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Abstract: Developing an algorithm for ensuring a feasible gait of Hexapod Walking
Robots (HWRs) poses the challenge of enabling smooth locomotion on uneven terrain,
utilizing the mobility of its six legs that alternately make contact with the ground. To
this end, a kinematic-based approach is applied that individually takes into account
the movements of each leg, while maintaining compatibility with the body’s motion
through a non-symmetrical tripod gait. Accordingly, the forward kinematics of the
robot is established using the Denavit-Hartenberg parameterization and its inverse
kinematics is derived using Paul’s method. Then, the uneven terrain is represented by
elevation differences in a 3D curve trajectory. After that, an algorithm is proposed
to ensure the adaptability of the robot’s legs with respect to the terrain’s shape,
namely, the algorithm allows each leg to follow its own trajectory independently.
To validate the proposed approach, 3D simulations are conducted using MATLAB
software, demonstrating the accuracy and reliability of the purely kinematic approach.
The results show that the algorithm enables the HWR to adapt its walking to irregular
terrain in various general cases.
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1 Introduction

Hexapod Walking Robots (HWRs) are mechanical vehicles that emulate the locomotion
of insects, characterized by their mobility, maneuverability, adaptability, flexibility, and
stability in natural terrains. These robots are inspired by the biological features of insects
and utilize six legs for walking, enabling them to navigate various terrains with efficiency
and versatility [1,2]. In legged locomotion, HWRs are favored by static stability gait due
to having three legs in contact with the ground all the time, flexibility where they move,
fault tolerant locomotion, possibility to manipulate objects using their legs as arms.

In addition to the advantages mentioned earlier, Hexapod Walking Robots (HWRs)
have superior terrain adaptation capabilities compared to wheeled robots. By utilizing
discrete contacts with the ground, HWRs can bypass undesirable footholds, avoid obsta-
cles, select optimal terrain contacts, and adapt their walking posture to navigate through
confined spaces. This is made possible due to their high degrees of freedom and flexi-
bility, which make them the ideal solution for locomotion on rough and uneven terrains.
HWRs have a unique advantage in navigating complex environments and are well-suited
for applications that require versatile and agile mobility in challenging terrains [3–5].
HWRs can be used for intervention in hostile environments like humanitarian demining
operations, disaster recovery missions, nuclear plant maintenance, operations in volcanic
sites, underwater searching and space exploration. Beyond this type of applications,
HWRs can also be used in a wide variety of service tasks such as forest harvesting and
service robots [6–9].

In current realizations, hexapod robots are very far from the complexity of real insects
in terms of the number of degrees of freedom, velocity and dimensions. Researchers are
only interested in extracting the essential characteristics of the insects’ walking system
and implementing them in real robots. A gait can be described as a sequence of leg
motions coordinated with a sequence of body motions for transporting the robot’s body
[10]. The choice of the gait’s mode is the first essential step to guarantee stability and
efficiency of the hexapod walking robot motion.

Most studies used for hexapod locomotion the common and basic gait called a tripod
gait where the body is propelled continuously by the cyclic sequencing of the movements
of three legs which were in the air and come to rest on the ground while the other three
release the contact there and return after half a period (legs coordination). Each leg
performs a walking step in two phases [11]: a support phase during which the foot of the
leg remains in contact with the ground, its active joints cause the robot’s body to move
forward horizontally; and a swing phase where the end of the leg follows a trajectory
in the air and then comes back into contact with the ground to start a new step. This
tripod gait of the hexapod can achieve fast movement with stability.

In terms of the hexapod robot’s gait generation, we note that the legged locomo-
tion of the HWRs is performed according to two major types of approaches: analytical
approaches and bio-inspired approaches. Since it does not require complex geometrical
calculation, the majority of studies are made according to the bio-inspired approaches
to generate symmetrical gaits and reproduce different type of gaits for a hexapod robot.
The most common approach for the design of a bio-inspired architecture consists of a
Central Pattern Generator (CPG) network with six coupled nonlinear oscillators [12]. By
controlling the durations of the ascending and descending phase of the limb trajectory,
they control the durations of the swing and stance step phases, respectively. This network
produces synchronized rhythms that give the correct pattern for locomotion [13,14].
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As regards the analytical approaches, we note firstly that the existing works regard-
ing gait generation in flat terrain, only deal with a single X direction and describe the
kinematic model by using a matrix approach and propose different gaits (tripod gait,
quadrangular gait, and pentagonal gait) where the sequences of coordination legs ac-
cording to different rhythms are converted by the Inverse Kinematics Model (IKM) and
preloaded on a computer which sends commands to the servo controller and the hexapod
executes corresponding instructions [10,15–17]. The models mentioned above only work
on flat ground and constitute a compulsory phase to begin with, but in reality, it is
necessary to take into account, during the modeling, the nature of the real terrain which
is uneven and which presents irregularities.

A synthesis of the works quoted above allowed us to notice that the generation of
trajectories of HWRs on an uneven ground which presents irregularities in terms of
variation of altitude is an extension of walking on flat ground, which is a reduced case of
walking. For this, we are motivated by the study of the general case of real walking which
can model at the same time and in an exact mathematical way the HWRs with all its
24 degrees of freedom in walking interaction on a rough terrain of arbitrary shape which
can be modeled by a 3D curve without any restriction either on the model of the robot
or on the terrain. The rest of the paper is structured as follows. Section 2 presents the
kinematic modeling of the HWR. The proposed walking algorithm is studied in detail
in Section 3. Section 4 illustrates the results obtained using this approach. Finally,
conclusions are made in Section 5.

2 HWR Model

A hexapod walking robot consists of a rectangular body to which six identical legs are
articulately attached, see Figure 1. Each leg of the robot has three degrees of freedom
allowing the robot to move its legs dexterously according to the given position within its
workspace.

Figure 1: (Left) CAD Model of the HWRs with six legs; (Right) Attachment of the reference
frames for the robot’s five legs as a model.

2.1 Forward kinematic model of the hexapad robot

The forward kinematic model (FKM) [18–20] for a hexapod robot resides in finding
the location of robot body with respect to robot’s legs joint variables according to the
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coordinate frames established in Figure 1 (right). To model the HWRs having a body
of length 2a and a width 2b, the leg number five is chosen as the leg-model [21]. It is
made up of three segments of respective lengths l1, l2, l3 and three rotoid articulations
of angle θ1, θ2 and θ3. The D-H parameters of the leg-model are shown in equation
(6). The FKM of a leg relative to the world frame is calculated by the product of the
homogeneous transformation matrices according to equation (1), namely it provides the
positions of the contact points of each leg according to the world frame.

WT4,j =
WTb

bT0,j
0,jT1,j

1,jT2,j
2,jT3,j

3,jT4,j (1)

with j = 1, 6 being the legs’ index.
The matrix situation of the robot’s base can be expressed as follows:

WTb =
WTransb

WRotb(Zψ, Yθ, Xφ) (2)

with

0Transb =


1 0 0 xb
0 1 0 yb
0 0 1 zb
0 0 0 1

 . (3)

The matrix of articulations points of each leg can be expressed by the following:

bT0,j =


1 0 0 x0,j

0 1 0 y0,j
0 0 1 z0,j
0 0 0 1

 , (4)

x0,j =
[
−a −a −a a a a

]
,

y0,j =
[
b b b −b − b − b

]
,

z0,j =
[
0 0 0 0 0 0

]
.

(5)

The parameters table of Denavit-Hertberg corresponding to the legj is

DHj =


0 0 θ1,j −l1

−π/2 0 θ2,j 0
0 l2,j θ3,j 0
0 l3,j 0 0

 . (6)

The homogenous matrix of Denavit-Hertberg can be expressed as follows:

j−1Tj =


Cθj −Sθj 0 dj

CαjSθj CαjCθj −Sαj −rjSαj
SαjSθj SαjCθj Cαj rjCαj

0 0 0 1


with C(.) = Cos(.) , S(.) = Sin(.).

(7)

Four matrices of the leg-model are worth, respectively,

0T1 =


C1 −S1 0 0
S1 C1 0 0
0 0 1 −l1
0 0 0 1

 , (8)
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1T2 =


C2 −S2 0 0
0 0 1 0

−S2 −C2 0 0
0 0 0 1

 , (9)

2T3 =


C3 −S3 0 l2
S3 C3 0 0
0 0 1 0
0 0 0 1

 , (10)

3T4 =


1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1

 . (11)

This yields the FKM of leg model 5 ( Figure 2).

Figure 2: FKM of the leg model 5. Figure 3: HWR’s FKM.

After calculating the FKM of the leg-model, the FKM of the entire robot consists in
distributing six legs around its body as it is shown in Figure 3.

2.2 Inverse kinematic model of hexapod robot

The inverse kinematic model (IKM) of the HWR’s leg is firstly calculated according to
the body frame Rb. As previously mentioned, the FKM of the robot can be expressed
by the following equation:

U0 =


sx nx ax PX
sy ny ay PY
sz nz az PZ
0 0 0 1

 = bT0,j
0,jT1,j

1,jT2,j
2,jT3,j

3,jT4,j . (12)

Paul’s method consists in multiplying the equation (12) by 1,jTb which is the inverse of
bT1,j :

1,jTbU0 = 1,jT2,j
2,jT3,j

3,jT4,j , j = 1, 6. (13)

By identifying the elements of the fourth column of the product on the left-hand side of
equation (13) with those of the fourth column of the product on the right, we will have

S1 =PY − y0,j , S1 = PX − x0,j ,

θ1 = ATAN2(S1, C1), θ
′

1 = θ1 + π.
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The second multiplication yields

X = (PX − x0,j)C1 + (PY − y0,j)S1 ,

Y = PZ + l1 , Z1 = −l2 , Z2 = 0 , W = l3,

B1 = −2(XZ2 + Y Z1) , B2 = 2(XZ1− Y Z2),

B3 = W 2 −X2 − Y 2 − Z12 − Z22,

S2 = (B1B3 +B2(B12 +B22 −B32)
0.5

)/(B12 +B22),

C2 = (B2B3−B1(B12 +B22 −B32)
0.5

)/(B12 +B22),

θ2 = ATAN2 (S2, C2) ,

S3 = (−XS2− Y C2 + Z2)/W,

C3 = (XC2− Y S2 + Z1)/W,

θ3 = ATAN2(S3, C3) .

The hexapod robot simulation via MATLAB is executed to verify the efficiency of the
derived IKM with different curbs followed by the robot leg points of contact. As it is
shown in Figures 4, 5, 6, 7, the robot’s leg follows spatial straight line, circle-like shape,
cycloid and spiral trajectories, respectively.

Figure 4: The robot’s leg fol-
lows spatial linear trajectory.

Figure 5: The robot’s leg fol-
lows circular trajectory.

Figure 6: The robot’s leg fol-
lows cycloid trajectory.

Figure 7: The robot’s leg fol-
lows spiral trajectory.

Figure 8: Simultaneous
movement of the leg’s point of
contact (linear) and body of
the robot (circular).

Figure 9: Simultaneous
movement of the leg’s point of
contact (spiral) and body of
the robot (linear-spatial).
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Figure 10: Linear trajectory
along X.

Figure 11: Linear trajectory
along Y.

Figure 12: Linear trajectory
along Z.

Additionally, the movement of robot’s leg point of contact can be performed simul-
taneously with that of the body as is depicted in Figures 8, 9.

Finally, we validate the established IKM of the whole robot, namely the robot’s
body can perform six degrees of freedom (xb, yb, zb, Zψ, Yθ, Xφ), meanwhile its legs can
further move according to any given trajectory belonging to the robot’s workspace as it
is graphically represented in Figures 10, 11, 12, 13, 14, 15.

Figure 13: HWR’s body ro-
tation ϕ around X

Figure 14: HWR’s body ro-
tation θ around Y

Figure 15: HWR’s body ro-
tation ψ around Z

.
In conclusion, for the HWR’s IKM, an example is given in Figure 16 which represents

the eighteen values of the angles (θ1, θ2, θ3) of the HWR’s six legs corresponding to the
posture of Figure 16 previously presented.

Figure 16: Values of angles (θ1, θ2, θ3) which correspond to the posture of Figure 15.
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3 Proposed Walking Algorithm of a HWR on Irregular Terrain

The generation of the walk of an HWR on irregular terrain must take into account,
in addition to the modeling of the robot, the irregular shape of the terrain which is
manifested by differences in altitudes of the contact points with the ground. These
differences express the variation of the Z component of these contact points which is zero
for a flat terrain and different from zero for irregular terrain. To achieve this objective
of walking on irregular terrain, we propose in this paper a general algorithm that works
according to the following flowchart.

• Step 1: input: Geometrical parameters of the HWR (a=180; b=120; l1=50;
l2=100; l3=100).

• Step 2: input: Any 3D terrain composed of 6 trajectories, each comprising nsteps.

• Step 3: Model of irregular terrain and extraction of its parameters.

✓ for each step k (k=1: nsteps) do:

✓ for t=0:n ( n refers to the step’s period)

∗ if t≤n/2 do

– for each legj (j = 1 : 6) do:

• Step 4: Adaptation of the Normal Cycloidj (NC)j (legj : j = 1, 3, 5) to its irregular
terrainj .

• Step 5: Adaptation of legj to follow the Adapted Cycloidj (AC)j .

• Step 6: Synchronization of the movements of six legs (tripod gait: 135swing and
246stanse).

• Step 7: Adaptation of the movement of the HWR’s body to the movements of its
six legs.

• Step 8: IKM of legj .

• Step 9: FKM of legj .

• Step 10: End for each legj .

• if t>=n/2: do

• Step 11: Actualization of body position.

• for each legj do

• Step 12: Adaptation of the Normal Cycloidj (NC)j (legj : j = 2, 4, 6) to its irregular
terrainj .

• Step 13: Adaptation of legj to follow the Adapted Cycloidj (AC)j .

• Step 14: Synchronization of the movements of six legs (tripod gait: 246swing and
135stanse).
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• Step 15: Adaptation of the movement of the body of the HWR to the movements
of its six legs.

• Step 16: IKM of legj .

• Step 17: FKM of legj .

• End for each legj .

• End for t=0:n.

• End for each step k.

It is noteworthy to say that the aforementioned algorithm’s steps for HWR walking
are elaborately detailed in the following sections.

3.1 Model of the irregular terrain and extraction of its parameters

In general, the walking of a hexapod walking robot (HWR) may not be symmetrical, and
each leg may follow a different trajectory compared to the others. To account for this, we
define the model of the irregular terrain for each leg as a set of contact points belonging
to a 3D curve. As a result, the irregular terrain can be represented by six curves, within
the reachable domain of the robot, derived from the shape of the reference terrain, which
is defined by 

xT ,

yT = fx (xT ) ,

zT = fxy (xT,yT ) ,

(14)

with

– xT : Evolution of the terrain along the X axis with a step length and a number of
nstep;

– fx : A function of xT representing the evolution of the terrain along the Y axis;

– fxy : A function of xT and yT denoting the variation in altitude of different points
of the terrain.

The position of six legs relative to the reference is given by the matrix TR1 as

TR1 =


xT + a yT + (b+ l2) zT

xT − pas/2 yT + (b+ l2) zT
xT − a yT + (b+ l2) zT

xT − a− pas/2 yT − (b+ l2) zT
xT yT − (b+ l2) zT

xT + a− pas/2 yT − (b+ l2) zT



T

. (15)
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Then, we distinguish between these six identical trajectories by introducing the following
coefficients ki,j :

TRk =


k11xT + a k21yT + (b+ l2) k31zT

k12xT + pas/2 k22yT + (b+ l2) k32zT
k13xT − a k23yT + (b+ l2) k33zT

k14xT − a− pas/2 k24yT − (b+ l2) k34zT
k15xT k25yT − (b+ l2) k35zT

k16xT + a− pas/2 k26xT − (b+ l2) k36zT



T

. (16)

Remarkably, TRk can describe any type of irregular terrains that the HWR can track
according to the given values of the coefficients kij :

• kij = 1 for a reference terrain;

• k3j = 0 for flat terrain;

• Remaining case for any uneven terrain.

Figure 17 illustrates 6 independent trajectories corresponding to six legs of the HWR:

Figure 17: 6 curves representing 6 trajectories to follow.

For each terrainj composed of nsteps that the legj must follow, we calculate the
geometric parameters of two contact points PO (xT0j , yT0j , zT0j) of the beginning and
P1 ( xT1j , yT1j , zT1j) of the end of a walking step (see Figure 18) according to

Ψj = − atan 2 ((yT1j − yT0j) , (xT1j − xT0j)) , (17)

lpj =

√
(xT1j − xT0j)

2
+ (yT1j − yT0j)

2
, (18)

Θj = atan 2
((
zT1j − zT0j

)
, lpj

)
, (19)

lsj =

√(
xT1j − xT0j

)2
+ (yT1j − yT0j)

2
+ (zT1j − zT0j)

2
, (20)

Rj =
lsj

2× π
, (21)

Ψj : the rotation angle along OZ;
lpj : the length of the step in the plane XOY ;
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Figure 18: Adaptation of the cyclöıd 5 to the irregular terrain at the origin XY.

Θj : the rotation angle along OY ;
lsj : the length of the step in the space;
Rj : the cycloid’ radius.

3.2 Adaptation of the normal cycloidj to the irregular terrainj

We define a Normal Cycloidj trajectory in the XOZ plane (Figure 19)that the legj must
follow in the swing phase by the following equation:

xNCj = Rj × (t− sin (t)) ,

yNCj = 0,

zNCj = Rj × (1− cos (t)) .

(22)

We adapt the normal cycloid NCj so that it matches its terrainj by the combination of
two rotations and a translation (Figure 20) and it is denoted ACj , thus it is adapted to
the terrainj by the relations

ACj = NCj × rot (Y,Θj)× rot (Z,Ψj) + [xT0j ; yT0j ; zT0j ] , (23)

rot (Z,Ψj) : Rotation matrix around OZ;
rot (Y,Θj) : Rotation matrix around OY.

Figure 19: Adaptation of the cycloid5 to
the irregular terrain5 for one step.

Figure 20: Adaptation of the cycloid to uneven
terrain composed of seven steps.
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3.3 Adaptation of legj to the cycloid of its terrainj

Depending on the desired number of steps, each legj follows the cycloids adapted with a
fixed body (see Figure 21) using the developed IKM.

Figure 21: Adaptation of the legj to the cycloids of its terrainj .

3.4 Synchronization of the movements of six legs in the tripod mode

Each leg of the HWR performs a walking step in two phases: a support phase and a
swing phase (see Figure 22). The most used mode of walking which can ensure speed
and stability is the alternating tripod, it is carried out by the sequencing of six legs, three
by three during a period T: in the first half-period, the legs 135 are in the swing phase
and legs 246 are in the support phase as they alternate in the second half-period for one
and seven walking steps, respectively. Furthermore, for instance, the synchronization is
given between two consecutive legs number five and six (see Figure 23).

Figure 22: Two phases of a legj for
one walking step.

Figure 23: Synchronisation of a walking step
for legs 5 and 6.

3.5 Adaptation of body’s movement to the movements of its six legs

The spatial displacement of the body of the HWR occurs when the legs in contact with
the ground propel it into a given coherent situation (position and orientation). To ensure
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the compatibility between the movement of the legs and that of the body, we propose
for the body:

• movement in the XOY plane in small straight segments as the average resultant
of the movement of six legs along

✓ the X axis: 
xT0 =

6∑
j=1

xT0j

6 ,

xT1 =
6∑
j=1

xT1j

6 ,

xb =
xT1−xT0

2n t+ x00,

(24)

where x00 refers to the initial position of the robot’s body;

✓ the Y axis: 
yT0 =

6∑
j=1

yT0j

6 ,

yT1 =
6∑
j=1

yT1j

6 ,

yb =
yT1−yT0

xT1−xT0
xb + yT0 − (yT1−yT0)

(xT1−xT0)
xT0;

(25)

• the Z axis, a sinusoidal [22,23] movement (see Figure 25) which describes the case
of the real gait of the insect and that at a fixed height (see Figure 24) of its body.

Figure 24: Alternating tripod gait of the
HWR on flat terrain at a fixed height
of the body.

Figure 25: Alternating tripod gait of the HWR
on flat terrain with sinusoidal height of the body.

4 Results and Discussion

In this section, the obtained results are mainly based on three types of terrain progres-
sively ordered by the degree of locomotion’s difficulty:
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• A flat terrain is characterized by its null altitude (Z = 0). It is obviously clear from
( Figure 26), the HWR executes two steps of alternating tripod walking while its
body remains horizontal at a constant height (l1+l3) and it oscillates horizontally
(see Figure 27).

Figure 26: Alternating tri-
pod gait of the HWR on flat
terrain at a fixed height of the
body.

Figure 27: Alternating tri-
pod gait of the HWR on flat
terrain with a sinusoidal height
of the body.

Figure 28: Alternating tri-
pod gait of the HWR on in-
clined terrain with sinusoidal
movement while the body re-
mains parallel to the sloped
terrain.

• On slopped terrain, in this simulation, the HWR executes two steps of alternating
tripod gait on an inclined plan and it oscillates sinusoidally and remains parallel
to terrain (see Figure 28).

• An irregular terrain with a constant and variable height of the body (see Figures
29 and 30 ).

Figure 29: Walking on un-
even ground at a fixed body
height.

Figure 30: Walking on ir-
regular terrain with sinusoidal
height of the body.

Figure 31: Walking on ir-
regular terrain with sinusoidal
height of the body with body’s
orientation.

• General case: We take credit from the redundancy of the HWR’s body, namely
we can activate all its degrees of freedom for the sake of providing the HWR with
any given orientation during the walking process, which results in avoiding the
encountered obstacles, where this orientation is inevitably required as the oriented
posture given in Figure 31.

5 Conclusion

The proposed walking algorithm for the HWR on irregular terrain, based on the key
elements of modeling the robot and its legs, modeling the terrain, adapting the legs to
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the terrain, synchronizing the legs for a tripod gait, and ensuring compatibility with
the body’s movement, shows promising results. The algorithm is demonstrated to be
accurate and reliable in following the shape of irregular terrains, regardless of the terrain
type or leg and body trajectories.

One of the major advantages of this algorithm is its applicability to various types of
legged robots, including jumpers, bipeds, quadrupeds, and hexapods, due to the utiliza-
tion of the HWR’s redundancy and activation of all degrees of freedom of the robot’s
body.

Future perspectives for this research could include testing the algorithm on a real
robot with data from real terrains to validate its performance in real-world conditions.
Additionally, further investigation of the walking stability of the HWR in relation to
terrain irregularities could provide valuable insights for enhancing the algorithm’s per-
formance.

Overall, this research contributes to the advancement of robot control for complex
geometries and irregular terrains, paving the way for improved locomotion capabilities
of legged robots in challenging environments.
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