearities
in the absorption terms of (1).

Definition 2.1 We say the solution (u1, . . . , um) of problem (1) quenches if
(u1, . . . , um) exists in the classical sense and is positive for all 0 ≤ t < T , and also
satisfies inf

t→T
min

x∈[0,1]
{(u1 (t, x) , . . . , um (t, x)} = 0. In this case, T is called quenching

time.

To study problem (1), we also assume that the positive functions fj : (0, 1] → (0,+∞),
1 ≤ j ≤ m, satisfy the following simple assumptions which allow them to be chosen from
a wide range:

(H1) The functions fj , 1 ≤ j ≤ m, are locally Lipschitz on (0, 1],

(H2) f
′
j (s) < 0 on (0, 1] for all 1 ≤ j ≤ m,

(H3) lim
s→0+

fj (s) = +∞ for all 1 ≤ j ≤ m.

In order to state our results more conveniently, we denote by φ the first eigenfunction
associated with the first eigenvalue λ1 of the problem{

∆φ+ λφ = 0 in Ω,
φ = 0 on ∂Ω,

normalized by
∫
Ω
φ(x)dx = 1, with φ(x) > 0 in Ω.

2.2 The main results

The following theorem gives us a sufficient condition for finite-time quenching.

Theorem 2.1 Under hypotheses (H1) − (H3), the solution of problem (1) quenches
in finite time for any initial data provided that λ1 is small enough.

Many quenching studies confirm that time-derivatives blow-up while the solution itself
remains bounded. We refer, for example, to Chan [3] and Kawarada [5]. Throughout
this paper, without any special explanation, we assume that the initial data u10, . . . , um0

satisfy
∆u10 − f1 (u20) < 0, . . . , ∆um0 − fm (u10) < 0 in Ω. (3)

Thus, the global existence of solutions can be described by the following theorem.

Theorem 2.2 If the diameter of Ω is small enough and the initial data satisfies
0 < ε ≤ u10, . . . , um0 ≤ 1 in Ω, then under hypotheses (H1)−(H3), the solution of problem
(1) does not quench in finite time. In this case, we say that the solution (u1, . . . , um)
exists globally.
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3 Preliminary Results

We will prove two important lemmas which we will use to prove our main results.

Lemma 3.1 Assume that the initial data satisfy (3), then (u1)t , . . . , (um)t < 0 in
(0, T )× Ω.

Proof. Let Ij (t, x) = (uj)t (t, x) for all 1 ≤ j ≤ m and (t, x) ∈ (0, T )× Ω. Differen-
tiating system (1) with respect to t, we have

∂
∂tI1 = ∆(u1)t − (u2)t f

′
1 (u2) in (0, T )× Ω,

...
...

∂
∂t (Im) (x, t) = ∆ (um)t − (u1)t f

′
m (u1) in (0, T )× Ω,

I1 = I2 = · · · = Im = 0 on (0, T )× ∂Ω,
Ij (0, x) < 0, for all 1 ≤ j ≤ m in Ω,

which, after simplification, gives

∂
∂tI1 −∆I1 = −I2f ′1 (u2) in (0, T )× Ω,
...

...
∂
∂tIm −∆Im = −I1f ′m (u1) in (0, T )× Ω,

I1 = I2 = · · · = Im = 0 on (0, T )× ∂Ω,
Ij (0, x) < 0, for all 1 ≤ j ≤ m in Ω.

(4)

By the comparison principle, we have, for all (t, x) ∈ (0, T )× Ω,

Ij (t, x) = (uj)t (t, x) < 0 for all 1 ≤ j ≤ m.

This shows that u1, . . . , um are strictly decreasing in time.
Now, we consider the radial solutions of problem (1) on Ω = Br ={

x ∈ RN : |x| < R
}
.

Lemma 3.2 Let (u1, . . . , um) be the global solution of problem (1) with
(u10, . . . , um0) ≡ (1, . . . , 1), u1, . . . , um ≥ b in (0,∞) × BR for some b ∈ (0, 1). Then
(u1, . . . , um) approaches uniformly from above to a solution (U1, . . . , Um) of the steady-
state problem 

∆U1 = f (U2) in BR,
...

...
∆Um−1 = f (Um) in BR,
∆Um = f (U1) in BR,
U1 = U2 = · · · = Um = 1 on ∂BR.

(5)

Proof. Since (1, . . . , 1) is a strict super-solution of problem (1), by Lemma 3.1, we
have (u1)t , . . . , (um)t < 0 in (0,∞)×BR. Define the functions

Qj (t, x) =

∫
BR

G (x, y)uj (t, y) dy, in (0,∞)×BR, for all 1 ≤ j ≤ m,
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whereG (x, y) is Green’s function associated with the operator−∆ on BR under Dirichlet
boundary conditions. Hence

∂

∂t
(Q1) =

∫
BR

G (x, y) (u1)t (t, y) dy

=

∫
BR

G (x, y)∆u1 (t, y) dy −
∫
BR

G (x, y) f1 (u2 (t, y)) dy,

...
∂

∂t
(Qm) =

∫
BR

G (x, y) (um)t (t, y) dy

=

∫
BR

G (x, y)∆um (t, y) dy −
∫
BR

G (x, y) fm (u1 (t, y)) dy,

this gives us

∂

∂t
(Q1) = 1− u1 (x, y)−

∫
BR

G (x, y) f1 (u2 (t, y)) dy,

...
∂

∂t
(Qm) = 1− um (x, y)−

∫
BR

G (x, y) fm (u1 (t, y)) dy.

It follows from (uj)t < 0 for all 1 ≤ j ≤ m, that

G (x, y) f1 (u2 (t, y)) , . . . , G (x, y) fm−1 (um (t, y)) and G (x, y) fm (u1 (t, y))

are nondecreasing with respect to t. According to the monotone convergence theorem
with

b ≤ Uj (x) = lim
t→0

uj (t, x) for all 1 ≤ j ≤ m,

we have

lim
t→0

∂

∂t
(Q1) = 1− U1 (x)−

∫
BR

G (x, y) f1 (U2 (y)) dy,

...

lim
t→0

∂

∂t
(Qm) = 1− Um (x)−

∫
BR

G (x, y) fm (U1 (y)) dy.

Furthermore, since Q1, . . . , Qm are bounded, (Q1)t , . . . , (Qm)t ≤ 0, and by
(u1)t , . . . , (um)t < 0, we have

lim
t→0

∂

∂t
(Qj) = 0 for all 1 ≤ j ≤ m,

which yields

U1 (x) = 1−
∫
BR

G (x, y) f1 (U2 (y)) dy,

...

Um (x) = 1−
∫
BR

G (x, y) fm (U1 (y)) dy,
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and therefore (U1, . . . , Um) is a solution of problem (5), and the uniform convergence is
ensured by Dini’s theorem.

4 Proofs of the Main Results

Proof. [of Theorem 2.1] Let (u1, . . . , um) be the solution of problem (1) with the
maximal existence time T . By the maximum principle, we have 0 ≤ uj ≤ 1 for all
1 ≤ j ≤ m, in (0, T )× Ω. Let

ψj (t) =

∫
Ω

(1− uj)φdx for all 1 ≤ j ≤ m, t ∈ [0, T ) (6)

and
Ψ (t) = ψ1 (t) + · · ·+ ψm (t) , t ∈ [0, T ) . (7)

By hypotheses (H1)− (H3) and the corresponding Taylor expansions, we can easily get

f1 (u2) ≥ δ (1− u2) + c1 , . . . , fm (u1) ≥ δ (1− u1) + cm, (8)

where δ, c1, . . . , cm are positive constants determined by f1 (u2) , . . . , fm (u1).
By a straight-forward computation and (8), we have

ψ′
1 (t) = −

∫
Ω

∆u1φdx+

∫
Ω

f1 (u2)φdx

=

∫
Ω

∆(1− u1)φdx+

∫
Ω

f1 (u2)φdx

≥ −λ1
∫
Ω

(1− u1)φdx+ δ

∫
Ω

(1− u2)φdx+ c1

∫
Ω

φdx

= −λ1ψ1 (t) + δψ2 (t) + c1.

In the same way, with ψ2 (t) , . . . , ψm (t), we finally get the following inequalities:

ψ′
1 (t) ≥ −λ1ψ1 (t) + δψ2 (t) + c1,

...

ψ′
m (t) ≥ −λ1ψm (t) + δψ1 (t) + cm.

Using (7), we get

Ψ′ (t) ≥ (δ − λ1)Ψ (t) + C , with C = c1 + · · ·+ cm. (9)

Since 0 ≤ uj ≤ 1 in (0, T )×Ω, then 0 ≤ 1−uj ≤ 1 in (0, T )×Ω, which clearly implies
by (6) that 0 ≤ ψj (t) ≤ 1 for all 1 ≤ j ≤ m, consequently, 1 ≤ Ψ(t) ≤ m. Since λ1 is
small enough, it is obvious that (δ − λ1)Ψ (t) + C > 0. Then, by (9), we have

dΨ

(δ − λ1)Ψ (t) + C
≥ dt , t ∈ [0, T ) ,

which gives, by integration from 0 to T,

t ≤


1

δ − λ1
log

(
(δ − λ1)Ψ (t) + C

(δ − λ1)Ψ (0) + C

)
if δ ̸= λ1,

1

C
(Ψ (t)−Ψ(0)) if δ = λ1.

(10)
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Now, letting t→ T− in (10) and combining lim
t→T−

Ψ(t) ≤ m, we get

T ≤


1

δ − λ1
log

(
m (δ − λ1) + C

(δ − λ1)Ψ (0) + C

)
if δ ̸= λ1,

1

C
(m−Ψ(0)) if δ = λ1.

(11)

Since 1 ≤ Ψ(t) ≤ m, we can easily arrive at the positivity of the right-hand side of (11),
which shows finite time quenching of the solutions in system (1). This ends the proof of
Theorem 2.1.

Proof. Consider the auxiliary system

∂
∂t ū1 = ∆ū1 − f (ū2) in (0, T )× Ω,
...

...
∂
∂t ūm = ∆ūm − f (ū1) in (0, T )× Ω,

ū1 = · · · = ūm = 1 on (0, T )× ∂Ω,
ū1 (0, x) = · · · = ūm (0, x) = 1 in Ω.

By the comparison principle, we have uj ≤ ūj for all 1 ≤ j ≤ m.

We first consider the following system:
∆ū∗1 = f1 (1) in BR,
...

...
∆ū∗m = fm (1) in BR,
ū∗1 = · · · = ū∗m = 1 on ∂BR.

By Green’s function, the solution is (ū∗1, . . . , ū
∗
m) denoted as follows:

ū∗j =
fj (1)

(
|x|2 −R2

)
2N

+ 1 , 1 ≤ j ≤ m

and

min ū∗j =
−fj (1)R2

2N
+ 1 , 1 ≤ j ≤ m.

Clearly, (ū∗1, . . . , ū
∗
m) is a super solution of (1). By Lemma 3.2, the solution (u1, . . . , um)

of (1) is global only if ū∗1, . . . , ū
∗
m > 0.

5 Concluding Remarks and Perspectives

This contribution advances mathematical research on quenching phenomena. The results
of this study can be used to study other singular reaction-diffusion phenomena. We
managed to overcome some difficulties and achieved very important results. This leads
us to think more about the problem and do further theoretical and numerical research
under other conditions. These efforts will advance quenching technology and modeling
in many scientific fields.
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1 Introduction

The maximum principle is an important tool in the study of differential equations and
we refer the reader to the well-known book [14] for many applications. For example, for
the specific boundary value problem for a second order ordinary differential equation,
y′′ + λy = f , y′(0) = 0, y′(1) = 0, if λ < 0, then this boundary value problem satisfies a
maximum principle. In particular, for f ∈ C[0, 1], the boundary value problem is uniquely
solvable and f nonnegative implies y is nonpositive, where y is the unique solution
associated with f . In the study of boundary value problems for ordinary differential
equations, the maximum principle implies that the associated Green’s function is of
constant sign, and in this case, the Green’s function is nonpositive on (0, 1)× (0, 1).

Clément and Peletier [8] were the first to discover an anti-maximum principle. They
were primarily interested in partial differential equations, but they illustrated the anti-
maximum principle with the boundary value problem, y′′ + λy = f , y′(0) = 0, y′(1) = 0,

0 < λ < π2

4 . For this particular boundary value problem, if 0 < λ < π2

4 , if f ∈ C[0, 1], the
boundary value problem is uniquely solvable and f nonnegative implies y is nonnegative,
where y is the unique solution associated with f .

Since the publication of [8], there have been many studies of boundary value problems
with parameter and the change of behavior from maximum to anti-maximum principles
as a function of the parameter. In the case of partial differential equations, we refer
to [1, 2, 7, 9, 10, 12, 13, 15]. In the case of ordinary differential equations, we refer to
[3–6, 16]. In this paper, we shall continue to study the change in behavior of boundary
value problems for ordinary differential equations, with respect to maximum and anti-
maximum principles, through simple eigenvalues.

In an interesting study produced in [7], those authors began with a differential equa-
tion

y′′(t) + λy(t) = f(t), t ∈ [0, 1], (1)

and considered either periodic boundary conditions or Neumann boundary conditions.
Key to their argument is that for f = 0, at λ = 0, the boundary value problem, (1) with
periodic or Neumann boundary conditions, is at resonance since constant functions are
nontrivial solutions. Further, λ = 0 is a simple eigenvalue and the eigenspace is < 1 >,
where < 1 > denotes the linear span of the 1 function. Employing the resolvent, the
inverse of (D2 + λI) for λ ̸= 0, under the imposed boundary conditions, if it exists, and
the partial resolvent for λ = 0, and under the assumption that f ≥ 0 (with f ∈ L[0, 1]),
the authors in [7] obtained sufficient conditions to construct an interval [−Λ,Λ], Λ > 0,
a constant K > 0, independent of f such that

λy(t) ≥ K|f |1, λ ∈ [−Λ,Λ] \ {0}, 0 ≤ t ≤ 1,

where |f |1 =
∫ 1

0
|f(s)|ds.With this one inequality, the authors showed that for Λ ≤ λ < 0,

the boundary value problem, (1) with periodic or Neumann boundary conditions, satisfies
a maximum principle and for 0 < λ ≤ Λ, the boundary value problem (1) with periodic
or Neumann boundary conditions, satisfies an anti-maximum principle. They proceeded
to produce many nice examples in that paper.

Consider the boundary value problem

y′′(t) + βy′(t) = f(t), t ∈ [0, 1], (2)

y(0) = 0, y′(0) = y′(1). (3)
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For f = 0, β = 0 is a simple eigenvalue and generates the eigenspace < t >, the linear
span of t. For β ̸= 0,

G(β; t, s) =


e−β(1−s)−e−βe−β(t−s)

β(1−e−β)
, 0 ≤ t ≤ s ≤ 1,

e−β(1−s)−e−βe−β(t−s)

β(1−e−β)
+ 1−e−β(t−s)

β , 0 ≤ s ≤ t ≤ 1,

(4)

is the Green’s function for the boundary value problem (2), (3). Note that

βG(β; t, s) > 0, (t, s) ∈ (0, 1]× [0, 1], and β
∂

∂t
G(β; t, s) > 0, [t, s) ∈ [0, 1]× [0, 1].

So, if y denotes the solution of (2), (3), then f ≥ 0 implies βy′ ≥ 0 and βy ≥ 0. This
observation indicates that the principle obtained in [7] can be extended to other order
derivatives.

Our goal in this paper is to study boundary value problems for ordinary differential
equations containing a parameter β such that β = 0 is a simple eigenvalue generating
an eigenspace < t− t0 > for some constant t0 and modify the methods produced in [7];
in particular, we shall assume f ≥ 0 and obtain sufficient conditions to construct an
interval [−B,B], B > 0, a constant K > 0, independent of f , and an inequality

βy′(t) ≥ K|f |1, β ∈ [−B,B] \ {0}, 0 ≤ t ≤ 1, (5)

where y is a unique solution of the boundary value problem associated with f . It will
follow that if 0 < |β| ≤ B, and if f ≥ 0, then βy′ ≥ 0.

In Section 2, following the lead of [7], we shall define the concept of a strong signed
maximum principle in y′. In Section 3, we shall obtain sufficient conditions for (5) and
hence obtain sufficient conditions for adherence to a strong signed maximum principle
in y′. In Section 4, we shall illustrate the main result, Theorem 3.1, with two examples.
In each example, the boundary conditions are such that (5) generates a natural partial
order in C1[0, 1].

We close in Section 5 with an application of a monotone method applied to a nonlinear
problem related to one of the examples produced in Section 4. At β = 0, the problem
is at resonance. The problem is shifted [11] by βy′ and β > 0 or β < 0 is chosen as a
function of the monotonicity properties of the nonlinearity.

2 Strong Signed Maximum Principle

Assume A is a linear operator with Dom (A) ⊂ C1[0, 1] and Im (A) ⊂ C[0, 1]. Let
Dy = y′ for y ∈ C1[0, 1]. The following definition is motivated by Definition 1 found
in [7].

Definition 2.1 For β ∈ R \ {0}, the operator A+βD satisfies a signed maximum
principle in Dy if for each f ∈ C[0, 1], the equation

(A+ βD)y = f, y ∈ Dom (A),

has a unique solution, y, and f(t) ≥ 0, 0 ≤ t ≤ 1 implies βDy(t) ≥ 0, 0 ≤ t ≤ 1. The
operator A + βD satisfies a strong signed maximum principle in Dy if f(t) ≥ 0,
0 ≤ t ≤ 1 and f(t) > 0 on some interval of positive length, implies βDy(t) > 0, 0 < t < 1.
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Remark 2.1 Throughout this study, the phrases “maximum principle” or “anti-
maximum principle” may be used loosely. If so, we mean the following. If f ≥ 0 implies
y ≤ 0 (or Dy ≤ 0), the phrase, maximum principle, may be used. This is precisely the
case for the classical second order differential equation with Dirichlet boundary condi-
tions. If f ≥ 0 implies y ≥ 0 (or Dy ≥ 0), the phrase, anti-maximum principle, may
be used. This is the case observed in [8] where the phrase, anti-maximum principle, was
coined.

Remark 2.2 As pointed out in the Introduction, for the boundary value problem
y′′(t) + βy′(t) = f(t), with boundary conditions (3), f(t) ≥ 0, 0 ≤ t ≤ 1 implies
βDy(t) ≥ 0, 0 ≤ t ≤ 1, and βy(t) ≥ 0, 0 ≤ t ≤ 1. In the application of the main
theorem, Theorem 3.1, one only concludes (5). In the examples produced in Section
4, the boundary conditions are such that (5) implies further that for some t0 ∈ [0, 1],
β(t− t0)y(t) ≥ 0, 0 ≤ t ≤ 1. In particular, in each example, a signed maximum principle
in Dy will generate a natural partial order on C1[a, b] in which monotone methods can
be applied.

3 The Main Theorem

Let C[0, 1] denote the Banach space of continuous real-valued functions defined on [0, 1]
with norm |y|0 = max0≤t≤1 |y(t)| and let C1[0, 1] denote the Banach space of continuously
differentiable real-valued functions defined on [0, 1] with

||y|| = max{|y|0, |y′|0}.

Also, C[0, 1] ⊂ L = L1[0, 1], and so, we shall also have use for |f |1 =
∫ 1

0
|f(s)|ds. For

f ∈ L, set

f̄ =

∫ 1

0

f(t)dt,

and define

C̃ ⊂ C[0, 1] = {f ∈ C[0, 1] : f̄ = 0}, L̃ ⊂ L = {f ∈ L1[0, 1] : f̄ = 0}.

Let t0 ∈ R. Assume A : Dom (A) → L denotes a linear operator satisfying

Dom (A) ⊂ C1[a, b] Ker (A) =< t− t0 >, Im (A) = L̃, (6)

where < t − t0 > denotes the linear span of t − t0. Assume further that for f̃ ∈ L̃, the
problem Ay = f̃ is uniquely solvable with solution y ∈ Dom(A) and such that ¯(y′) = 0.
In particular, define

Dom (Ã) = {y ∈ Dom (A) : ¯(y′) = 0},

and then
A| Dom (Ã) : Dom (Ã) → L̃

is one to one and onto. Moreover, if Aỹ = f̃ for f̃ ∈ L̃, ỹ ∈ Dom(Ã), assume there exists
a constant K1 > 0 depending only on A such that

|ỹ′|0 ≤ K1|f̃ |1. (7)
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For f ∈ L, define
f̃ = f − f̄ ,

and for y ∈ Dom (A), define

ỹ = y − ȳ′(t− t0),

which implies

ỹ′ = y′ − ȳ′.

Finally, assume there exists A′ : Dom (A′) → L such that A = A′D. In this context,
we rewrite

Ay + βy′ = f, y ∈ Dom (A), (8)

as

(A′ + βI)Dy = f, Dy ∈ Dom (A′). (9)

Define Dom (Ã′) = {v ∈ Dom (A′) : v̄ = 0} ⊂ C[0, 1] and it follows that

A′| Dom (Ã′) : Dom (Ã′) → L̃

is one to one and onto.
With the decompositions f̃ = f − f̄ and ỹ = y − ȳ′(t− t0), it follows that f̃ ∈ L̃ and

ỹ ∈ Dom (Ã), or more appropriately, Dỹ ∈ Dom (Ã′). So, equation (8) or equation (9)
decouples as follows:

A′Dỹ + βDỹ = (A′ + βI)Dỹ = f̃ , (10)

βDȳ′(t− t0) = βȳ′ = f̄ . (11)

Denote the inverse of (A′ + βI), if it exists, by Rβ and denote the inverse of

A′| Dom (Ã′) by R0. So, R0 : L̃ → C[0, 1] and

Dỹ = R0f̃ if, and only if, A′(Dỹ) = f̃ . (12)

Note that (12) implies

Dỹ = R0A′Dỹ (13)

since Dỹ ∈ Dom(Ã′),
Since C̃ ⊂ L̃, we can also consider R0 : C̃ → C[0, 1]. Let

||R0||C̃→C̃ = sup
|v|0=1

|R0v|0, v,R0v ∈ C̃,

and

||R0||L̃→C̃ = sup
|v|1=1

|R0v|0, v ∈ L̃, R̃0v ∈ C.

Since Dỹ ∈ C̃, it follows that |R0Dỹ|0 ≤ ||R0||C̃→C̃ |Dỹ|0. Similarly, f̃ ∈ L̃ implies

|R0f̃ |0 ≤ ||R0||L̃→C̃ |f̃ |1.

Theorem 3.1 Assume A : Dom (A) → C[0, 1] denotes a linear operator satisfying
(6) and (7), and assume that for f̃ ∈ L̃, the problem Ay = f̃ is uniquely solvable with
solution y ∈ Dom(A) such that ¯(y′) = 0. Further, assume there exists A′ : Dom (A′) →
C[0, 1] such that A = A′D. Assume Ã′| Dom (Ã′) : Dom (Ã′) → L̃ is one to one and
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onto. Then there exists B1 > 0 such that if 0 < |β| ≤ B1, then Rβ, the inverse of

(A′ + βI), exists. Moreover, if f̃ ∈ L̃, B1||R0||C̃→C̃ < 1 and 0 < |β| ≤ B1, then

|Rβ f̃ |0 ≤
||R0||L̃→C̃

1−B1||R0||C̃→C̃
|f̃ |1. (14)

Further, there exists B ∈ (0, B1) such that if 0 < |β| ≤ B, then the operator (A + βD)
satisfies a strong signed maximum principle in Dy.

Proof. Employ (13) and apply R0 to (10) to obtain

Dỹ + βR0Dỹ = R0f̃ .

Note that (7) implies that R0 : L̃ → C̃ is continuous. Assume |β|||R0||C̃→C̃ < 1. Then

(I + βR0) : C̃ → C̃ is invertible and

Dỹ = (I + βR0)
−1R0f̃ .

So, assume 0 < B1 < 1
||R0||C̃→C̃

and assume |β| ≤ B1. Then Rβ = (I + βR0)
−1R0 exists.

Moreover,

|Dỹ|0 −B1||R0||C̃→C̃ |Dỹ|0 ≤ |Dỹ|0 − |β|||R0||C̃→C̃ |Dỹ|0
≤ |(I + βR0)Dỹ|0 = |R0f̃ |0 ≤ ||R0||L̃→C̃ |f̃ |1

and (14) is proved since Dỹ = Rβ f̃ .
Now assume f ∈ L and assume f ≥ 0 a.e. Then f̄ = |f |1. Let 0 < |β| ≤ B1 <
1

||R0||C̃→C̃
, write f = f̄ + f̃ and consider

βDy = βRβf = βRβ(f̄ + f̃).

Note that βRβ f̄ = f̄ since (A′ + βI)f̄ = βf̄ . So,

βDy = βRβf = βRβ(f̄ + f̃)

= f̄ + βRβ f̃ ≥ |f |1 − |β||Rβ f̃ |0.

Continue to assume that 0 < |β| ≤ B1; it now follows from (14) that

βDy ≥ |f |1 − |β|
( ||R0||L̃→C̃
1−B1||R0||C̃→C̃

)
|f̃ |1.

Since f̃ = f − f̄ , and |f̃ |1 ≤ |f |1 + f̄ = 2|f |1, assume

B < min
{
B1,

(1−B1||R0||C̃→C̃
2||R0||L̃→C̃

)}
.

Then

βDy ≥
(
1− 2B

( ||R0||L̃→C̃
1−B1||R0||C̃→C̃

))
|f |1

and (5) is valid with

K =
(
1− 2B

( ||R0||L̃→C̃
1−B1||R0||C̃→C̃

))
.

2
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4 Examples

Example 4.1

Our first example considers boundary conditions that contain (3). Let t0 ∈ [0, 1] and
consider the boundary value problem

y′′ + βy′ = f, 0 ≤ t ≤ 1, (15)

y(t0) = 0, y′(0) = y′(1). (16)

So, for the boundary value problem (15), (16), A = D2, A′ = D, Ker(A) =< t− t0 > or
Ker(A′) =< 1 >.

We point out that if t0 = 0 or t0 = 1, the Fredholm alternative will imply that
Im(A) = L̃. If t0 = 0, then f ∈ Im (A), if, and only if, f is orthogonal to solutions of
the adjoint problem

y′′ = 0, 0 ≤ t ≤ 1, y(0) = y(1), y′(1) = 0.

Thus, f is orthogonal to the constant functions. If t0 = 1, then f is orthogonal to
solutions of the adjoint problem

y′′ = 0, 0 ≤ t ≤ 1, y(0) = y(1), y′(0) = 0,

and again, f is orthogonal to the constant functions.
However, if t0 ∈ [0, 1], one can show directly that Im(A) = L̃. If f ∈ Im(A), then

there exists a solution y of

y′′(t) = f(t), 0 ≤ t ≤ 1, y(t0) = 0, y′(0) = y′(1),

which implies

0 = y′(1)− y′(0) =

∫ 1

0

y′′(t)dt =

∫ 1

0

f(t)dt,

and f ∈ L̃. Likewise, if f ∈ L̃, then

y(t) =

∫ t

0

(t− s)f(s)ds−
∫ t0

0

(t0 − s)f(s)ds (17)

is a solution of

y′′(t) = f(t), 0 ≤ t ≤ 1, y(t0) = 0, y′(0) = y′(1),

which implies f ∈ Im(A′). Thus, if t0 ∈ [0, 1], Im (A) = C̃.
To argue that Ay = f̃ is uniquely solvable with solution y ∈ Dom (Ã), (17) implies the

solvability. For uniqueness, if y1 and y2 are two such solutions, then (y1−y2)(t) = c(t−t0)
and y1 − y2 ∈ Dom (Ã) implies c = 0.

Finally, (17) implies (7) is satisfied with K1 = 1.
Theorem 3.1 applies and there exists B > 0 such that if 0 < |β| ≤ B, then (A+ βI)

has the strong signed maximum principle in Dy. Thus, f ≥ 0 implies βDy ≥ 0. Hence,
a natural partial order in which to apply the method of upper and lower solutions and
monotone methods to a nonlinear boundary value problem is

y ∈ C1[0, 1] ⪰ 0 ⇐⇒ β(t− t0)y(t) ≥ 0, 0 ≤ t ≤ 1, and βy′(t) ≥ 0, 0 ≤ t ≤ 1. (18)
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In Section 5, we shall employ monotone methods with respect to this partial order
and obtain sufficient conditions for the existence of maximal and minimal solutions of a
nonlinear boundary value problem associated with the boundary conditions (16).

Example 4.2

For the second example, let h > 0, and we consider a family of boundary conditions

y(0) = hy(1), y′(0) = y′(1). (19)

The boundary conditions (19) contain the periodic boundary conditions at h = 1. In this
example, however, we exclude h = 1.

For the boundary value problem (15), (19), A = D2 and A′ = D, Ker(A) =<
t + h

1−h > or Ker(A′) =< 1 >. Appealing directly to the Fredholm alternative, f ∈ Im
(A) if, and only if, f is orthogonal to solutions of the adjoint problem,

y′′ = 0, 0 ≤ t ≤ 1, y(0) = y(1), hy′(0) = y′(1).

Thus, Im (A) = L̃. Again, f ∈ L̃ implies Dom (A) = {y ∈ B : D̄y = 0}. Again, K in (7)
can be computed since if f̃ ∈ C̃, then

ỹ(t) =

∫ t

0

(t− s)f̃(s)ds+
h

1− h

∫ 1

0

(1− s)f̃(s)ds.

Thus, Theorem 3.1 applies and there exists B > 0 such that if 0 < |β| ≤ B, then (A′+βD)
satisfies the strong signed maximum principle in Dy.

To determine sign conditions on βy, four cases arise. If 0 < β ≤ B, one considers the
two cases, 1 < h or 0 < h < 1. If 0 < β ≤ B, then βy is increasing, which in turn implies

y is increasing. If h > 1, then y(0)
y(1) > 1, and it follows that y(t) < 0 for 0 ≤ t < 1. If

0 < h < 1, then 0 < y(0)
y(1) < 1, and it follows that y(t) > 0 for 0 < t ≤ 1. Two analogous

cases can be analyzed if 0 > β ≥ −B. So, for example, if β > 0 and 1 < h, a natural
partial order in which to apply the method of upper and lower solutions and monotone
methods to a nonlinear problem is

y ∈ C1[0, 1] ⪰ 0 ⇐⇒ y(t) ≥ 0, 0 ≤ t ≤ 1, and y′(t) ≥ 0, 0 ≤ t ≤ 1.

5 A Monotone Method

Let f : [0, 1] × R2 → R be continuous. Let t0 ∈ [0, 1] and consider the boundary value
problem

y′′(t) = f(t, y(t), y′(t)), ≤ t ≤ 1, (20)

y(t0) = 0, y′(0) = y′(1). (21)

Assume that f satisfies the following monotonicity properties:

f(t, y, z1) < f(t, y, z2) for (t, y) ∈ [0, 1]× R, z1 > z2, (22)

f(t, y1, z) < f(t, y2, z) for (t, z) ∈ [t0, 1]× R, y1 > y2,

f(t, y1, z) > f(t, y2, z) for (t, z) ∈ [0, t0]× R, y1 < z2.
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So, f is monotone decreasing in the third component; for t0 < t ≤ 1, f is monotone
decreasing in the second component and for 0 ≤ t < t0, f is monotone increasing in the
second component.

Apply a shift to (20) and consider the equivalent boundary value problem

y′′(t) + βy′(t) = f(t, y(t), y′(t)) + βy′(t), 0 ≤ t ≤ 1,

with boundary conditions (21), where β < 0. Assume |β| is small such that |β| ≤ B,
where B > 0 is shown to exist in Theorem 3.1. Note that if g(t, y, z) = f(t, y, z) + βz
and f satisfies (22), then g satisfies (22).

Assume the existence of solutions, w1 and v1, of the following boundary value prob-
lems for differential inequalities

w′′
1 (t) ≥ f(t, w1(t), w

′
1(t)), 0 ≤ t ≤ 1, v′′1 (t) ≤ f(t, v1(t), v

′
1(t)), 0 ≤ t ≤ 1, (23)

w1(t0) = 0, w′
1(0) = w′

1(1), v1(t0) = 0, v′1(0) = v′1(1).

Assume further that

(t− t0)(v1(t)− w1(t)) ≥ 0, 0 ≤ t ≤ 1, (v′1(t)− w′
1(t)) ≥ 0, 0 ≤ t ≤ 1. (24)

Motivated by (18) and noting that β < 0, define a partial order ⪰ on C1[0, 1] by

u ∈ C1[0, 1] ⪰ 0 ⇐⇒ (t− t0)u(t) ≤ 0, 0 ≤ t ≤ 1, and u′(t) ≤ 0, 0 ≤ t ≤ 1.

Then the assumption (24) implies w1 ⪰ v1.

Define iteratively, the sequences {vk}∞k=1, {wk}∞k=1, where

v′′k+1(t) + βv′k+1(t) = f(t, vk(t), v
′
k(t)) + βv′k(t), 0 ≤ t ≤ 1, (25)

vk+1(t0) = 0, v′k+1(0) = v′k+1(1),

and

w′′
k+1(t) + βw′

k+1(t) = f(t, wk(t), w
′
k(t)) + βw′

k(t), 0 ≤ t ≤ 1, (26)

wk+1(t0) = 0, w′
k+1(0) = w′

k+1(1).

Theorem 3.1 implies the existence of each vk+1, wk+1 since if 0 < |β| ≤ B, the inverse of
(A+ βD) exists.

Theorem 5.1 Assume f : [0, 1] × R2 → R is continuous and assume f satisfies the
monotonicity properties (22). Assume the existence of two times continuously differen-
tiable functions, v1 and w1, satisfying (23). Define the sequences of iterates {vk}∞k=1,
{wk}∞k=1 by (25) and (26), respectively. Then, for each k ∈ N1,

wk ⪰ wk+1 ⪰ vk+1 ⪰ vk. (27)

Moreover, {vk}∞k=1 converges in C1[0, 1] to a solution v of (20) and {wk}∞k=1 converges
in C1[0, 1] to a solution w of (20) satisfying

wk ⪰ wk+1 ⪰ w ⪰ v ⪰ vk+1 ⪰ vk. (28)
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Proof. Since v1 satisfies a differential inequality given in (24),

v′′2 (t) + βv′2(t) = f(t, v1(t), v
′
1(t)) + βv′1(t) ≥ v′′1 (t) + βv′1(t), 0 ≤ t ≤ 1.

Set u = v2 − v1 and u satisfies a boundary value problem for a differential inequality

u′′(t) + βu′(t) ≥ 0, 0 ≤ t ≤ 1, u(t0) = 0, u′(0) = u′(1).

The signed maximum principle applies and u ⪰ 0; in particular, v2 ⪰ v1. Similarly,
w1 ⪰ w2. Now, set u = w2 − v2 and

u′′(t) + βu′(t) = (f(t, w1(t), w
′
1(t))− f(t, v1(t), v

′
1(t))) + β(w′

1(t)− v′1(t)), 0 ≤ t ≤ 1,

u(t0) = 0, u′(0) = u′(1).

Since f satisfies (22) and β(w′
1(t)− v′1(t)) ≥ 0, 0 ≤ t ≤ 1, it follows that

u′′(t) + βu′(t) ≥ 0, 0 ≤ t ≤ 1,

and again, the signed maximum principle applies and u ⪰ 0. In particular, w2 ⪰ v2.
Thus, (27) is proved for k = 1. It follows by a straightforward induction that (27) is valid
using the arguments presented in this paragraph.

To obtain the existence of limiting solutions v and w satisfying (28), note that the
sequence {v′k} is monotone and appropriately bounded. Thus, the sequence {v′k} is
converging pointwise on [0, 1]. Dini’s theorem then implies the uniform convergence of
the sequence {vk} on [0, 1] since {vk(t)} is monotone for each t and is appropriately
bounded. This argument can be repeated to obtain the uniform convergence of {v′k}
on [0, 1]. Since v′′k+1(t) = f(t, vk(t), v

′
k(t)) + β(v′k(t) − v′k+1(t)), the sequence {v′′k} is

converging pointwise on [0, 1]. Now, Dini’s theorem implies the uniform convergence of
the sequence {v′k} on [0, 1]. Again, employ v′′k+1(t) = f(t, vk(t), v

′
k(t))+β(v′k(t)−v′k+1(t)),

and it follows that the sequence {v′′k} converges uniformly on [0, 1]. This implies that if
v ∈ C1[0, 1] is the limit of {vk} (meaning vk is converging to v uniformly and v′k is
converging to v′ uniformly), then {v′′k} converges uniformly to v′′ on [0, 1] and v is a
solution of (20), (21) satisfying (28). Similarly, the solution w of (20), (21) satisfying
(28) exists, and the theorem is proved. 2

Suppose now f satisfies the “anti”-inequalities to (22); that is, suppose f satisfies

f(t, y, z1) > f(t, y, z2) for (t, y) ∈ [0, 1]× R, z1 > z2, (29)

f(t, y1, z) > f(t, y2, z) for (t, z) ∈ [t0, 1]× R, y1 > y2,

f(t, y1, z) < f(t, y2, z) for (t, z) ∈ [0, t0]× R, y1 < z2.

One can appeal to the signed maximum principle and apply a shift to (20) and consider
the equivalent boundary value problem, y′′(t)+βy′(t) = f(t, y(t), y′(t))+βy′(t), 0 ≤ t ≤ 1,
where β > 0. Note, if f satisfies (29) and β > 0, then g(t, y, z) = f(t, y, z) + βz satisfies
(29).

Now, assume the existence of solutions, w1 and v1, of the following differential in-
equalities

w′′
1 (t) ≤ f(t, w1(t), w

′
1(t)), 0 ≤ t ≤ 1, v′′1 (t) ≥ f(t, v1(t), v

′
1(t)), 0 ≤ t ≤ 1, (30)

w1(t0) = 0, w′
1(0) = w′

1(1), v1(t0) = 0, v′1(0) = v′1(1).
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Assume further that

(t− t0)(v1(t)− w1(t)) ≤ 0, 0 ≤ t ≤ 1, (v′1(t)− w′
1(t)) ≤ 0, 0 ≤ t ≤ 1. (31)

Noting that β > 0, define a partial order ⪰1 on C1[0, 1] by

u ∈ C1[0, 1] ⪰1 0 ⇐⇒ (t− t0)u(t) ≥ 0, 0 ≤ t ≤ 1, and u′(t) ≥ 0, 0 ≤ t ≤ 1.

In particular, assume v1 ⪰1 v1.

Theorem 5.2 Assume f : [0, 1] × R2 → R is continuous and assume f satisfies the
monotonicity properties (29). Assume the existence of two times continuously differen-
tiable functions, v1 and w1, satisfying (30) and (31). Define the sequences of iterates
{vk}∞k=1, {wk}∞k=1 by (25) and (26), respectively. Then, for each k ∈ N1,

vk ⪰1 vk+1 ⪰1 wk+1 ⪰1 wk.

Moreover, {vk}∞k=1 converges in C1[0, 1] to a solution v of (20) and {wk}∞k=1 converges
in C1[0, 1] to a solution w of (20) satisfying

vk ⪰1 vk+1 ⪰1 v ⪰1 w ⪰1 wk+1 ⪰1 wk.

6 Conclusion

Boundary value problems for ordinary differential equations with dependence on a real
parameter β, where β = 0 is a simple eigenvalue, are studied. The concept of a maximum
principle in βy′ is defined. Sufficient conditions are obtained such that if Ay+βy′ = f is a
representation of the boundary value problem, there exists a punctured neighborhood of
β = 0 such that f ≥ 0 implies βy′ ≥ 0, where y is the unique solution ofAy+βy′ = f. Two
examples are provided to illustrate the main theorem and an application of a monotone
method is given.
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1 Introduction

Underwater robots are widely developed by many countries as one of their defense tech-
nologies. The underwater defense technology is very important for a country in keeping
and maintaining its marine wealth. This underwater robot is usually called the Remotely
Operated Underwater Vehicle (ROV). The ROV is commonly used for marine security
systems, assisting evaluation on at-sea accidents, and underwater exploration [1]. The
ROV has two kinds of motions, namely, the translational and rotation motions on the
x-, y-, and z-axes. Two parts of the ROV functioning to control the ROV motion are
the propulsion system and the fin system. The propulsion system is used to regulate the
angular velocity of the ROV, and the fin system is used to adjust the angle of the fin and
the rudder position. The development of the ROV was initiated in the 1970s together
with the initial investigation of the usefulness of the ROV system, and in 1970-1980,
the ROV technology development and experiments were carried out. In 1980-1990, the
experiments using prototypes were done, then in 1990-2000, the ICT-based ROV was
developed.

This encouraged researches to improve the technology for innovations, in particular
on the controller design of unmanned vehicles. The development of the controllers aimed
to organize the actuator such that the unmanned vehicle can be stable in its motion as
expected. Several studies related to the AUV control system began in the 2000s when
Chiu et al. [2] used a fuzzy control sliding mode with a 2-DOF model. In 2002, W.
Naeem [3] used a predictive control model for a nonlinear 2-DOF (surge and yaw) model.
Kim and Ura [4] used the R-One Robot AUV with a length of 8.3 meters, a diameter
of 1.2 meters, and a mass of 4400 kg with PID. Repoulias and Papadopoulos [5] used
partial state-feedback in nonlinear 3-DOF (surge, sway and yaw) models. Lapierre and
Soesanto [6] used the Infante AUV with a length of 4,215 m and a mass of 23 Kg with
path-following control. Akcaya et al. [7] used SMC in a 3-DOF linear model. Rezazadegan
et al. [8] used an adaptive nonlinear controller in the 5-DOF model. Oktafianto et al. [9]
used SMC in the linear model of AUV. Herlambang et al. [10] used the PID controller
method to control the movement of the 6-DOF linear model applied to UNUSAITS AUV,
Nurhadi et al. [11] used the SMC method to control the Surge, Heave and Pitch Motions
in the 3-DOF nonlinear model, in 2020, Herlambang et al. [12] used SPID Control in the
6-DOF linear model of the AUV, and also used the Linear Quadratic Regulator (LQR)
for the linear motion system of the AUV [14].

The focus of this paper was to compare two control methods: SMC and SPID for 6-
DOF motion control, of which the SPID controller is a combination of the SMC and PID
controllers. This study used the 6-DOF liner model, and the linear model was obtained by
linearization of the nonlinear 6-DOF model. The result of this study was the comparison
of the stability performance of SMC and SPID shown by numerical simulation on the
response results of both methods. The stability obtained by both methods was quite
significant with an error of 0.1%-4% with a settling time of 0.1-1 second.

In order to analyze an ROV, it is necessary to consider the axis system which com-
prises the Earth Fixed Frame (EFF) and Body Fixed Frame (BFF) that are displayed
in Figure 1 [14]. The motion of the ROV has 6 degrees of freedom (6 DOF) comprising
3 degrees of freedom in the direction of translational motions on the x-, y-, and z-axes
and 3 degrees of freedom in the rotational motions on the x-, y- and z-axes. The gen-
eral description of an ROV with 6 DOF can be expressed in (1), where represents the
position and orientation vectors over the EFF and v represents the linear and angular
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velocities over the BFF. The details have been described in [15].

2 Remotely Operated Underwater Vehicle (ROV)

In order to analyze an ROV, it is necessary to consider the axis system which comprises
the Earth Fixed Frame (EFF) and Body Fixed Frame (BFF) that are displayed in Figure
1 [14]. The motion of the ROV has 6 degrees of freedom (6 DOF) comprising 3 degrees of
freedom in the direction of translational motions on the x-, y-, and z-axes and 3 degrees
of freedom in the rotational motions on the x-, y- and z-axes. The general description of
an ROV with 6 DOF can be given as (1) [15]

η = [ηT1 , η
T
2 ]

T , η1 = [x, y, z]T , η2 = [∅, θ,Ψ]T ,

v = [vT1 , v
T
2 ]

T , v1 = [u, v, w]T , v2 = [p, q, r]T ,

τ = [τT1 , τT2 ]T , τ1 = [X,Y, Z]T , τ2 = [K,M,N ]T .

(1)

This study uses the prototype of the Evacuation ROV, and the specifications of the
Evacuation ROV are: the weight is 16 kg, the length is 2 meter and the diameter is 300
mm [15]. The properties of the Evacuation ROV are displayed in Figure 2 and Table 1.

Figure 1: ROV Motion with Six Degrees of Freedom [20].

Figure 2: Profile of Evacuation ROV.
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Table 1: Specification of the Evacuation ROV.
Weight 15 Kg

Overall Length 900 mm
Beam 300 mm

Controller Wired Control ArduSUB with Joystick
Sensors Depth Sensor, Sonar

Camera TTL Camera

Lighting 1500 LM, 145◦ Beam Dimmable
Battery 11.8 V Li Po 5200 mAh

Material Carbon Fiber

Main Propulsion T200 Motor Thruster Include Propeller
Maneuver Propulsion T200 Motor Thruster Include Propeller

Service Speed 1, 6 knots

Operation Depth 5− 10 m

Variable η represents the vector position and orientation w.r.t. EFF, whereas τ rep-
resents the force vectors and moments that are working on the ROV w.r.t. BFF, namely
surge (u), sway (v), heave (w), roll (p), pitch (q) and yaw (r). The total forces and
moments which are working on the ROV can be gained by combining hydrostatic, hydro-
dynamic and thrust forces. In this case, we assumed that the diagonal inertia tensor (Io)
is zero, in order to obtain the total forces and moments of the whole model as follows.

Surge:

m[u̇− vr + wq − xG(q
2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = Xres +X|u|uu|u|+

Xu̇u̇+Xwqwq +Xqqqq +Xvrvr +Xrrrr +Xprop, (2)

Sway:

m[v̇ − wp+ ur − yG(r
2 + p2) + zG(qr − ṗ) + xG(pq + ṙ)] = Yres + Y|v|vv|v|+

Yr|r|r|r|+ Yv̇ v̇ + Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv + Yuuδru
2δr, (3)

Heave:

m[ẇ − uq + vp− zG(p
2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Zres + Z|w|ww|w|+

Zq|q|q|q|+ Zẇẇ + Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw + Zuuδsu
2δs, (4)

Roll:

Ixṗ+ (Iz − Iy)qr +m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)]Kres+

Kp|p|p|p|+Kṗṗ+Kprop, (5)

Pitch:

Iy q̇ + (Ix − Iz)rp+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] = Mres +Mw|w|w|w|+
Mq|q|q|q|+Mẇẇ +Mq̇ q̇ +Muquq +Mvpvp+Mrprp+Muwuw +Muuδsu

2δs. (6)

3 Linearization

In general, it is difficult to design a controller for nonlinear systems (2)-(6). Therefore,
the non-linear ROV model is linearized by using the Jacobi matrix. The general equations
of the non-linear ROV model can be written as



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (5) (2023) 519–537 523

ẋ(t) = f(x(t), u(t), t),

y(t) = g(x(t), u(t), t),
(7)

and the Jacobi matrix is defined as

∂f(x̄, ū, t)

∂x
=



∂f1(x̄,ū,t)
∂x1

∂f1(x̄,ū,t)
∂x2

. . . ∂f1(x̄,ū,t)
∂xn

∂f2(x̄,ū,t)
∂x1

∂f2(x̄,ū,t)
∂x2

. . . ∂f2(x̄,ū,t)
∂xn

...
...

. . .
...

∂fn(x̄,ū,t)
∂x1

∂fn(x̄,ū,t)
∂x2

. . . ∂fn(x̄,ū,t)
∂xn


. (8)

When the Jacobi matrix shown in (8) is used to linearize the ROV equation of motion
for 6-DOF, then we obtain the following equation:

∂f(x̄, ū, t)

∂x
=



∂f1(x̄,ū,t)
∂u

∂f1(x̄,ū,t)
∂v

∂f1(x̄,ū,t)
∂w

∂f1(x̄,ū,t)
∂p

∂f1(x̄,ū,t)
∂q

∂f1(x̄,ū,t)
∂r

∂f2(x̄,ū,t)
∂u

∂f2(x̄,ū,t)
∂v

∂f2(x̄,ū,t)
∂w

∂f2(x̄,ū,t)
∂p

∂f2(x̄,ū,t)
∂q

∂f2(x̄,ū,t)
∂r

∂f3(x̄,ū,t)
∂u

∂f3(x̄,ū,t)
∂v

∂f3(x̄,ū,t)
∂w

∂f3(x̄,ū,t)
∂p

∂f3(x̄,ū,t)
∂q

∂f3(x̄,ū,t)
∂r

∂f4(x̄,ū,t)
∂u

∂f4(x̄,ū,t)
∂v

∂f4(x̄,ū,t)
∂w

∂f4(x̄,ū,t)
∂p

∂f4(x̄,ū,t)
∂q

∂f4(x̄,ū,t)
∂r

∂f5(x̄,ū,t)
∂u

∂f5(x̄,ū,t)
∂v

∂f5(x̄,ū,t)
∂w

∂f5(x̄,ū,t)
∂p

∂f5(x̄,ū,t)
∂q

∂f5(x̄,ū,t)
∂r

∂f6(x̄,ū,t)
∂u

∂f6(x̄,ū,t)
∂v

∂f6(x̄,ū,t)
∂w

∂f6(x̄,ū,t)
∂p

∂f6(x̄,ū,t)
∂q

∂f6(x̄,ū,t)
∂r


, (9)

where the functions f1, f2, f3, f4, f5 and f6 are

f1 = {Xres +X|u|uu|u|+Xwqwq +Xqqqq +Xvrvr +Xrrrr +Xprop −m[−vr+

wq − xG(q
2 + r2) + pqyG + przG]}/{m−Xu̇}, (10)

f2 = {Yres + Y|v|vv|v|+ Yr|r|r|r|+ Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv+

Yuuδru
2δr −m[−wp+ ur − yG(r

2 + p2) + qr zG + pq xG]}/{m− Yv̇}, (11)

f3 = {Zres + Z|w|ww|w|+ Zq|q|q|q|+ Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw+

Zuuδsu
2δs −m[−uq + vp− zG(p

2 + q2) + rp xG + rq yG]}/{m− Zẇ}, (12)

f4 =
Kres +Kp|p|p|p|+Kprop − ((Iz − Iy)qr +m[yG(−uq + vp)− zG(−wp+ ur)])

Ix −Kṗ
,

(13)

f5 = {Mres +Mw|w|w|w|+Mq|q|q|q|+Mẇẇ +Muquq +Mvpvp+Mrprp+Muwuw+

Muuδsu
2δs − ((Ix − Iz)rp+m[zG(−vr + wq)− xG(−uq + vp)])}/{Iy −Mq̇},

(14)

f6 = {Nres +Nv|v|v|v|+Nr|r|r|r|+Nv̇ v̇ +Nurur +Nwpwp+Npqpq +Nuvuv+

Nuuδru
2δr − ((Iy − Iz)pq +m[xG(−wp+ ur)− yG(−vr + wq)])}/{Iz −Nṙ}.

(15)
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The linear model obtained from the above process is as follows:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(16)

where

A = Jx =



1 0 0 0 mzG
m−Xu̇

−myG

m−Xu̇

0 1 0 − mzG
m−Yv̇

0 (mxG−Yṙ)
m−Yv̇

0 0 1 myG

m−Zẇ
− (mxG+Zq̇)

m−Zẇ
0

0 − m zG
Ix−Kṗ

m yG

Ix−Kṗ
1 0 0

m zG
Iy−Mq̇

0 − (m xG+Mẇ)
Iy−Mq̇

0 1 0

− myG

Iz−Nṙ

(mxG−Nv̇)
Iz−Nṙ

0 0 0 1



−1

×


a1 b1 c1 d1 e1 g1
a2 b2 c2 d2 e2 g2
a3 b3 c3 d3 e3 g3
a4 b4 c4 d4 e4 g4
a5 b5 c5 d5 e5 g5
a6 b6 c6 d6 e6 g6

 ,

B = Ju =



1 0 0 0 mzG
m−Xu̇

−myG

m−Xu̇

0 1 0 − mzG
m−Yv̇

0 (mxG−Yṙ)
m−Yv̇

0 0 1 myG

m−Zẇ
− (mxG+Zq̇)

m−Zẇ
0

0 − m zG
Ix−Kṗ

m yG

Ix−Kṗ
1 0 0

m zG
Iy−Mq̇

0 − (m xG+Mẇ)
Iy−Mq̇

0 1 0

− myG

Iz−Nṙ

(mxG−Nv̇)
Iz−Nṙ

0 0 0 1



−1

×


A1 B1 C1 D1 E1 G1

A2 B2 C2 D2 E2 G2

A3 B3 C3 D3 E3 G3

A4 B4 C4 D4 E4 G4

A5 B5 C5 D5 E5 G5

A6 B6 C6 D6 E6 G6

 ,

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , D = 0.
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4 Sliding Mode Control

SMC is a controller that is robust w.r.t. internal and external disturbances. As such,
SMC has been widely used in many applications. In order to apply SMC to a system,
we need to proceed according to the algorithm presented in Figure 3.

Construct the function of switching S(x, t) based on the tracking error

Construct the sliding surface

Calculate the estimation of controller value â

Apply the following control law a = â − Ksgn(S)

Use the obtained value of â in the control law

Calculate the value of K

Replace the signum function by a saturation function

Figure 3: Algorithm of Sliding Mode Control.

5 Sliding PID

The design of the Sliding-PID control system is a combination of SMC and PID. In this
study, the system first passes through SMC, then the result is optimized by the PID
controller. The process works as follows. The notation e represents the error signal, i.e.,
the difference between the output and the reference. The error signal is substituted into
the sliding surface equation S = ė+ λe for some λ ∈ R. Then the value of S is used by
the PID to determine the input signal u. This scheme is shown in the block diagram in
Figure 4.

6 Control System Design

Designing the SMC control system for the 6-DOF linear model involves creating control
equations for surge, sway, heave, roll, pitch and yaw, obtained by the SMC Algorithm
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Figure 4: Block Diagram of SPID.

described in the previous section. From (16), the status of surge can be written as follows:

u̇ = aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1 + CC1δs1+

DD1Kprop + EE1δs2 +GG1δr2 . (17)

To find the control of the surge, the tracking error of surge is determined as follows:

ũ = u− ud,

where ud is a constant function. Since the system has order 1, the switching function is
formed as follows:

S(u, t) =

(
d

dt

)n−1

ũ, with n = 1,

S(u, t) =

(
d

dt

)1−1

ũ,

S(u, t) = ũ = u− ud.

The derivative of S is
Ṡ(u, t) = u̇− u̇d. (18)

Since ud is a constant function, one has u̇d = 0. By subtituting the equation (17) into
(18), we get

Ṡ(u, t) = aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1 + CC1δs1+

DD1Kprop + EE1δs2 +GG1δr2 . (19)

Next, the value of X̂prop is determined from the equation (19), when the value of Ṡ = 0,
as follows:

aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1 + CC1δs1+

DD1Kprop + EE1δs2 +GG1δr2 = 0. (20)

Then the obtained X̂prop is

X̂prop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
. (21)

Since we require that the control law has to satisfy the condition of sliding, we have

Xprop = X̂prop −K1sgn(S), (22)
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then from the equation (21) and (22), it is obtained that

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
−K1sgn(S). (23)

By substituting the equation (23) into (19), it is obtained that

Ṡ(u, t) = −AA1K1sgn(S). (24)

Next, the value of K1 is set up by substituting the equation (24) into the following
equation to meet the sliding condition, that is,

SṠ ≤ −η|S|, (25)

−SAA1K1sgn(S) ≤ −η|S|,

−AA1K1sgn(S) ≤ −η|S|
S,

K1 ≥ η

AA1sgn(S)
. (26)

From the equation (26), the value of K1 is obtained as follows:

K1 =

∣∣∣∣max
η

AA1

∣∣∣∣ . (27)

Next, in order to minimize chattering, a boundary layer is used by replacing the function
of signum (sgn) into the function of saturation (sat) as follows:

Xprop = X̂prop −K1sat

(
S

ϕ

)
. (28)

Thus, the design of the SMC control of surge, obtained by substituting the equations
(21) and (27) into the equation (28), is as follows:

Xprop =−
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r+BB1δr1+CC1δs1+DD1Kprop+EE1δs2

AA1

)
− GG1δr2

AA1
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat

(
S

ϕ

)
. (29)

Furthermore, the state equations for sway, heave, roll, pitch and yaw are as follows:

v̇ = aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop +BB2δr1 + CC2δs1+

DD2Kprop + EE2δs2 +GG2δr2 (30)

ẇ = aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop +BB3δr1 + CC3δs1+

DD3Kprop + EE3δs2 +GG3δr2 (31)

ṗ = aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1 + CC4δs1+

DD4Kprop + EE4δs2 +GG4δr2 (32)

q̇ = aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r +AA3Xprop +BB5δr1 + CC5δs1+

DD5Kprop + EE5δs2 +GG5δr2 (33)

ṙ = aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1 + CC6δs1+

DD6Kprop + EE6δs2 +GG6δr2 . (34)
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In the same way as obtaining the surge input control with the switching function, control
law, sliding conditions and applying the boundary layer, the input controls for sway,
heave, roll, pitch and yaw are as follows:

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r

BB2

)
−(

AA2Xprop + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2
BB2

)
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat(S

ϕ

)
,

(35)

δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r

CC3

)
−(

AA3Xprop +BB3δr1 +DD3Kprop + EE3δs2 +GG3δr2
CC3

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat(S

ϕ

)
,

(36)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r

DD4

)
−(

AA4Xprop +BB4δr1 + CC4δs1 + EE4δs2 +GG4δr2
DD4

)
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat(S

ϕ

)
,

(37)

δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r

EE5

)
−(

AA3Xprop +BB5δr1 + CC5δs1 +DD5Kprop +GG5δr2
EE5

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat(S

ϕ

)
,

(38)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r

GG6

)
−(

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2
GG6

)
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat(S

ϕ

)
.

(39)

The design of the SPID control system for the 6-DOF linear model first passes the
SMC control system equation, then the result is optimized by the PID controller whose
proportional, integral and derivative values are shown in Table 2. Once the control
system equations are obtained, they are connected to the 6-DOF linear model on the
block diagram shown in Figure 5 (right).

Table 2: Proportional, Integral and Derivative Values of SPID.

Kp Ki Kd

Surge 2.1 0 0
Sway 2.01 0 0
Heave 2.01 0 0

Roll 2.01 0 0

Pitch 2.1 0 0
Yaw 2.1 0 0
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Figure 5: The Left Panel Displays the ROV Block Diagram Using the SMC Control System.
The Right Panel Displays the ROV Block Diagram Using the SPID Control System.

7 Computational Results

In the simulation, the response ratio of SMC and SPID control systems for surge, sway,
heave, roll, pitch and yaw motion was obtained. The setpoint of surge is 1 m/s, those
of sway and heave are 1 m/s, while the setpoint for roll rotation motion is 1 rad/s, and
those of pitch and yaw are -1 rad/s. From the simulation results, the comparison of time
delay, rise time, peak time and settling time was obtained. The simulation results by
SMC and SPID control systems are shown in Figure 6.

The comparison of the surge responses in Figure 6 (top left) is the result of AUV
simulation by SMC and SPID control systems. The results of both methods show simi-
larity of the delay time of 0.03 s, the rise time of 0.05 s, the peak time of 0.08 s, and the
settling time of 1 s. SMC and SPID are stable at the setpoint of 1 m/s at time of 1 s.
When viewed from the resulted error, SPID is 3.4%, while SMC is 4.15%. Figure 6 (top
right) shows the similarities for the delay time, rise time, peak time and settling time.
That is, the delay time is 0.037 s, the rise time is 0.065 s, the peak time is 0.07 s, and
the settling time is 0.1 s. SMC and SPID are stable at the setpoint -1 m/s at 0.1 s. In
terms of the resulted error, that of SPID is 0.09% and that of SMC is 0.11%. In Figure
6 (middle left), it is shown that the results of both methods have similarity for a delay
time, that is, a delay time of 0.037 s. SMC has a rise time of 0.15 s and a settling time of
0.2 s, while SPID has a rise time of 0.25 s and a settling time of 0.25 s. SMC and SPID
are stable at the setpoint 1 m/s at 0.2 s. SMC and SPID on the heave response do not
have a peak time and maximum overshoot. As regards the error generated, that of SMC
is 0.19% and that of SPID is 0.8%.

The comparison of the roll response in Figure 6 (middle right) is the result of the
simulation of the AUV with SMC and SPID control systems. The results of both methods
show similarity of a delay time of 0.04 s, rise time of 0.12 s, and settling time of 0.12 s.
The response generated by the SMC and SPID methods is stable at the setpoint 1 rad/s
at 0.12 s. SMC and SPID on the roll response do not have a peak time and maximum
overshoot. In terms of the error generated, that of SMC is 0.42%, while that of SPID is
0.6%, so SMC is better than SPID for the roll response. Figure 6 (bottom left) shows that
the response results by SMC and SPID methods are stable at the setpoint -1 rad/s, the
SMC settling time at 1.5 s, while that of SPID at 1.25 s. As regards the error generated,
that of SPID is 4.3% while that of SMC is 4.58%, so SPID is better than SMC but it
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has a higher overshoot. Figure 6 (bottom right) shows that the results of both methods
show similarity in a delay time of 0.002 s, rise time of 0.082 s, peak time of 0.07 s, and
settling time of 0.2 s. The results of SMC and SPID methods are stable at the setpoint
-1 rad/s at 0.2 s. As regards the error generated, that of SMC is 3.66%, while that of
SPID is 4.77%, so the the SMC method is better than the SPID one. And, the SMC
method has a lower overshoot than the SPID one.

The comparison of delay time, rise time, peak time, maximum overshoot, settling
time, and error in responses, respectively, by the default PID control system, identical
PID, SMC and SPID is shown in Table 3 for surge, sway, heave response. Meanwhile,
the comparison for responses in roll, pitch, and yaw is shown in Table 4. From this
comparison of responses, it can be concluded that the best control system for the AUV is
seen from the error and the settling time. The SPID method is more stable for the surge,
sway and pitch motion, while the SMC method is more stable for the heave, roll and
yaw motion. Next, it can be checked by making stability analysis using the Lyapunov
method.

Figure 6: Response of the Surge, Sway, Heave, Roll, Pitch and Yaw Motions by Using SMC
and SPID Control Systems.
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Table 3: Specifications of the Transient Responses in the Surge, Sway, and Heave Motions.
Surge Sway Heave

SMC SPID SMC SPID SMC SPID

Delay Time 0.03 s 0.029 s 0.037 s 0.037 s 0.045 s 0.045 s
Rise Time 0.05 s 0.046 s 0.065 s 0.065 s 0.15 s 0.25 s

Peak Time 0.08 s 0.08 s 0.07 s 0.07 s 0 s 0 s

Maximum Peak 1.7 m/s 1.85 m/s -1.1 m/s -1.2 m/s 0 m/s 0 m/s
Settling Time 1 s 1 s 0.1 s 0.1 s 0.2 s 0.25 s

Error 4.15% 3.4% 0.11% 0.9% 0.19% 0.8%

Table 4: Specification of the Transient Responses in the Roll, Pitch, and Yaw Motions.
Roll Pitch Yaw

SMC SPID SMC SPID SMC SPID

Delay Time 0.04 s 0.04 s 0.01 s 0.01 s 0.002 s 0.002 s
Rise Time 0.12 s 0.12 s 0.2 s 0.2 s 0.082 s 0.082 s

Peak Time 0 s 0 s 0.075 s 0.074 s 0.07 s 0.07 s

Maximum Peak 0 m/s 0 m/s -5.2 m/s -5.8 m/s 18 m/s 21 m/s
Settling Time 0.12 s 0.12 s 1.5 s 1.25 s 0.2 s 0.2 s

Error 0.42% 0.6% 4.58% 4.3% 3.66% 4.77%

8 Stability Analysis

A candidate of the Lyapunov function for the ROV linear system with 6-DOF is

V (u, v, w, p, q, r) =
1

2
u2 +

1

2
v2 +

1

2
w2 +

1

2
p2 +

1

2
q2 +

1

2
r2. (40)

We will show that V (u, v, w, p, q, r) is a Lyapunov function that satisfies the stability
criteria.

For the Lyapunov candidate function in equation (40), it will be proven that the
candidate function with the SMC and SPID control system in the linear model is the
Lyapunov function and the equilibrium point is asymptotically stable.

1. For (u, v, w, p, q, r) = (0, 0, 0, 0, 0, 0), we obtain V (u, v, w, p, q, r) = 0, whereas
for (u, v, w, p, q, r) ̸= (0, 0, 0, 0, 0, 0), we obtain V (u, v, w, p, q, r) > 0. Then
V (u, v, w, p, q, r) has been proven to be positive definite for SMC and SPID.

2. The function V is continuous and it has a continuous first partial derivative at
S. The function V in (40) is a quadratic function, then it is easy to see that the
quadratic function is continuous. As a consequence, the partial derivative is also
continuous.
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3. The third requirement of the SMC method is as follows:

V̇ (u, v, w, p, q, r) =
∂V

∂u
u̇+

∂V

∂v
v̇ +

∂V

∂w
ẇ +

∂V

∂p
ṗ+

∂V

∂q
q̇ +

∂V

∂r
ṙ

= uu̇+ vv̇ + wẇ + pṗ+ qq̇ + rṙ

= u(aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1Xprop +BB1δr1+

CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2) + v(aa2u+ bb2v + cc2w+

dd2p+ ee2q + gg2r +AA2Xprop +BB2δr1 + CC2δs1 +DD2Kprop+

EE2δs2 +GG2δr2) + w(aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r+

AA3Xprop +BB3δr1 + CC3δs1 +DD3Kprop + EE3δs2 +GG3δr2)+

p(aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1+

CC4δs1 +DD4Kprop + EE4δs2 +GG4δr2) + q(aa5u+ bb5v + cc5w+

dd5p+ ee5q + gg5r +AA3Xprop +BB5δr1 + CC5δs1 +DD5Kprop+

EE5δs2 +GG5δr2) + r(aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r+

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2 +GG6δr2).
(41)

We take

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
−K1sgn(S),

(42)

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r

BB2

)
−(

AA2Xprop + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2
BB2

)
−K2sgn(S),

(43)

δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r

CC3

)
−(

AA3Xprop +BB3δr1 +DD3Kprop + EE3δs2 +GG3δr2
CC3

)
−K3sgn(S),

(44)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r

DD4

)
−(

AA4Xprop +BB4δr1 + CC4δs1 + EE4δs2 +GG4δr2
DD4

)
−K4sgn(S),

(45)
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δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r

EE5

)
−(

AA3Xprop +BB5δr1 + CC5δs1 +DD5Kprop +GG5δr2
EE5

)
−K5sgn(S),

(46)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r

GG6

)
−(

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2
GG6

)
−K6sgn(S).

(47)

Substitute equations (42)-(47) into equation (41), then we obtain

V̇ (u, v, w, p, q, r) = u(−AA1K1sgn(S)) + v(−BB2K2sgn(S)) + w(−CC3K3sgn(S))+

p(−DD4K4sgn(S)) + q(−EE5K5sgn(S)) + r(−GG6K6sgn(S)) ≤
(−AA1K1)u+ (−BB2K2)v + (−CC3K3)w + (−DD4K4)p+

(−EE5K5)q + (−GG6K6)r.

We take K1 =
∣∣∣ 1
AA1

∣∣∣ η, K2 =
∣∣∣ 1
BB2

∣∣∣ η, K3 =
∣∣∣ 1
CC3

∣∣∣ η, K4 =
∣∣∣ 1
DD4

∣∣∣ η, K5 =
∣∣∣ 1
EE5

∣∣∣ η,
K6 =

∣∣∣ 1
GG6

∣∣∣ η. Then we obtain

V̇ (u, v, w, p, q, r) ≤ (−η)|u|+ (−η)|v|+ (−η)|w|+ (−η)|p|+ (−η)|q|+ (−η)|r|
≤ −η(|u|+ |v|+ |w|+ |p|+ |q|+ |r|).

From the above requirements, the function V is the function of Lyapunov and the
system is asymptotically stable.

The third characteristics of the SPID method is as follows:

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r

AA1

)
−(

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
AA1

)
+(

Kp1u+Ki1
1

2
u2 +Kd1u̇

)
, (48)

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r

BB2

)
−(

AA2Xprop + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2
BB2

)
+
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Kp2v +Ki2

1

2
v2 +Kd2v̇

)
, (49)

δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r

CC3

)
−(

AA3Xprop +BB3δr1 +DD3Kprop + EE3δs2 +GG3δr2
CC3

)
+(

Kp3w +Ki3
1

2
w2 +Kd3ẇ

)
, (50)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r

DD4

)
−(

AA4Xprop +BB4δr1 + CC4δs1 + EE4δs2 +GG4δr2
DD4

)
+(

Kp4p+Ki4
1

2
p2 +Kd4ṗ

)
, (51)

δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r

EE5

)
−(

AA3XpropBB5δr1 + CC5δs1 +DD5Kprop +GG5δr2
EE5

)
+(

Kp5q +Ki5
1

2
q2 +Kd5q̇

)
, (52)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r

GG6

)
−(

AA6Xprop +BB6δr1 + CC6δs1 +DD6Kprop + EE6δs2
GG6

)
+(

Kp6r +Ki6
1

2
r2 +Kd6ṙ

)
. (53)

Then equations (48)-(53) will be substituted to Xprop , δr1 , δs1 , Kprop , δs2 and δr2
in equation (41). The following equation is obtained:

V̇ (u, v, w, p, q, r)=u

(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1(Kp1u+Ki1

1
2
u2)

1−AA1Kd1
+

BB1δr1 + CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2
1−AA1Kd1

)
+

v

(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop

1−BB2Kd2
+

BB2(Kp2v +Ki2
1
2
v2) + CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2

1−BB2Kd2

)
+

w

(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop

1− CC3Kd3
+

BB3δr1 + CC3(Kp3w +Ki3
1
2
w2) +DD3Kprop + EE3δs2 +GG3δr2

1− CC3Kd3

)
+
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p

(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop

1−DD4Kd4

+
BB4δr1 + CC4δs1 +DD4(Kp4p+Ki4

1
2
p2) + EE4δs2 +GG4δr2

1−DD4Kd4

)
+

q

(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r +AA3Xprop

1− EE5Kd5
+

BB5δr1 + CC5δs1 +DD5Kprop + EE5(Kp5q +Ki5
1
2
q2) +GG5δr2

1− EE5Kd5

)
+

r

(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1

1−GG6Kd6
+

CC6δs1 +DD6Kprop + EE6δs2 +GG6(Kp6r +Ki6
1
2
r2)

1−GG6Kd6

)
(54)

Next, we take

K7 =

∣∣∣∣aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +AA1

(
Kp1u+Ki1

1

2
u2

)
+BB1δr1+

CC1δs1 +DD1Kprop + EE1δs2 +GG1δr2 | η1,

K8 =

∣∣∣∣aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop +BB2

(
Kp2v +Ki2

1

2
v2
)
+

CC2δs1 +DD2Kprop + EE2δs2 +GG2δr2 | η2,
K9 = |aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop +BB3δr1+

CC3

(
Kp3w +Ki3

1

2
w2

)
+DD3Kprop + EE3δs2 +GG3δr2

∣∣∣∣ η3,
K10 = |aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1 + CC4δs1+

DD4

(
Kp4p+Ki4

1

2
p2
)
+ EE4δs2 +GG4δr2

∣∣∣∣ η4,
K11 = |aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r| η5,
K12 = |aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1 + CC6δs1+

DD6Kprop + EE6δs2 +GG6

(
Kp6r +Ki6

1

2
r2
)∣∣∣∣ η6,

where η1 = 1
1−AA1Kd1

, η2 = 1
1−BB2Kd2

, η3 = 1
1−CC3Kd3

, η4 =
1

1−DD4Kd4
, η5 = 1

1−EE5Kd5
and η6 = 1

1−GG6Kd6
. Furthermore,

AA1,Kd1, AA2,Kd2, AA3,Kd3, AA4,Kd4, AA5,Kd5, AA6,Kd6 > 1. It follows that
1 − AA1Kd1 < 0, 1 − BB2Kd2 < 0, 1 − CC3Kd3 < 0, 1 − DD4Kd4 < 0,
1−EE5Kd5 < 0 and 1−GG6Kd6 < 0. Then we obtain that V̇ (u, v, w, p, q, r) ≤ 0.

According to the above requirements, the function V (u, v, w, p, q, r) = 1
2u

2+ 1
2v

2+
1
2w

2 + 1
2p

2 + 1
2q

2 + 1
2r

2 is the Lyapunov fuction and the system is asymptotically
stable.

If V (x) → ∞ when x → ∞, then the Lyapunov function is globally asymptotically
stable. The above Lyapunov function is V (u, v, w, p, q, r) = 1

2u
2 + 1

2v
2 + 1

2w
2 +

1
2p

2 + 1
2q

2 + 1
2r

2. It will be proven that V (u, v, w, p, q, r) → ∞ when u → ∞,
v → ∞, w → ∞, p → ∞, q → ∞ and r → ∞. Since V (u, v, w, p, q, r) = 1

2u
2 +
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1
2v

2 + 1
2w

2 + 1
2p

2 + 1
2q

2 + 1
2r

2 is a quadratic function, if u → ∞, v → ∞, w → ∞,
p → ∞, q → ∞ and r → ∞, then V (u, v, w, p, q, r) → ∞. Thus, the Lyapunov
function V (u, v, w, p, q, r) = 1

2u
2 + 1

2v
2 + 1

2w
2 + 1

2p
2 + 1

2q
2 + 1

2r
2 is asymptotically

stable. In conclusion, the stability analysis of the SMC and SPID control systems
has the stability property of being globally asymptotically stable.

9 Conclusions

Based on the simulation analysis of the SMC and SPID methods, it can be concluded that
both methods have good stability for the ROV linear model with an error of about 0.09%
- 4.5%. In terms of the delay time, rise time, peak time, maximum peak, and settling
time, both methods have similarities. As regards the stability ratio for each motion
performed, the SPID method is more stable for the surge, sway, and pitch motion, while
the SMC method is more stable for the heave, roll and yaw motion.
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Abstract: This paper presents a sufficient condition for two vector fields X and Y
to have the squares noncommutative, i.e., [X2, Y 2] ̸= 0, in the case when X and Y
span a 3-nilpotent distribution. And when the nilpotent disributions of class 2 or 3
are spanned from more than two vector fields, it gives the same result.
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1 Introduction

The theory of subelliptic operators plays an important role in many applications in
nonlinear dynamics and system theory, robotics and mechanical systems, optimal control
of nonlinear systems, see [1, 9].

The subelliptic operator is a particular of case hypoelliptic differential equations.
Hypoelliptic equations involve operators that are neither purely elliptic (like Laplace’s
equation) nor hyperbolic (like the wave equation), but rather fall in between. These
equations often arise in the context of modeling systems with varying degrees of regularity
and smoothness.

An example is the study of heat conduction in materials with varying degrees of
conductivity, with a heat diffusion being non-uniform in all directions. The equation
∂
∂t −Lu = 0 gives a more efficient description in that direction, where u(x, t) is the heat
kernel and the subelliptic operator L is defined in the differential manifold. And the
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heat kernel characterizes the evolution of heat distribution over time in the context of
the operator’s structure.

A heat kernel of the subelliptic operator L = X2
1 + · · · +X2

k , where X1, · · · , Xk are
vector fields of Rn, with k ≤ n, is an important problem. A sufficient condition for the
hypo-ellipticity of the operator L is the bracket condition, see [2, 3, 6, 8]. If the squares
of the aforementioned vector fields commute, i.e., [X2

i , X
2
j ] = 0 for all Xi, Xj , then the

heat kernel of L is the product of heat kernels

etL = etX
2
1 · · · etX

2
k .

If they do not commute, the previous formula does not hold any more, and the heat
kernel should be found using a different method, see [4, 7, 12].

Ovidiu Calin and Der-Chen Chang in [5] give a sufficient condition for two vector
fields X and Y to have the squares noncommutative, i.e., [X2, Y 2] ̸= 0, in the following
result.

Theorem 1.1 [5]. Any distribution D = span{X,Y } of nilpotency class 2 is a
N2-Distribution, i.e., [X2, Y 2] ̸= 0.

In the present work, as the first result, in Theorem 3.1, we shall prove that in the case
of nilpotent distribution with the nilpotency class equal to 3, the squares of the vector
fields do not commute. In the second and third results of this work, Proposition 3.1 and
Proposition 3.2, we shall generalize the results of Theorem 1.1 and Theorem 3.1 for more
than two vector fields.

2 Preliminaries

In an n-dimensional smooth manifold M , we recall that a smooth distribution D of rank
m is a rank m subbundle of the tangent bundle TM [11]. We call the Nk-Distribution
a distribution spanned by two vector fields X and Y , which satisfies the condition
[Xk, Y k] ̸= 0 [5].

Let Γ(D) be a basis of the distribution D. We recall that the iterated commutator
sets Ck of vector fields obtained by k iterated Lie brackets of horizontal vector fields are

C1 ={[X,Y ]; X,Y ∈ Γ(D)},
...

Cn ={[C,Z]; C ∈ Cn−1, Z ∈ Γ(D)}.

A distribution D is called nilpotent if there is an integer k ≥ 1 such that C(k) = 0,
i.e., all the k iterated Lie brackets vanish. The smallest integer k is called the nilpotency
class of D which is called k-nilpotent, see page 47 in [6].

Example 2.1 (example of 3-nilpotent distribution [11]) The Martinet distribution in
R3 (with coordinates (x, y, z)) is the distribution generated by X and Y with

X = ∂x, Y = ∂y +
1

2
x2∂z,

the iterated commutators are
[X,Y ] = x∂z,
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[X, [X,Y ]] = ∂z, [Y, [X,Y ]] = 0,

and

[X, [X, [X,Y ]]] =0, [X, [Y, [X,Y ]]] = 0,

[Y, [X, [X,Y ]]] =0, [Y, [Y, [X,Y ]]] = 0.

It follows that this distribution is nilpotent of class 3.

3 Main Results

Theorem 3.1 Any distribution D = span{X,Y } of nilpotency class equal to 3 is a
N2-distribution, i.e., [X

2, Y 2] ̸= 0.

To prove this theorem, we use several lemmas, and we recall the following.
The distribution D = span{X,Y } is nilpotent of class 3 meaning that

[X,Y ] ̸= 0, (1)

[Y, [X,Y ]] ̸= 0 or [X, [X,Y ]] ̸= 0,

and

[X, [X, [X,Y ]]] = 0, [Y, [Y, [X,Y ]]] = 0, (2)

[X, [Y, [X,Y ]]] = 0, [Y, [X, [X,Y ]]] = 0. (3)

Lemma 3.1 In a distribution D = span{X,Y } of nilpotency class 3, we have

[X2, Y 2] = 0 =⇒ (XY )2 = (Y X)2. (4)

Proof. By developing the first equation of (3), we get

[X, [Y, [X,Y ]]] = 0 ⇐⇒ X2Y 2 − Y 2X2 − 2(XY )2 + 2(Y X)2 = 0

=⇒ X2Y 2 − Y 2X2 = 2((XY )2 − (Y X)2)

or
[X2, Y 2] = 0,

then (XY )2 = (Y X)2.

Lemma 3.2 In a distribution D = span{X,Y } of nilpotency class 3, we have

[X2, Y 2] = 0 =⇒ XYX2Y 2 = X2Y 2XY. (5)

Proof. The expansion of the equations (2) gives

X3Y − 3X2Y X + 3XYX2 − Y X3 = 0, (6)

Y 3X − 3Y 2XY + 3Y XY 2 −XY 3 = 0. (7)

Multiplying the right-hand side, then the left-hand side of the relation (6) by Y 2 and the
relation (7) by X2, we obtain

X3Y 3 − 3X2Y XY 2 + 3XYX2Y 2 − Y X3Y 2 = 0, (8)

Y 3X3 − 3Y 2XYX2 + 3Y XY 2X2 −XY 3X2 = 0, (9)

Y 3X3 − Y 2X3Y + 3Y 2X2Y X − 3Y 2XYX2 = 0, (10)

X3Y 3 −X2Y 3X + 3X2Y 2XY − 3X2Y XY 2 = 0. (11)
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By the subtractions of these equations, (8)-(9), (8)-(10), (11)-(10), we have found,
respectively,

X3Y 3 − Y 3X3 = 3X2Y XY 2 − 3XYX2Y 2 + Y X3Y 2 − 3Y 2XYX2

+ 3Y XY 2X2 −XY 3X2, (12)

X3Y 3 − Y 3X3 = 3X2Y XY 2 − 3XYX2Y 2 + Y X3Y 2 − Y 2X3Y

+ 3Y 2X2Y X − 3Y 2XYX2, (13)

X3Y 3 − Y 3X3 = X2Y 3X − 3X2Y 2XY + 3X2Y XY 2 − Y 2X3Y

+ 3Y 2X2Y X − 3Y 2XYX2. (14)

Subtracting the equations (12)-(13) gives

−3XYX2Y 2 + Y X3Y 2 + Y 2X3Y − 3Y 2X2Y X

−XY 3X2 + 3Y XY 2X2 −X2Y 3X + 3X2Y 2XY = 0.

In view of the fact that X2Y 2 = Y 2X2, the last equation becomes

−XYX2Y 2 + Y XX2Y 2 +X2Y 2XY −X2Y 2Y X = 0,

then
X2Y 2[X,Y ] = [X,Y ]X2Y 2. (15)

On the other hand, subtracting the equations (14)-(12) gives

−3XYX2Y 2 + Y X3Y 2 −X2Y 3X + 3X2Y 2XY = 0,

then
−[X,Y ]X2Y 2 +X2Y 2[X,Y ] + 2(X2Y 2XY −XYX2Y 2) = 0.

Using the relation (15), we obtain

XYX2Y 2 = X2Y 2XY.

Lemma 3.3 In a distribution D = span{X,Y } with the nilpotency class 3, we have

[X2, Y 2] = 0 =⇒ X2Y 2 = 3(XY )2. (16)

Proof. Multiplying the equation (6) in the proof of Lemma 3.2 by Y on two sides,
we obtain

Y X3Y 2 − 3Y X2Y XY + 3Y XY X2Y − Y 2X3Y = 0. (17)

Lemma 3.2 proves that
XYX2Y 2 = X2Y 2XY,

and interchanging X and Y , we get

Y XX2Y 2 = X2Y 2Y X,

then (17) becames
X2Y 2[X,Y ]− 3((XY )3 − (Y X)3) = 0,
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this implies that
(X2Y 2 − 3(XY )2)[X,Y ] = 0

but [X,Y ] ̸= 0, then
X2Y 2 = 3(XY )2.

Proof. (Proof of Theorem 3.1) We shall prove this theorem by contradiction, i.e.,
we assume that

[X2, Y 2] = 0. (18)

By developing [X,Y ]3 and using Lemma 3.1, we get

[X,Y ]3 = (XY )3 − (XY )2(Y X)− (XY )(Y X)(XY ) + (XY )(Y X)2

− (Y X)(XY )2 + (Y X)(XY )(Y X) + (Y X)2(XY )− (Y X)3

= 3(XY )3 − 3(Y X)3 − (XY )(Y X)(XY ) + (Y X)(XY )(Y X). (19)

Using Lemma 3.3, we get

(XY )(Y X)(XY ) = XY 2X2Y

= 3X(Y X)2Y

= 3XYXYXY = 3(XY )3,

(Y X)(XY )(Y X) = Y X2Y 2Y

= 3Y (XY )2X

= 3Y XY XYX

= 3(Y X)3.

The equation (19) becomes

[X,Y ]3 = 3(XY )3 − 3(Y X)3 − 3(XY )3 + 3(Y X)3 = 0,

then [X,Y ] = 0 is a contradiction. It turns out that (18) cannot hold. It follows that
the vector fields X and Y span a N2-distribution.

Example 3.1 [11] It is clear that the distribution D = Span{X,Y } is nilpotent of
class 3 so that

X = ∂x, Y = ∂y +
1

2
x2∂z,

and
[X2, Y 2] = 4x∂x∂y∂z + 2∂y∂z + 8x3∂x∂2

z + 12x2∂2
z ̸= 0.

For the second part of this paper, we need a new definition of Nk-distribution in the
case when the distribution is spanned by more than two vector fields.

Definition 3.1 Let D = span{X1, X2, · · · , Xm} with m ≤ n. We say that D is a
Nk-distribution if there exist Xi, Xj ∈ D such that [Xk

i , X
k
j ] ̸= 0.

In this proposition, we generalize Theorem 1.1 for more than two vector fields.
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Proposition 3.1 Let D = span{X1, · · · , Xm} be a distribution spanned by m-vector
fields of Rn (m ≤ n). Then if D is a nilpotent distribution of nilpotency class 2, then D
is a N2-distribution, i.e., ∃ Xi, Xj ∈ D such that [X2

i , X
2
j ] ̸= 0.

Proof. D is a nilpotent distribution of nilpotency class 2, then there exist Xi, Xj ∈ D
such that

[Xi, Xj ] ̸= 0

and
[Xi, [Xi, Xj ] = 0 and [Xj , [Xi, Xj ]] = 0.

Let us tackle a sub-distribution D′ = span{Xi, Xj}, from Theorem 1.1, we obtain that
in D′,

[X2
i , X

2
j ] ̸= 0,

or D′ ⊂ D, then we have in D,
[X2

i , X
2
j ] ̸= 0.

Example 3.2 [10] The distribution D = span{X,Y, Z} such that

X = ∂x, Y = ∂y, Z = x∂z

is nilpotent of class 2,

[X,Y ] = 0, [Y, Z] = 0, [X,Z] = ∂z

and

[Y, [X,Y ]] = 0, [X, [X,Y ]] = 0,

[X, [X,Z]] = 0, [Y, [Y,Z]] = 0,

[Z, [X,Y ]] = 0.

On the other hand, we have

[X2, Z2] = 4x∂x∂2z + 2∂2z ̸= 0.

In the next proposition, we generalize Theorem 3.1 for more than two vector fields.

Proposition 3.2 Let D = span{X1, · · · , Xm} be a distribution spanned by m-vector
fields of Rn (m ≤ n). Then if D is a nilpotent distribution of nilpotency class 3, then D
is a N2-distribution, i.e., ∃ Xi, Xj ∈ D such that [X2

i , X
2
j ] ̸= 0.

Proof. D is a nilpotent distribution of nilpotency class 3, then there exist Xi, Xj ∈ D
such that

[Xi, Xj ] ̸= 0

and

[Xi, [Xi, [Xi, Xj ]]] = 0, [Xj , [Xj , [Xi, Xj ]]] = 0,

[Xi, [Xj , [Xi, Xj ]]] = 0, [Xj , [Xi, [Xi, Xj ]]] = 0.

We remark that in the proof of Theorem 3.1, we do not use the iterated brackets of
degree two (C2). Let us tackle a sub-distribution D′ = span{Xi, Xj}, from Theorem 1.1,
we obtain that in D′,

[X2
i , X

2
j ] ̸= 0,

or D′ ⊂ D, then we have in D,
[X2

i , X
2
j ] ̸= 0.
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4 Conclusion

In summary, the heat kernel of a subelliptic operator captures the essential dynamic
behavior of heat diffusion within a system defined by that operator. It describes how the
initial heat distribution changes over time due to the conduction process governed by the
operator’s structure. The heat kernel provides insights into the temporal evolution of heat
within the context of the subelliptic operator, connecting the mathematical description
of heat conduction with the dynamic behavior of the system.

Unfortunately, the only method to find the solution of this kernel, is that the square
of the vector fields commutes (sufficient condition).

Ovidiu Calin and Der-Chen Chang in [5] give a sufficient condition for two vector
fields X and Y to have the squares noncommutative (distribution spanned with two
vectors fields).

In this work, we have given an extension for more than two vector fields, and we have
proposed a new sufficient condition for the noncommutative squares of the vectors fields
in the case of distribution of nilpotency class 3. This result offers less computation and
excellent description for the methods of finding the heat kernel of the sum of squares
operator.
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1 Introduction

In recent times, ensuring the security and integrity of data transmitted through commu-
nication systems has become a significant focus for scientists. Research on chaos over
the past four decades has revealed its complex and unpredictable behavior in various
domains such as physics, climatology, chemistry, and biology. [1]

The Moore-Spiegel system, discovered in 1966, is a chaotic system that describes
aperiodic dynamics and has applications in understanding thermal dissipation and con-
vectively unstable fluids [2]. In 2017, the Moore-Spiegel synchronization circuit was
applied to a communication security system [3].

Numerous studies have explored the application of chaotic systems in encryption,
including image encryption using 1D, 2D, and 3D chaotic systems [4–6], as well as voice
encryption using the Jerk, Chua, and Bhalekar-Gejji chaotic systems [7–9]. While the
previous research demonstrates the potential of chaotic systems in encryption, further
optimization and security analysis are required.

This paper is structured as follows. Section 2 discusses the analysis of the Moore-
Spiegel Chaotic System, including phase diagrams, time series, bifurcation analysis, Lya-
punov exponent analysis, and Poincaré analysis. Section 3 explains the encryption and
decryption algorithms for digital images and voice using the Moore-Spiegel system. Sec-
tion 4 presents experimental results and analysis. For image encryption, we perform
histogram analysis, correlation analysis, entropy analysis, NPCR and UACI analysis,
and noise attack analysis. For voice encryption, we conduct voice signal plot analysis,
correlation coefficient analysis, voice entropy analysis, and Root Mean Squared Error
(RMSE) analysis. Finally, Section 5 concludes and provides a final assessment.

2 Moore-Spiegel Chaotic System and Basic Analysis

The Moore-Spiegel system is described by the following system of differential equations:
ẋ = y,

ẏ = z,

ż = −z + ay − x2y − bx.

(1)

The parameters and the initial conditions of Moore-Spiegel chaotic system are chosen as:
a = 9, b = 5, and (x0, y0, z0) = (2, 7, 4) so that the system shows the expected chaotic
behavior [2, 3, 10].

2.1 Phase diagram and time series

The signal plots of the Moore-Spiegel chaotic system with the constant parameters a = 9
and b = 5, and the initial condition of (2, 7, 4) were simulated using Python 3, as depicted
in Figure 1. The corresponding phase diagrams are illustrated in Figure 1. The graphs
obtained from the Moore-Spiegel system equations exhibit chaotic behavior, indicating
their suitability for digital image and voice encryption.

The utilization of phase diagrams and time series diagrams provides a solution for
analyzing the Moore-Spiegel system’s differential equation. These diagrams allow the
observation of the system’s movement characteristics. By examining the time series plot
of variables x, y, and z in Figure 2, it becomes evident that the Moore-Spiegel system
exhibits chaotic behavior.
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(a) (b) (c)

Figure 1: The 2D phase diagram of the Moore-Spiegel chaotic system; (a) y vs x, (b) z vs x,
(c) z vs y, with the parameter values a = 9, and b = 5.

Figure 2: The time series for the Moore-Spiegel chaotic system with the parameter values a = 9
and b = 5.

2.2 Bifurcation analysis

The bifurcation diagram represents the transition of a discrete dynamical system from
regular behavior to chaos [11]. Bifurcation analysis was carried out for the Moore-Spiegel
chaotic system using a fixed set of parameter values, starting from the initial condition of
(2, 7, 4). We perform 10,000 iterations with a time step of 0.01. The findings depicted in
Figure 3 illustrate the bifurcation diagram of the Moore-Spiegel system for the parameter
values within the range of 5.0 ≤ a ≤ 10.0, revealing the presence of chaotic dynamics
with periodic patterns. Similarly, Figure 4 illustrates the occurrence of chaotic behavior
with periodic patterns in the system when the parameter value falls within the range of
3.0 ≤ b ≤ 10.0.

(a) (b) (c)

Figure 3: Bifurcation diagram with the parameters b = 5 and a = varied; (a) x vs a, (b) y vs
a, (c) z vs a.
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(a) (b) (c)

Figure 4: Bifurcation diagram with the parameters a = 9, and b = varied; (a) x vs b, (b) y vs
b, (c) z vs b.

2.3 Lyapunov exponent

The Lyapunov exponent (λV ) is a metric employed in the realm of dynamical systems
theory to gauge how susceptible a system is to alterations in its initial conditions. We
employed a predefined set of parameter values and initialized the simulation with an
initial state of (2, 7, 4). Following that, we conducted 10,000 iterations with a time
increment of 0.01. Within the framework of the Moore-Spiegel chaotic system equations,
the variable vi(a, b) signifies the value of the x, y, or z component at time step i within
a simulation carried out with specific parameter values a, and b [12, 13]. The equation
for the Lyapunov Exponent is stated as follows:

λV (a, b) =
1

dt
ln

(
1

N

N−1∑
i=0

|vi(a, b)|

)
. (2)

The Lyapunov exponent formula allows us to understand the extent to which the
Moore-Spiegel chaotic system is sensitive to changes in its initial conditions and whether
the system tends toward chaotic or stable behavior over time. The strange attractor
shows three Lyapunov exponents with positive, zero, and negative values [3].

(a) (b)

Figure 5: The Lyapunov exponents when the parameters are varied as follows: (a) b = 5 and
a = varied, (b) a = 9 and b = varied.

Figure 5 illustrates chaotic behavior in the range of 5.0 ≤ a ≤ 10.0, with other
parameters held constant. The diagram displays periodic patterns amidst the chaos.
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Furthermore, within the range of 3.0 ≤ b ≤ 10.0, while keeping the other parameters
constant, the system exhibits diverse chaotic behaviors for different parameter values,
specifically a = 9 and b = 5. The system demonstrates limit point behavior due to the
presence of two negative Lyapunov exponents.

2.4 Poincare analysis

The Poincaré map provides insights into periodic and non-periodic systems. Periodic
systems exhibit a limited number of points with a repetitive structure, while non-periodic
systems have a larger number of points with an unpredictable structure, with some points
repeating.

(a) (b) (c)

Figure 6: Poincare map with the parameters a = 9, and b = 5; (a) x(n+1) vs x(n), (b) y(n+1)
vs y(n), (c) z(n+ 1) vs z(n).

Figure 6 shows the Poincaré map for the Moore-Spiegel system, where a = 9 and
b = 5. The map demonstrates chaotic behavior in the Moore-Spiegel chaotic system. It
is characterized by scattered points with an irregular structure, and some points show
repetition. The Poincaré map helps understand qualitative features of strange attractors
during chaotic states by revealing dense intersections and different trajectories in each
period. Analyzing the Poincaré map is crucial to comprehend the attractors’ qualitative
characteristics.

3 The Moore-Spiegel System Algorithm

3.1 Encryption algorithm

Input (Image) : Original Image (Bird, Landscape, Cat)
Input (Voice) : Original Voice
Output (Image) : Encrypted Image
Output (Voice) : Encrypted Voice

• Step 1: Import the required libraries.

• Step 2: To generate the pseudo-random key, you can create a function named
”secret-key” that utilizes the Moore-Spiegel chaotic system. For instance, you can
select a solution from differential equation (1) that demonstrates chaotic behavior,
such as x, y, or z, and use it as the basis for generating the pseudo-random key.
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• Step 3: Specify the initial conditions and the ”num” parameter responsible for
inducing chaos in accordance with differential equations (1). As an illustration,
you can set the initial condition to (x, y, z) = (2, 7, 4) and use parameters a = 9
and b = 5.

• Step 4 (Image): Load the decrypted image and extract its height and width to be
used in the ”secret key” function.

• Step 4 (Voice): Read the voice file and convert the voice data into NumPy array
format.

• Step 5: Iterate through each pixel (Image) or frame (Voice) in a loop.

• Step 6: Apply the XOR operation to encrypt the pixel (Image) or frame (Voice)
using the pseudo-random numbers generated from the ”secret key”.

• Step 7: Obtain the encrypted image or encrypted voice.

3.1.1 Decryption algorithm

Input (Image) : Encrypted Image
Input (Voice) : Encrypted Voice
Output (Image) : Decrypted Image (Bird, Landscape, Cat)
Output (Voice) : Decrypted Voice

• Step 1: Import the required libraries.

• Step 2: Read the encrypted image or encrypted voice file and extract its dimensions
or transform the voice data into a NumPy array.

• Step 3: Define the initial values and the ”num” parameter that result in chaotic
characteristics, similar to those in the encryption system. For instance, establish
the initial condition as (x, y, z) = (2, 7, 4), with parameters a = 9 and b = 5.

• Step 4: Produce a pseudo-random key through the development of a function named
the ”secret-key” that leverages the Moore-Spiegel chaotic system. For instance, opt
for a solution within differential equation (1), be it x, y, or z, that demonstrates
chaotic behavior to serve as the basis for the pseudo-random key.

• Step 5: Iterate through each pixel in the encrypted image or frame in the encrypted
voice file.

• Step 6: Decrypt the pixel (Image) or frame (Voice) by performing XOR opera-
tion between the encrypted pixel (Image) or frame (Voice) and the corresponding
pseudo-random number from the secret key.

• Step 7: Obtain the decrypted image or decrypted voice.
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4 Experiment Results

In this section, we divide the experimental results into two parts: image encryption and
voice encryption.

4.1 Image encryption

In this part, we conducted an evaluation of the Moore-Spiegel chaotic system’s masking
approach, utilizing three unique images: Bird, Landscape, and Cat. Our analysis was
primarily focused on appraising the system’s effectiveness in encrypting and ensuring the
security of image files, as shown in Figure 7.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Application of the Moore-Spiegel chaotic system in Digital Image Encryption and
Decryption. (a, d, g) Original. (b, e, h) Encrypted. (c, f, i) Decrypted.

4.1.1 Histogram image encryption analysis

Histogram analysis portrays the distribution of pixel intensities graphically in an image.
It provides insights into the prevalence of different ranges of pixel intensities [14]. Pixels
in an original image have distinct and information rich diagonal bars. These diagonal
bars are vulnerable to attacks. To counter such attacks, the encryption algorithm should
ensure that the encrypted image has evenly distributed bars [15]. Figure 8, 9, 10 show
histogram analysis results for the original image, encrypted image, and decrypted image.
The original image’s histogram displays non-flat distribution with clustering tendencies
on the left and right sides. The histogram of the encrypted image indicates a successful
encryption with a flat distribution. The histogram of the decrypted image demonstrates
a successful decryption, restoring a similar distribution as in the original image.
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(a) (b) (c)

Figure 8: Histogram analysis of Bird image: (a) original, (b) encrypted, (c) decrypted.

(a) (b) (c)

Figure 9: Histogram analysis of Landscape image: (a) original, (b) encrypted, (c) decrypted.

(a) (b) (c)

Figure 10: Histogram analysis of Cat image: (a) original, (b) encrypted, (c) decrypted.

4.1.2 Correlation image encryption analysis

Correlation analysis measures the degree of correlation between multiple images using
a correlation coefficient ranging from -1 to 1. A correlation coefficient of 1 represents
a perfect positive relationship, 0 indicates no relationship, and -1 represents a perfect
negative relationship [1]. The correlation coefficient is calculated based on the relative
ranking of pixel intensities in the images, rather than their actual values. It can be
expressed mathematically as follows:

rxy =
Cov(x, y)√
(D(x)D(y))

, (3)

where

Cov(x, y) =
1

N

N∑
j=1

(xj − E(x))(yj − E(y)), (4)

E(x) =
1

N

N∑
j=1

Xj , (5)

D(x) =
1

N

N∑
j=1

(xj − E(x))2. (6)
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The correlation coefficient equation involves the expected values of variables x and y
denoted by E(x) and E(y), respectively. The term Cov represents the covariance between
the variables, while D(x) and D(y) indicate the standard deviations of x and y. The
variables xj and yj refer to the individual pixels in the first and second images, and N
represents the total number of pixels involved in the calculation [1].

Image Channel Original-Encrypted Original-Decrypted

Bird R -0.0056 1.0000
G 0.0288 0.9999
B -0.0078 1.0000

Average 0.0052 1.0000
Landscape R -0.0230 0.9999

G -0.0308 0.9999
B 0.0279 1.0000

Average -0.0087 0.9999
Cat R 0.0036 1.0000

G 0.0217 1.0000
B 0.0236 0.9999

Average 0.0163 1.0000

Table 1: Image correlation analysis.

Table 1 presents the results of correlation analysis conducted for the encrypted image
and decrypted image of the three images using RGB analysis. The correlation coef-
ficients between the pixels of the original images and the encrypted images are close
to zero, indicating a lack of correlation and successful image masking. On the other
hand, the correlation coefficients between the pixels of the original images and those of
the decrypted images show a perfect correlation, confirming the algorithm’s successful
execution.

4.1.3 Entropy image encryption analysis

Image entropy within the RGB channels serves as a statistical metric employed to eval-
uate the degree of uncertainty or randomness present in the distribution of pixel values
within each individual color channel (namely, Red, Green, and Blue) in the color im-
age. Entropy offers insights into the uniformity or concentration of information within
each channel. A heightened entropy value implies a more haphazard distribution of pixel
values, whereas a lower entropy value signifies a more structured or concentrated arrange-
ment of color distribution [16]. The calculation for determining the information entropy
value is defined by the following equation:

H(X) = −
N∑
i=1

p(xi) log2(p(xi)), (7)

in this context, H(X) stands for the entropy measure of the probability distribution
X, p(xi) signifies the likelihood of pixel value xi occurring within the distribution, N
corresponds to the total count of unique pixel values in the distribution, and log2(p(xi))
denotes the logarithm base-2 of the probability associated with pixel value xi.



554 W. S. MADA SANJAYA, AKHMAD ROZIQIN, et al.

Based on Table 2, the entropy value for the encrypted image is higher than those
for the original and decrypted images. The higher the entropy value (closer to 8), the
higher the level of disorder in the information content of the image. This means that
the information contained in the encrypted image is irregular, random, and difficult to
comprehend.

Image Channel Original Encrypted Decrypted

Bird
R 7.35329 7.99193 7.35329
G 7.07455 7.99194 7.07455
B 7.83513 7.99198 7.83513

Landscape
R 7.84448 7.99202 7.84448
G 7.80162 7.99197 7.80162
B 7.04028 7.99200 7.04028

Cat
R 7.55674 7.99196 7.55674
G 7.55905 7.99203 7.55905
B 6.94755 7.99195 6.94755

Table 2: Image entropy values.

4.1.4 NPCR and UACI Analysis

1. NPCR (Normalized Pixel Change Rate): The NPCR (Normalized Pixel
Change Rate) calculates the proportion of the pixel alterations between two images
that have undergone encryption or decryption procedures. This parameter offers
insight into the extent of pixel modifications that occur as a result of applying
encryption or decryption algorithms [17] calculated by

NPCR =
Number of Changed Pixels

N ×M
× 100%, (8)

where N and M represent the dimensions of the image in pixels, and the ”Number
of Changed Pixels” is the count of pixel positions where the pixel values differ
between the two images.

2. UACI (Unified Average Changing Intensity): UACI quantifies the mean
intensity variation between two images that are being compared. Intensity change
is assessed by calculating the absolute difference between pixel values in the first and
second images, and this value is then averaged across all pixels. UACI offers insights
into the degree of intensity alterations that take place following an encryption or
decryption process [17]. The UACI is computed using the following formula:

UACI =
Sum of Intensity Differences

N ×M × L
× 100%, (9)

where N and M stand for the pixel dimensions of the image, L signifies the total
number of potential intensity levels for each pixel, which is typically 256 for an
8-bit image. The ”Sum of Intensity Differences” corresponds to the summation of
absolute disparities between corresponding pixel values in the two images.

In Table 3, the NPCR (%) column depicts the percentage of pixel changes between
the original image and the encrypted image, as well as between the original image and the
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decrypted image. The research results indicate significant pixel changes in the encrypted
image, with percentages of approximately 98.50 %, 97.32 %, and 97.99 %, highlighting a
noticeable transformation in the encrypted image compared to the original one.

Image
NPCR (%) UACI (%)

Original - Original - Original - Original -
Encrypted Decrypted Encrypted Decrypted

Bird 98.50 % 0.00 % 30.81 % 0.00 %
Landscape 97.32 % 0.00 % 29.65 % 0.00 %

Cat 97.99 % 0.00 % 23.32 % 0.00 %

Table 3: NPCR and UACI percentages.

Meanwhile, the UACI (%) column of Table 3 illustrates the percentage of the pixel
intensity changes between the original image and the encrypted image, as well as between
the original image and the decrypted image. The research findings also reveal significant
fluctuations in pixel intensity within the encrypted image. However, the decryption
process successfully restores the image to its original pixel intensity levels, as evidenced
by a UACI value of 0.00 % for all images. These findings provide an understanding of
the impact of encryption and decryption algorithms on pixel changes and pixel intensity
changes in the evaluated images.

4.1.5 Noise of attack image encryption analysis

The transmission of images may introduce distortions that can impact the final results.
Therefore, it is crucial to evaluate the algorithm’s performance against distortion attacks.
The Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are utilized to
measure the impact of noise on the decrypted image [18]. The equations for calculating
the MSE and PSNR are as follows:

PSNR = 10 log 10

(
Max2

i

MSE

)
, (10)

MSE =
1

M ×N

M∑
i=1

N∑
j=1

(Pij − Cij)
2. (11)

In the given statement, Pij represents the pixel value at the position i, j of the image
without noise. Cij represents the pixel value at the position i, j of the image with noise.
Maxi denotes the maximum pixel value in the image.

We used density variations to modify the impact of noise. The MSE values were
calculated by comparing the decrypted image after incorporating Salt and Pepper noise.
A higher PSNR value indicates less information loss, while a higher MSE value indicates
more information loss. In Table 4, it can be observed that at a density of 0.10, the MSE
value is higher and the PSNR value is lower. Conversely, at a density of 0.05, the MSE
value is lower and the PSNR value is higher.
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Image Variation of Density MSE PSNR

Bird 0.05 1148.51 17.53 dB
0.10 2300.34 14.51 dB

Landscape 0.05 1131.49 17.59 dB
0.10 2256.74 14.60 dB

Cat 0.05 1031.23 18.00 dB
0.10 2062.23 14.99 dB

Table 4: The MSE and PSNR values were calculated for the decrypted image with salt and
pepper noise.

4.2 Voice encryption

In this section, we tested the Moore-Spiegel chaotic masking system on three original
voice files to ensure robust encryption, preserving confidentiality and integrity against
unauthorized access and tampering.

4.2.1 Voice signal plot

Waveform plots visually represent the signal’s amplitude changes over time, aiding in-
terpretation. Each frame of the voice signal is then transformed from time to frequency
domain using FFT, enabling the analysis of voice characteristics such as high and low
frequencies and amplitude strength at each frequency. Spectrogram plots display the
signal’s frequency against time and are shown sequentially in Figures 11, 12, and 13.

(a) (b) (c)

Figure 11: Waveform graph; (a) voice 1 (”Terima Kasih” in Bahasa), (b) voice 2 (”Thank
You” in English), (c) voice 3 (”Arigatou” in Japanese).

(a) (b) (c)

Figure 12: FFT graph; (a) voice 1 (”Terima Kasih” in Bahasa), (b) voice 2 (”Thank You” in
English), (c) voice 3 (”Arigatou” in Japanese).
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(a) (b) (c)

Figure 13: Spectrogram graph ; (a) voice 1 (”Terima Kasih” in Bahasa), (b) voice 2 (”Thank
You” in English), (c) voice 3 (”Arigatou” in Japanese).

The three images show Waveform, FFT, and Spectrogram graphs for the original
voice, encrypted voice, and decrypted voice, respectively, for three different voices: voice
1 (Bahasa: ”Terima Kasih”), voice 2 (English: ”Thank You”), and voice 3 (Japanese:
”Arigatou”). The analysis reveals that the encrypted voice signal has a distinct pattern,
while the decrypted voice signal closely resembles the original voice signal. This demon-
strates the algorithm’s effectiveness in preserving the high quality of the recovered voice
signal.

4.2.2 Correlation voice encryption analysis

The correlation analysis in voice encryption is governed by equations (3), (4), (5), (6). For
voice encryption, the correlation analysis is performed with a similar methodology which
differs in terms of the parameters used. Cov(x, y) represents the covariance between the
original signal x and the encrypted signal y. D(x) and D(y) denote the variances of
signals x and y, respectively. N represents the number of voice samples. A low value of
the correlation coefficient rxy indicates a high-quality encryption [19].

Voice File Original-Encrypted Original-Decrypted

recording1.wav (Terima Kasih) -0.00389 1.0
recording2.wav (Thank You) -0.00055 1.0
recording3.wav (Arigatou) -0.00079 1.0

Table 5: Voice correlation analysis.

The correlation coefficients between the original and encrypted voice signals are close
to 0, indicating a lack of correlation, while the correlation coefficients between the original
and decrypted voice signals are close to 1, indicating a strong correlation. Please refer
to Table 5 for the specific values.

4.2.3 Entropy voice encryption analysis

In the realm of audio, entropy serves as a statistical metric employed to gauge the de-
gree of uncertainty or randomness present in the arrangement of audio sample values.
A heightened audio entropy signifies an increased diversity in audio sample values, po-
tentially indicating the presence of more intricate or unpredictable sounds. Conversely,
reduced entropy implies that the sound typically exhibits patterns or repetitions, with
limited fluctuations in sample values [20].
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The computation of audio entropy can be accomplished through Shannon’s entropy
formula, which is articulated as follows:

H(X) = −
N∑
i=1

p(xi) log2(p(xi)). (12)

In this formula, H(X) denotes the entropy of the probability distribution X representing
audio sample values, p(xi) stands for the likelihood of occurrence of audio sample value
xi within the distribution, and N signifies the count of distinct audio sample values in
the distribution. The provided algorithm calculates entropy for three different audio files:
the original voice recording, the encrypted voice, and the decrypted voice. This program
proves to be invaluable in the analysis of how audio information undergoes transforma-
tion during encryption and decryption procedures, shedding light on the complexity or
randomness level of the audio files. A higher entropy value indicates a greater degree of
variation in sample values within the audio.

Voice File Original Encrypted Decrypted

recording1.wav (Terima Kasih) 11.33927 15.76719 11.33927
recording2.wav (Thank You) 11.45686 15.76808 11.45686
recording3.wav (Arigatou) 11.69892 15.76718 11.69892

Table 6: Voice entropy value.

The findings derived from the Shannon Entropy table, as presented in Table 6, eluci-
date that the encryption procedure exerts a substantial influence on the degree of unpre-
dictability or randomness inherent in the audio data. This is evidenced by the notable
escalation in Shannon Entropy values following the encryption process. However, subse-
quent to the decryption phase, the audio data regains a level of unpredictability akin to
its original state, signifying the successful preservation of the fundamental information
within the audio data. This inference suggests that, within this specific context, the
encryption-decryption process can furnish additional security measures against unautho-
rized access to audio data while upholding the integrity of the data encapsulated within
the audio files.

4.2.4 Root mean squared error (RMSE)

The RMSE (Root Mean Squared Error) measures the deviation between the predicted
and actual values. A lower RMSE value is desirable as it indicates higher accuracy in the
model’s predictions. The ideal RMSE value depends on the specific problem and data
range. While there is no universally defined ideal value, a decreasing RMSE signifies
improved accuracy in the prediction model.

RMSE =

√∑ (xpred − xact)2

N
, (13)

where xpred is a predicted value, xact is an actual value and N is the total data. Ta-
ble 7 shows the comparison of RMSE values for voice decryption using low-level noise,
indicating that the algorithm performs well.
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Voice File Variaty Density RMSE

recording1.wav (Terima Kasih) 0.10 0.1002
0.01 0.0100

recording2.wav (Thank You) 0.01 0.1002
0.01 0.0100

recording3.wav (Arigatou) 0.10 0.1001
0.01 0.0100

Table 7: The RMSE values for decrypted voice with Gaussian noise.

5 Conclusion

The previous research on the Moore-Spiegel system in communication security was lim-
ited to synchronization circuits, without applying it to image and voice encryption. Anal-
ysis shows that the Moore-Spiegel chaotic system is ideal for data encryption due to its
unpredictability, randomness, and sensitivity to initial conditions, making it suitable
for generating random encryption keys. The proposed algorithm’s effectiveness has been
substantiated through various analyses, including histogram, correlation, entropy, NPCR
and UACI, and noise attack analyses for image and voice encryption. Further research
potential lies in developing encryption methods for videos or other complex subjects.
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Abstract: The aim of this paper is to present a logarithmic penalty method for
solving nonlinear optimization. The line search is carried out by means of an ap-
proximate function if the descent direction is determined using a classical Newton
technique. Contrary to the line search method, which is costly in terms of computing
volume and demands a lot of time, the proposed approximate function enables easy
and quick computation of the displacement step. Numerous intriguing numerical ex-
periments, which are presented in the last section of this work, show that our new
approximate function is accurate and efficient.
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1 Introduction

Nonlinear optimization problems deal with the problem of optimizing an objective func-
tion in the presence of equality and inequality constraints. Furthermore, if all the func-
tions are linear, we obviously have a linear optimization problem. Otherwise, the problem
is called a nonlinear optimization problem.

This research field is motivated by the fact that several problems are collected from
practice such as engineering, medicine, business administration, economics, physical sci-
ences, and nonlinear dynamics and systems (see, e.g., [8, 9]).
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Quadratic optimization is a type of nonlinear optimization, where the objective func-
tion is quadratic. In order to solve this type, we propose a penalty approach without line
search based on approximate functions, which is the efficient method for determining the
displacement step. This study is supported by an important numerical simulation.

For this purpose, we consider the solution of the following quadratic programming
problem:

(P )

{
min q(x) = 1

2x
tQx+ ctx

x ∈ D,

with
D = {x ∈ Rn : Ax ≥ b}.

The following assumptions are made.
1. c ∈ Rn, Q is an Rn×n symmetric semidefinite matrix.
2. We know a point x0 ∈ Rn such that Ax0 > b.
3. b ∈ Rp, A is a (p× n) full rank matrix.
4. The set of optimal solutions of (P ) is nonempty and bounded.
In this paper, the problem (P ) is approximated by the problem (Pη), (η > 0),

(Pη)

{
min qη(x)

x ∈ Rn,

where the barrier function qη : Rn → (−∞,+∞] is defined by

qη(x) =

{
q(x)− η

∑m
i=1 ln < ei, Ax− b > if Ax− b > 0

+∞ otherwise,

where (e1, e2, ..., em) is the canonical base in Rm and η is a strictly positive barrier
parameter. Recall that the scalar product of x, y ∈ Rn is given by

⟨x, y⟩ = xty =

n∑
i=1

xiyi,

the Euclidean norm of y is

∥y∥ =
√
⟨x, y⟩ =

√√√√ n∑
i=1

y2i .

A classical Newton descent approach is used to solve this problem.
In our new approach, instead of minimizing qη, along the descent direction at a current

point x, we propose an approximate function G for which the optimal solution of the
displacement step α is obtained explicitly.

Let us minimize the function G so that

G (α) =
1

η
(qη(xη + αd)− qη(xη)) ≥ Ğ(α), ∀α > 0,

with G(0) = Ğ(0) = 0, G′(0) = Ğ′(0) < 0. The best quality of the approximations
Ğ of G is ensured by the condition G′′(0) = Ğ′′(0). The idea of this new approach
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consists in introducing one original process to calculate the displacement step α based on
minorant functions. Then we obtain an explicit approximation which leads to reducing
the objective, adding to this, it is economical and robust, contrary to the traditional
methods of line search.

The paper is organized as follows. In Section 1, we prove the perturbed problem
convergence to the initial one. We are interested in resolving the perturbed problem.
We describe our algorithm briefly and we present our main result by introducing a new
approximate function to compute efficiently the displacement step of the obtained penalty
algorithm. This approach is employed to evade line search methods and expedite the
algorithm’s convergence.

In Section 2, we present numerical tests on some different examples to illustrate the
effectiveness of the proposed approach and we compare it with the standard line search
method. A conclusion and future research are given in the last Section 3.

By assumption (1), its solutions set is nonempty and bounded, and as we know, (P )
is convex, consequently, in accordance with Bachir Cherif et al. [5], the strictly convex
problem (Pη) has unique optimal solution x∗η for each η > 0.

Since solving the problem (P ) is similar to solving the problem (Pη) when η tends to
0, our goal is to resolve the problem (Pη).

Firstly, we need to study the convergence of (Pη) to (P ).

Convergence of the Perturbed Problem (Pη) to (P )

Let the function ψ be defined on R× Rn by

ψ(η, x) =

 q (x) +
n∑

i=1

ξ(η, xi) if x ≥ 0, Ax ≥ b,

+∞ if not,

where ξ : R2 −→ (−∞,+∞] is a convex, lower semicontinuous and proper function given
by

ξ(η, t) =

 η ln (η)− η ln (α) if α > 0 and η > 0,
0 if α ≥ 0 and η = 0,
+∞ otherwise.

So, the function ψ is a convex, lower semicontinuous and proper function.
From [5], the strictly convex problem (Pη) admits a unique optimal solution x∗η for

each η. The solution of the problem (P ) reduces to the solution of the series of problems
(Pη). The sequence of the solutions xη of (Pη) should converge to the solution of (P )
when η tends to 0.

Now we are in a position to state the convergence result of (Pη) to (P ) which is proved
in Lemma 1 from [4].

Let η > 0, for all x ∈ D, we define

ψ(x, η) = qη(x).

Lemma 1.1 [4] Let η > 0. If xη is an optimal solution of the problem (Pη) such
that limη→0 xη = x∗, then x∗ is an optimal solution of the problem (P ).

Let η > 0, for all x ∈ D, we define ψ(x, η) = qη(x).
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Resolution of the Perturbed Problem

In this section, we are interested in finding the solution of the perturbed problem xk+1 =
xk + αkdk. For this purpose, we first use the Newton method to calculate the descent
direction dk. Then we obtain the displacement step αk by our new minorant function.
Finally, we describe a standard prototype algorithm.

1.1 Newton descent direction

The interior point methods of the logarithmic barrier type are developed for resolving
this type of problems based on the optimality conditions that are necessary and sufficient
since the problem (Pη) can be considered as the one without constraints.

As a result, ((xη)k = xk) is an optimal solution of (Pη) such that the following
condition is met:

∇qη(xη) = 0. (1)

Thus, xk+1 = xk + dk is the iteration of Newton, where dk is the descent direction
solution of the linear system

∇2qη(xη)dk = −∇qη(xη). (2)

Note 1. We insert a displacement step αk and we write

xk+1 = xk + αkdk

to ensure the strictly feasible iterate xk+1 = xk + dk.

1.2 Model algorithm

In this part, we present a brief algorithm of our approach to obtain an optimal solution
x̄ of the problem (P ) .

Begin algorithm

Initialization

Start with x0 being a strictly feasible solution of (P ) , η > 0, ε is a given precision
and k = 0.

While ∥∇qη(xk)∥ > ε do

– Resolve the system : ∇2qη(xk)dk = −∇qη(xk).
– Compute the displacement step αk.

– Take xk+1 = xk + αkdk and k = k + 1.

– Put η = ση, 0 < σ < 1.

End While
We have obtained a good approximate solution of the problem (P ).

End algorithm.

1.3 Computation of the displacement step

There are two main techniques used for computing the displacement step αk.
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(1) Line search methods: The method of Goldstein-Armijo, Fibonacci, Wolfe, etc.
They are based on the unidimensional function’s minimization:

ϕ(α) = min
α>0

qη(xη + αd).

They are time-consuming and unfortunately very sensitive.

(2) Minorant function: The technique of the minorant function was first proposed
by Leulmi [10] for the positive semidefinite programming. This technique relies on
approximating the function

G(α) =
1

η
(qη(xη + αd)− qη(xη))

by another function whose minimum can be easily computed, which permits the
computation of the displacement step at each iteration in a relatively short time
and with a smaller number of instructions in contrast to the line search technique.

We start with the following lemma, and in the rest of the paper, we consider x instead
of xη.

Lemma 1.2 [14] The function G can be written as follows:

G(α) =
1

η
(
1

2
α2dtQd− αdtQd) + α(

m∑
i=1

yi − ||y||2)−
m∑
i=1

ln(1 + αyi) (3)

for all α ∈ [0, α̂] such that α̂ = mini∈I−{−1
yi
} and I = {i : yi < 0}, where

yi =
< ei, Ad >

< ei, Ax− b >
, i ∈ {1, ...,m}.

Now, we give the main result of the paper.

1.4 New approximate function

To introduce our new majorant function, we use the following well known inequality:(
∥y∥ −

n∑
i=1

yi

)
α− ln(1 + α∥y∥) +

n∑
i=1

ln(1 + αyi) ≤ 0. (4)

Replacing by the precedent inequality in (3), we obtain Ğ(α) ≤ G(α), then

Ğ(α) = δα− ln(1 + βα) +
1

2η
α̂2dtQd, α ∈ [0, α̂[ ,

with δ = −∥y∥(∥y∥ − 1) and β2 = ∥y∥.

Lemma 1.3 For α ∈ Iα = [0, α̂[, we have

Ğ(α) ≤ G(α).
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Proof. From inequality (4) and for α ∈ Iα, we have

α

m∑
i=1

yi −
m∑
i=1

ln (1 + αyi)− α∥y∥2 ≥ −α∥y∥ − α∥y∥2 − ln(1 + α∥y∥).

We have (−αdtQd) > 0 and

1

2η
α2dtQd <

1

2η
α̂2dtQd, ∀α ∈ Iα.

This produces

G(α) = α

n∑
i=1

yi − α∥y∥2 −
n∑

i=1

ln (1 + αyi) +
1

η
(
1

2
α2dtQd− αdtQd)

≥ −α(∥y∥2 − ∥y∥)− ln (1 + α∥y∥) + 1

2η
α̂2dtQd = Ğ(α).

Then

∀α ∈ Iα : G(α) ≥ Ğ(α).

Remark 1.1 We note that

Ğ′′(α) =
∥y∥2

(1− ∥y∥2)2
≥ 0,∀α ∈ [0, α̂[,

hence Ğ is convex, and if it admits a minimum, this minimum is global.

Minimization of the minorant function Ğ is defined and convex on [0, α̂[, then its global
minimum is reached when Ğ′(α) = 0, therefore finding the minimum of the function Ğ
is equivalent to solving the equation Ğ′(α) = 0. The solution of the later is the root of
the equation

α(∥y∥2 − ∥y∥3)− ∥y∥2 = 0. (5)

The root of the equation (5) is

α∗ = − (∥y∥ − 1)
−1 ∈ Iα,

which is the global minimum of the function Ğ.
The following lemma indicates that the interior point xk+1 generated in each iteration

k of the algorithm ensures the decreases of the function qη.

Lemma 1.4 The function qη significantly decrease from the iteration k to the itera-
tion k + 1, that is, if xk and xk+1 are two feasible solutions obtained at the iteration k
and k + 1, respectively, then

qη(xk+1) < qη(xk). (6)

Proof. Let xk and xk+1 be two feasible solutions obtained at the iteration k and
k + 1, respectively, we have

qη(xk+1) ≃ qη(xk) + ⟨∇qη(xk), xk+1 − xk⟩
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and

xk+1 = xk + αkdk, (7)

then

qη(xk+1)− qη(xk) ≃ ⟨∇qη(xk), αkdk⟩
≃ −αk

〈
∇2qη(xk)dk, dk

〉
< 0.

Hence,

qη(xk+1) < qη(xk),

which implies the claimed result.

2 Numerical Tests

We evaluate our algorithm’s efficiency based on our approximate function. We conducted
comparative numerical tests between our new two approximate functions (minorant func-
tion) and Armijo-Goldstein’s line search method.

For this, in this part, we present a comparative numerical tests on different examples
taken from the literature [1–3].

In the below tables, we reported the results obtained by implementing the algorithm
in MATLAB R2013a on I5, 8350 (3.6 GHz) with 8 Go RAM.

We have taken ε = 1.0e− 005.

We use the following designations:

- (itrat) represents the number of iterations necessary to obtain an optimal solution.

- (time) represents the time of computation in seconds (s).

- (stmin) represents the strategy of approximate functions introduced in this paper.

- (LS) represents the classical Armijo-Goldstein line search.

We consider the following quadratic problem:

α = min[q (x) : x ≥ 0, Ax ≥ b],

where q (x) = 1
2x

tQx+ ctx.

2.1 Examples

Example 01: The matrix Q is defined by

Q[i, j] =

 2j − 1 if i > j,
2i− 1 if i < j,
i (i+ 1)− 1 if i = j, i, j = 1, .., n,

A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n
0 otherwise.

c[i] = −1, c[i+m] = 0 and b[i] = 2, ∀i = 1, ..,m,

with n = 2m. We test this example for different values of n. The following table resumes
the obtained results:
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ex(m,n) stmin LS
itrat time itrat time

200× 400 10 5.99012 26 22.52401
300× 600 15 50.03129 35 97.10345
600× 1200 25 71.66481 48 224.32120
1000× 2000 30 122.27613 51 497.01165
1500× 3000 39 320.79313 78 1321.03278

Example 02: We defined the matrix Q by

Q[i, j] =
{ 1

i+j for i, j = 1, .., n,

A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n,
0 otherwise,

c[j] = 2j and b[i] = i2, ∀i = 1, ..,m,

with n = 2m. We test this example for different values of n.
The following table resumes the obtained results:

ex(m,n) stmin LS
itrat time itrat time

200× 400 9 9.01214 16 29.12331
300× 600 11 25.03119 27 84.15001
600× 1200 33 74.06481 55 153.92210
1000× 2000 39 198.07613 68 2213.11431
1500× 3000 58 401.09313 124 3121.11303

Example 03: Let us define the matrix Q by Q[1, 1] = 1,
Q[i, i] = i2 + 1,
Q[i, i− 1] = Q[i− 1, i] = i, i = 2, .., n,

A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n
0 otherwise,

c[j] = j and b[i] = i+1
2 , ∀i = 1, ..,m,

with n = 2m. We test this example for different values of n.
The following table resumes the obtained results:

ex(m,n) stmin LS
itrat time itrat time

200× 400 23 10.22544 38 22.52401
300× 600 32 41.02385 45 88.11235
600× 1200 39 91.10519 66 148.62103
1000× 2000 50 148.47512 70 2004.11257
1500× 3000 75 322.10134 101 2453.92312

Example 04: Let Q be the matrix define by Q[1, 1] = 1,
Q[i, i] = 4, i = 2, ..., n− 1,
Q[i, i− 1] = Q[i− 1, i] = 1, i = 2, .., n,
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A[i, j] =

{
1 if i = j or j = i+m, i = 1, ..,m and j = 1, .., n,
0 i ̸= j or (i+ 1) ̸= j,

c[j] = i+1
2 and b[i] = 4, ∀i = 1, ..,m and j = 1, .., n,

with n = 2m. We test this example for different values of n.
The following table resumes the obtained results:

ex(m,n) stmin LS
itrat time itrat time

200× 400 12 6.22544 21 34.32215
300× 600 25 81.02385 31 172.32550
600× 1200 36 122.10519 53 503.44316
1000× 2000 39 148.47512 67 2033.50062
1500× 3000 55 352.10134 132 3121.11303

Commentary. These experiments demonstrate clearly the impact of our approach on
the numerical behavior of the algorithm, expressed by the reduction of the number of
iterations and computation time. The number of iterations and the computing time
are considerably reduced in the approximate approaches in comparison with the line
search method. Always, in the problems of linear dynamics, we arrive to the problem of
optimization. Then we solve this problem by our approach. This is what we look forward
to in future.

3 Conclusion

In order to solve a quadratic optimization problem, this study provides a logarithmic
penalty method based on new approximate functions (minorant). As anticipated, the
minorant function strategy for computing the displacement step demonstrates its effec-
tiveness by lowering the computational cost when compared to the line search method.
This effectiveness is a result of the nature of the mentioned functions. The numerical
results demonstrate that our strategy reduces the cost of iteration for the quadratic op-
timization compared to the line search method. Proposing some other new majorant [5]
and minorant functions seems to be an interesting topic in the future in the different
class of optimization and we will apply our important results in different problems of
nonlinear dynamics problems.
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Theoretical and Practical Aspects. Mathematics and Applications, Vol. 27. Springer-Verlag,
Berlin, 2003.



570 C. SOULI AND A. LEULMI

[4] S. Chaghoub and D. Benterki. A Logarithmic Barrier Method Based On a New Majorant
Function for Convex Quadratic Programming. IAENG International Journal of Applied
Mathematics 51 (3) (2021).

[5] L. B. Cherif and B. Merikhi. A Penalty Method for Nonlinear Programming. RAIRO-
Operations Res. 53 (2019) 29–38.

[6] J. P. Crouzeix and B. Merikhi. A logarithmic barrier method for semi-definite programming.
R.A.I.R.O-Oper. Res. 42 (2008) 123–139.

[7] J. P. Crouzeix and A. Seeger. New bounds for the extreme values of a finite sample of real
numbers. J. Math. Anal. Appl. 197 (1996) 411–426.

[8] A. Djaout, T. Hamaizia and F. Derouiche. Performance Comparison of Some Two-
Dimensional Chaotic Maps for Global Optimization. Nonlinear Dynamics and Systems
Theory 22 (2) (2022) 144–154.

[9] T. Herlambang, A.Y.P. Asih, D. Rahmalia, D. Adzkiya and N. Aini. The Effects of Pesticide
as Optimal Control of Agriculture Pest Growth Dynamical Model. Nonlinear Dynamics and
Systems Theory 22 (3) (2022) 281–290.

[10] Y. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convex programming.
Studies in Applied Mathematics, 13, SIAM, Philadelphia, 1994.
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