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1 Introduction

In the last few centuries, non-integer order derivatives were widely expanded as a useful
theoretical concept and numerous books were devoted to this field, see monographs [21,
24, 26]. Due to their nonlocal nature, fractional derivatives play a significant role in
describing physical phenomena with memory effect and hereditary processes. Hence,
they give better accuracy when compared to classical derivatives, the evidence of which
has been provided for instance in [3] by virtue of numerical simulations. Consequently,
more study has been conducted on new classes of fractional differential equations. In
particular, fractional differential equations with time delay were capable to attract the
attention of many researchers over the last few years, see [1,4,6,7,9], and the references
therein.

Very recently, sequential fractional differential equations have been the subject of
many investigations. Sequential fractional derivatives were introduced for the first time
by Miller and Ross in their book [24]. As a matter of fact, they appear often in
physics, where the substitution of formulas containing derivatives for one another is
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very common. Many recent works are devoted to sequential boundary value problems
of Caputo, Hadamard, mixed, Caputo-Hadamard, and Hilfer type fractional derivatives,
see [27], [23], [5, 13, 14, 19, 20], [2] and [25], respectively. In the following interesting pa-
pers, the authors established existence results for fractional differential equations, these
results are pertinent to the topic of this work.

In [12], the following Riemann-Liouville sequential fractional differential equation is
studied:

Dυ
0+[(t− a)rDϱ

0+x(t)] = f(t, x), t ∈ (0, b].

In [11], the authors studied a general Basset-Boussinesq-Oseen fractional equation
and proved the global existence, uniqueness and regularity of solutions in a partially
ordered Banach space for the following problem:

Dυ
0+(D

ϱ
0+ +A)x(t) +Bx(t) = f(t), 0 < t ≤ 1, 0 < υ, ϱ ≤ 1,

x(0) = a,

Dϱ
0+x(0) = b.

Nonetheless, the analysis of fractional sequential initial value problems is still not
sufficiently enriched. To the best of our knowledge, sequential fractional differential
equations involving the Riemann-Liouville fractional derivatives associated with infinite
delay have not been considered yet. The primary focus of this paper is the investigation
of sufficient criteria for nonlinearity that ensure the existence and uniqueness of solutions
for the following initial value problem:

Dϱ
0+D

υ
0+y(t) = f(t, yt), t ∈ (0, b],

y(t) = χ(t), t ∈ (−∞, 0],

Dυ
0+y(0) = 0,

(1)

where 0 < υ, ϱ < 1, f : [0, b]× B → R, χ ∈ B, χ(0) = 0, xt(θ) = x(t+ θ), θ ≤ 0.
The phase space B is a semi-normed linear space of functions mapping (−∞, 0] into R
and characterized by the following axioms.
If y : (−∞, b] → R and y0 ∈ B, then for any t ∈ [0, b],

1. yt ∈ B and we have

∥yt∥B ≤ K(t) sup
s∈[0,t]

|y(s)|+M(t)∥y0∥B,

|y(t)| ≤ H∥yt∥B,

where H ≥ 0 is a constant, K : [0, b] → [0,∞[ is continuous andM : [0,∞[→ [0,∞[
is locally bounded. H,K,M are independent of y(.).

2. yt is a B−valued function on [0, b].

3. B is complete.

For more details on the theory of delay differential equations, we refer the interested
reader to [15,17,22]. The main motivation for our paper is to continue the quest of broad-
ening the study of fractional operators for much larger classes of differential equations.
We emphasize that our results are novel in the aforementioned context.
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The rest of this paper is structured as follows. In Section 2, we recall some prelim-
inary results which are relevant to our work. Section 3 is devoted to the existence and
uniqueness results. In Section 4, in order to enhance the physical meaning of our main
outcomes, we study the stability of the problem under consideration. We exhibit an
example in Section 5 to illustrate the applicability of our results. Finally, a conclusion is
given.

2 Preliminaries

In this section, we recall the basic definitions and properties needed in our proofs.

Definition 2.1 [26] If f ∈ L1(a, b) and υ > 0, then the left-sided Riemann-Liouville
fractional integral is defined by

Iυa+f(x) =
1

Γ(υ)

∫ x

a

f(t)

(x− t)1−υ
dt, x > a.

Lemma 2.1 [21] The operator Iυa+ maps continuous functions into continuous func-
tions.

Definition 2.2 [26] Let 0 < υ < 1. The left-sided Riemann-Liouville fractional
derivative is defined by

Dυ
a+f(x) =

1

Γ(1− υ)

d

dt

∫ x

a

f(t)

(x− t)υ
dt, x > a.

Moreover, if I1−υf ∈ AC[a, b], then Dυ
a+f exists almost everywhere on [a, b].

The following lemma gives some properties of the composition of the Riemann-
Liouville fractional integral and derivative.

Lemma 2.2 [21] Let υ, ϱ > 0 and f ∈ L1(a, b), then

Iυa+I
ϱ
a+f = Iυ+ϱ

a+ f (2)

is satisfied at almost every point x ∈ [a, b].
Let υ > 0 and f ∈ L1(a, b). Then

Dυ
a+Iυa+f(x) = f(x) (3)

at almost every x ∈ [a, b].
Let 0 < υ < 1, f ∈ L1(a, b) and I1−υ

a+ f ∈ AC[a, b]. Then

Iυa+Dυ
a+f(x) = f(x)−

I1−υ
a+ f(a)

Γ(υ)
(x− a)υ−1 (4)

holds almost everywhere on [a, b].

Let a = 0. In the following, we denote Iυ0+ by Iυ, and Dυ
0+ by Dυ, for simplicity.
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Proposition 2.1 Let 0 < υ < 1, F : [0, b] → R be a continuous function. Then y is
a solution of the IVP

Dυy(t) = F (t), t ∈ (0, b],

y(0) = 0
(5)

if and only if y ∈ C[0, b] is a solution of the integral equation

y(t) =
1

Γ(υ)

∫ t

0

(t− s)υ−1F (s)ds. (6)

Proof. Let y ∈ C[0, b] be such that Dυy = F, i.e., DI1−υy = F. Integrating, we get
I1−υy(t) = I1−υy(0) + I1F so that I1−υy is absolutely continuous. Apply operator Iυ to
the differential equation in (5), then by virtue of (4), we obtain y(t) = c

Γ(υ) t
υ−1+ IυF (t).

Employing the initial condition, we find c = 0. Hence, (6) holds.
Conversely, if y = IυF, then, taking into account Lemma 2.1, we see that y is contin-

uous. Moreover, y(0) = IυF (0) = 0 because F is continuous. Then, applying operator
I1−υ and (2), we obtain I1−υy = I1F. Deriving, we get Dυy = F .

3 Existence Results

In this section, we give an existence and uniqueness result based upon Banach’s fixed
point theorem. Moreover, we retrieve an existence result by means of the nonlinear
alternative of Leray-Schauder for a larger class of functions f(t, yt).

The following space will be considered hereafter. Let Ω be the Banach space of all
continuous functions y : (−∞, b] → R such that y0 ∈ B and y∣∣[0,b] is continuous.

Definition 3.1 A function y ∈ Ω is said to be a solution of (1) if y satisfies the frac-
tional differential equation DϱDυy(t) = f(t, yt) on (0, b], the initial condition Dυy(0) = 0,
and y(t) = χ(t) on (−∞, 0].

Lemma 3.1 Let F (t) = f(t, yt) ∈ C[0, b]. Then y is a solution of the IVP

DϱDυy(t) = f(t, yt), t ∈ (0, b],

Dυy(0) = 0,

y(0) = 0

(7)

if and only if y is a solution of the fractional integral equation

y(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, ys)ds.

Proof. Since F is continuous, applying Proposition 2.1, we obtain that

Dυy(t) =
1

Γ(ϱ)

∫ t

0

(t− s)ϱ−1f(s, ys)ds,

y(0) = 0.
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IϱF is continuous. Hence, using Proposition 2.1 again, we get

y(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, ys)ds,

y(0) = 0.

Similarly, the converse is easily shown.

Theorem 3.1 Let f : [0, b]×B→ R be a continuous function. Suppose that there
exists L > 0 such that

|f(t, u)− f(t, v)| ≤ L∥u− v∥B, t ∈ [0, b], for every u, v ∈ B.

Then the IVP (1) has a unique solution on [0, b] provided that bυ+ϱKbL
Γ(υ+ϱ+1) < 1, where

Kb = sup
t∈[0,b]

|k(t)|.

Proof. Using the previous lemma, we show that solving the initial value problem is
equivalent to proving that the operator S : Ω → Ω has a unique fixed point, where

(Sy)(t) =

{
χ(t), t ∈ (−∞, 0],

1
Γ(υ+ϱ)

∫ t

0
(t− s)υ+ϱ−1f(s, ys)ds, t ∈ [0, b].

(8)

Consider the following decomposition.
Let x(.) : (−∞, b] → R be the function defined by

x(t) =

{
0, t ∈ [0, b],

χ(t), t ∈ (−∞, 0].
(9)

Then take z(.) : (0, b] → R given by z = y∣∣[0,b], denote by z the function defined by

z(t) =

{
z(t), t ∈ [0, b],

0, t ∈ (−∞, 0].
(10)

Thus, y(t) = z(t) + x(t), t ∈ [0, b], then yt = zt + xt, t ∈ [0, b].
In addition, set C0 = {z ∈ C([0, b]) : z0 = 0} equipped with the semi-norm in C0 defined
by ∥z∥b = sup

t∈[0,b]

|z(t)|. Consider now the operator T : C0 → C0 given by

(Tz)(t) =

{
0, if t ∈ (−∞, 0],

1
Γ(υ+ϱ)

∫ t

0
(t− s)υ+ϱ−1f(τ, zs + xs)ds, if t ∈ [0, b].

(11)

Then the operator S has a fixed point is equivalent to T has a fixed point.
Indeed, T is a contraction mapping.
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Consider z, z∗ ∈ C0. Then we have for every t ∈ [0, b],

|(Tz)(t)− (Tz∗)(t)|

≤ 1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1|f(s, zs + xs)− f(s, z∗s + xs)|ds

≤ 1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1L∥zs − z∗s∥Bds

≤ LKb

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1 sup
τ∈[0,s]

|z(τ)− z∗(τ)|ds

≤ LKb∥z − z∗∥b
Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1ds ≤ LKbb
υ+ϱ

Γ(υ + ϱ+ 1)
∥z − z∗∥b.

Therefore, T is a contraction mapping. Hence, applying Banach’s fixed point theorem,
we see that T has a unique fixed point.

Now, we give an existence result based upon the nonlinear alternative of Leray-
Schauder.

Lemma 3.2 [16] Let v : [0, b] → [0,∞) be a real function and w(.) be a nonnegative,
locally integrable function on [0, b] and there exist constants a > 0 and 0 < υ < 1 such
that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)υ
ds.

Then there exists a constant K = K(υ) such that v(t) ≤ w(t)+Ka
∫ t

0
w(s)

(t−s)υ ds, t ∈ [0, b].

Theorem 3.2 Under the following assumptions:

1. f is a continuous function,

2. there exists p, q ∈ C([0, b],R+) such that

|f(t, u)| ≤ p(t) + q(t)∥u∥B, t ∈ [0, b], u ∈ B,

the IVP (1) has at least one solution on [0, b].

Proof. Let T : C0 → C0 be defined as in (11). We will show that T is a continuous
and a completely continuous operator.
Step 1: T is continuous.
Let (zn) be a sequence in C0 such that zn → z in C0. Then

|(Tzn)(t)− (Tz)(t)|

≤ 1

Γ(υ + ϱ)

∫ b

0

(t− s)υ+ϱ−1|f(s, zns
+ xs)− f(s, zs + xs)|ds

≤ bυ+ϱ

Γ(υ + ϱ+ 1)
∥f(., zn(.)

+ x(.))− f(., z(.) + x(.))∥∞,
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which tends to 0 as n→ ∞.
Step 2: T maps bounded sets into bounded sets in C0.

Let z ∈ Bη := {z ∈ C0 : ∥z∥b ≤ η}, since f is a continuous function, we have for each
t ∈ [0, b],

|(Tz)(t)| ≤ 1

Γ(υ + ϱ)

∫ b

0

(t− s)υ+ϱ−1(p(s) + q(s)∥zs + xs∥B)ds

≤ bυ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +

bυ+ϱ

Γ(υ + 1)Γ(ϱ+ 1)
∥q∥∞η∗ =: l,

where ∥zs + xs∥B ≤ ∥zs∥B + ∥xs∥B ≤ Kbη +Mb∥χ∥B := η∗. Hence, ∥Tz∥∞ ≤ l.
Step 3: T maps bounded sets into equicontinuous sets of C0.
Let t1, t2 ∈ [0, b], t1 < t2 and let Bη be a bounded set of C0 as in Step 2. Let z ∈ Bη.

|(Tz)(t2)− (Tz)(t1)|

≤ 1

Γ(υ + ϱ)
(

∫ t1

0

|(t2 − s)υ+ϱ−1 − (t1 − s)υ+ϱ−1||f(s, zs + xs)|ds

+

∫ t2

t1

|(t2 − s)υ+ϱ−1f(s, zs + xs)|ds)

≤ ∥p∥∞ + ∥q∥∞η∗
Γ(υ + ϱ)

∫ t1

0

|(t2 − s)υ+ϱ−1 − (t1 − s)υ+ϱ−1|ds

+
∥p∥∞ + ∥q∥∞η∗

Γ(υ + ϱ)

∫ t2

t1

(t2 − s)υ+ϱ−1ds.

As t1 → t2, the right-hand side of the above inequality tends to zero. By virtue of Steps
1-3, along with the Arzelà-Ascoli theorem, we infer that T : C0 → C0 is continuous and
completely continuous.
Step 4: A priori bounds.
It is sufficient to show that there exists an open set U ⊆ C0 with z ̸= λTz, for λ ∈ (0, 1)
and z ∈ ∂U.
Take z ∈ C0 and z = λT(z) for some 0 < λ < 1, then for each t ∈ [0, b],

|z(t)| ≤ 1

Γ(υ + ϱ)

∫ t

0

(t− τ)υ+ϱ−1(p(τ) + q(τ)∥zτ + xτ∥B)dτ

≤ bυ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +

1

Γ(υ + ϱ)

∫ t

0

(t− τ)υ+ϱ−1q(τ)∥zτ + xτ∥Bdτ.

Then ∥zτ + xτ∥B ≤ Kb sup
s∈[0,τ ]

|z(s)|+Mb∥χ∥B := w(τ), which implies that

|z(t)| ≤ 1

Γ(υ + ϱ)

∫ t

0

(t− τ)υ+ϱ−1q(τ)w(τ)dτ +
bυ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞, t ∈ [0, b].

By inserting the above in w, we get for each t ∈ [0, b],

w(t) ≤Mb∥χ∥B +
Kbb

υ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +

Kb∥q∥∞
Γ(υ + ϱ)

∫ t

0

(t− τ)υ−1(t− τ)ϱw(τ)dτ.
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To this end, applying Lemma 3.2 yields that there exists a constant K = K(υ) such that
for each t ∈ [0, b],

|w(t)| ≤Mb∥χ∥B +
Kbb

υ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +K(υ)

Kb∥q∥∞bϱ

Γ(υ + ϱ)

∫ t

0

(t− τ)υ−1R dτ,

where

R =Mb∥χ∥B +
Kbb

υ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞.

Hence,

∥w∥∞ ≤ R+R
K(υ)Kbb

υ+ϱ

υΓ(υ + ϱ)
∥q∥∞ := r.

Then ∥z∥∞ ≤ r∥Iυ+ϱq∥∞ + bυ+ϱ

Γ(υ+ϱ+1)∥p∥∞ := r∗.

Set U = {z ∈ C0 : ∥z∥b < r∗ + 1}. T : U → C0 is continuous and completely continuous.
From the choice of U, there is no z ∈ ∂U such that z = λT(z), for λ ∈ (0, 1).
Consequently, the nonlinear alternative of Leray-Schauder is applicable. It follows that
T has a fixed point z in U .

4 Stability

In this section, we provide sufficient conditions that ensure the Hyers-Ulam stability of
our problem.

Definition 4.1 Problem (1) is said to be Hyers-Ulam stable if there exists a constant
λ > 0 such that for each ϵ > 0 and for each u ∈ Ω,

|DϱDυu− f(t, ut)| ≤ ϵ, t ∈ [0, b],

u(t) = χ(t), t ∈ (−∞, 0],
(12)

there exists a solution v ∈ Ω of (1) such that |u(t)− v(t)| ≤ λϵ, t ∈ [0, b].

Theorem 4.1 Let f : [0, b]× → R be continuous and satisfy the Lipschitz condition
with respect to the second variable, i.e., there exists L > 0 such that

|f(t, u)− f(t, v)| ≤ L∥u− v∥B, t ∈ [0, b] u, v ∈ B.

Then (1) is Hyers-Ulam stable provided that bυ+ϱKbL
Γ(υ+ϱ+1) < 1.

Proof. Since f satisfies the assumptions of Theorem 3.1 , the solution of (1) can be
written as

v(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, vs)ds.

Now, let u be a solution to (12), then there exists a function γ such that |γ(t)| ≤ ϵ and

DϱDυu = f(t, ut) + γ(t).

Proceeding as in Section 2, we find

u(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, us)ds+
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1γ(s)ds,
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which gives |u(t)− 1
Γ(υ+ϱ)

∫ t

0
(t− s)υ+ϱ−1f(s, us)ds| ≤ ϵ

Γ(υ+ϱ+1)b
υ+ϱ := Λϵ so that

|u(t)− v(t)| ≤ |u(t)− 1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, us)ds|

+
1

Γ(υ + ϱ)
|
∫ t

0

(t− s)υ+ϱ−1f(s, us)−
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, vs)ds|

≤ Λϵ+
L

Γ(υ + ϱ)

∫ t

0

(t− s)υ−1(t− s)ϱ∥us − vs∥Bds

≤ Λϵ+
LbϱKb

Γ(υ + ϱ)

∫ t

0

(t− s)υ−1 sup
τ∈[0,s]

|u(τ)− v(τ)|ds.

(13)

Set ψ(t) = sup
τ∈[0,t]

|u(τ) − v(τ)|, so ψ(t) ≤ Λϵ + LbϱKb

Γ(υ+ϱ)

∫ t

0
(t − s)υ−1ψ(s)ds. Applying the

Gronwall lemma, we find

ψ(t) ≤ Λϵ+
LbϱKb

Γ(υ + ϱ)

∫ t

0

(t− s)υ−1Λϵds

≤ Λϵ+K
LKb

υ

bυ+ϱ

Γ(υ + ϱ)
Λϵ = Λ(1 +K

LKb

υ

bυ+ϱ

Γ(υ + ϱ)
)ϵ.

(14)

5 Example

In this section, we provide a numerical example to show the viability of our outcomes.
Take υ = ϱ = 1

2 , b = 1, γ > 0. The nonlinearity f : [0, 1]× Bγ → R is given by

f(t, x) = e−γt(
1√
t+ 4

x2 + 2|x|
1 + |x|

+ sin(t))

and χ ∈ Bγ which is defined by

Bγ = {χ : C((−∞, 0],R) : lim
s→−∞

eγs|χ(s)|exists in R}

and endowed with the norm ∥χ∥Bγ
= sup

s∈(−∞,0]

eγs|χ(s)|. It is easily verified that Bγ is an

admissible phase space, i.e., it is a Banach space and it fulfills the phase space axioms
with K(t) = 1,M(t) = e−γt and H = 1.
Moreover, for any t ∈ [0, 1], x, y ∈ Bγ , we have

|f(t, x)− f(t, y)| = e−γt 1√
t+ 4

|x
2 + 2|x|
1 + |x|

− y2 + 2|y|
1 + |y|

|

≤ e−γt 1√
t+ 4

| x2 − y2

(1 + |x|)(1 + |y|)
|

≤ e−γt 1√
t+ 4

|x− y| ≤ 1

2
∥x− y∥Bγ

so that f satisfies the Lipschitz condition with L = 1
2 and bυ+ϱKbL

Γ(υ+ϱ+1) =
1
4 < 1, so the IVP

has exactly one solution by virtue of Theorem 3.1. Also, the hypothesis from Theorem
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4.1 is satisfied, and therefore the IVP is shown to be Hyers-Ulam stable.
Furthermore, for any t ∈ [0, 1] and x ∈ Bγ , we have

|f(t, x)| ≤ e−γt

√
t+ 4

2 + |x|
1 + |x|

|x|+ e−γt sin(t) ≤ p(t)∥x∥Bγ
+ q(t),

where p(t) = 2√
t+4

and q(t) = e−γt sin(t). We see that f satisfies the conditions of

Theorem 3.2. Thus, the existence of solutions follows immediately.

6 Conclusion

In this work, we gave sufficient conditions for the existence, uniqueness and stability of
solutions of nonlinear sequential IVPs with delay. The novelty of our findings resides in
the usefulness of our existence results in proving the controllability of a more generalized
system by the aid of semigroup techniques. Namely, when we extend the differential
equation to a fractional differential evolution equation with control, i.e., when the non-
linear part takes the form Ax(t)+Bu(t)+f(t, xt), where x takes values in a Banach space
X, A is a generator of a strongly continuous semigroup of bounded linear operators, B
is a bounded linear operator and the control function u is given in L2([0, b], U), where U
is a Banach space. This will make the subject of a future publication.
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