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1 Introduction

The inhomogeneous nonlinear Schrödinger equation is a natural occurrence in nonlinear
optics when it comes to the propagation of laser beams. A preliminary laser beam can
be sent to create a channel with reduced electron density to achieve stable high-power
propagation in plasma. This ultimately reduces the non-linearity within the channel.
Gill [1] and Tripathi and Liu [2] provide examples of this approach. In this scenario, the
propagation of the beam can be explained by the equation

I∂tu+∆u+K(x)|u|αu = 0,

which represents the inhomogeneous non-linear Schrödinger equation and is a typical
example of a semi-linear control system in a Hilbert space H given by the following
evolution equation: {

y′(t) = Ay(t) + u(t)Ny(t),
y(0) = y0 ∈ H, (1)

where A is an unbounded operator with domain D(A) ⊂ H and generates a strongly
continuous semigroup of contraction (S(t))t≥0 on an infinite-dimensional real Hilbert
spaceH (state space) whose norm and scalar product are denoted, respectively, by ∥.∥ and
⟨., .⟩, N is a nonlinear operator from H into H, which is locally Lipschitz and sequentially
continuous operator such that N(0) = 0, the control function u(.) denotes the scalar
control.
When trying to stabilize a control system, one of the main approaches is to look for a
feedback control that can guarantee that the system is well-posed and that the solution
converges to zero over time. This feedback control is usually represented by u(y(t)) and
must be carefully chosen to achieve the desired stabilization. By formally computing the
time rate of change of the energy d

dt∥y(t)∥
2 and using the fact that the semigroup is of

contraction so that ⟨Ay, y⟩ ≤ 0 for all y ∈ D(A), we get

d

dt
∥y(t)∥2≤ 2u(t) < y(t);Ny(t) >;∀t ∈ [0, T ].

To make the energy nonincreasing, we consider the family of controls:

for r ≥ 0, ur (y(t)) = −⟨y(t), Ny(t)⟩ | ⟨y(t), Ny(t)⟩ |r

∥y(t)∥r
, ∀t ∈ [0, T ]. (2)

By using this control, we can guarantee the dissipation of energy while adhering to the
following inequality:

d

dt
∥y(t)∥2≤ −2

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
;∀t ∈ [0, T ]. (3)

In our control family, there is a particular case when r = 0, and it is called the quadratic
feedback control u0(y(t)) = −⟨y(t), By(t)⟩. Various works have extensively studied this
control to achieve weak or strong stabilizability. In Ball and Slemrod (see [3] and [4],
p. 175), it has been shown that if N = B is a compact linear operator and S(t) is a
semigroup of contractions such that

⟨BS(t)y, S(t)y⟩ = 0∀t ≥ 0 =⇒ y = 0, (4)
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then the feedback u0 (y(t)) weakly stabilizes the system (1).
In Ouzahra (see [5], p. 511 and [6], p. 814), it has been established that if (4) is replaced
by the following: ∫ T

0

|⟨BS(t)y, S(t)y⟩|dt ≥ δ∥y∥2∀y ∈ H

(for some T, δ > 0), then the control u0(y(t)) strongly stabilizes the system (1). More
precisely, the state satisfies the estimate

∥z(t)∥2= O

(
1

t

)
, as t −→ +∞.

In Berrahmoune (see [7]), a strong stabilization result has been obtained using the control

u0(t), and the following estimate ∥y(t)∥= O
(

1√
t

)
has been obtained.

In this paper, we study the strong and exponential stabilizability of the system (1)
using the control (2) for all r ≥ 0. By implementing control (2), we can enhance the
estimate provided by u0 (y(t)) in [3], [4], [5], [6] and [7]. This document is structured in the
following manner. Section 2 demonstrates the existence and uniqueness of the solution in
the semilinear case using control (2) for all t ∈ [−2;+∞[. In Section 3, we explore strong
stabilization and decay estimates, while Section 4 focuses on the exponential stabilization
problem using the selected control ur(y(t)) for all t ∈ [−2;+∞[. In the last section, we
give examples governed by the nonlinear Schroedinger and heat equations to illustrate
our findings.

2 Well-Possedness

With the control (2), system (1) becomes{
y′(t) = Ay(t) + Fr(t, y(t)),
y(0) = y0,

(5)

where

Fr(t, y(t)) = −⟨y(t), Ny(t)⟩|⟨y(t), Ny(t)⟩|r

∥y(t)∥r
Ny(t) if y ̸= 0.

In this section, we will discuss the existence and uniqueness of the solution of the system
(5).

Firstly, we need to demonstrate that the system’s state is decreasing. To do so,
integrate the inequality (3) over the interval [s, t], it follows that

∥y(t)∥2−∥y(s)∥2≤ −2

∫ t

s

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
, ∀t ≥ s ≥ 0,

therefore ∥y(t)∥≤ ∥y0∥ ,∀t ≥ 0.

Theorem 2.1 Let A generate a semigroup of contractions S(t), let N be a locally
Lipschitz and sequentially continuous operator, then for all r ∈ [−2,+∞[ and y0 ∈ H,
the system (5) possesses a unique global mild solution y(t) defined on the infinite interval
[0,+∞[ , which is given by the following variation of constants formula:

y(t) = S(t)y0 −
∫ t

0

Fr(s, y(s))S(t− s)Ny(s)ds.
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Proof. We will consider the system (5) and demonstrate that the map Fr : y 7→
Fr(t, y(t)) is locally Lipschitz from H to H. Let x ∈ H and let R > 0, LN > 0 such that
for all z, y ∈ H such that ∥x− y∥≤ R and ∥x− z∥≤ R, we have ∥Nz−Ny∥≤ LN∥z− y∥.
From the development below, it will be clear that we can suppose that x = 0 and
0 < ∥y∥≤ ∥z∥.

Let us consider two functions: f1(y) =
|⟨y,Ny⟩|r

∥y∥r and f2(y) = ⟨y,Ny⟩Ny. We can then

conclude that

∥Fr(t, y)− Fr(t, z)∥ = ∥f1(y)f2(y)− f1(z)f2(z)∥
≤ LrN∥y∥r∥f2(y)− f2(z)∥+L2

N∥z∥3∥f1(y)− f1(z)∥.

It is easy to increase the value of LrN∥y∥r∥f2(y)− f2(z)∥, in fact,

∥f2(y)− f2(z)∥ = ∥⟨y,Ny⟩Ny − ⟨z,Nz⟩Nz∥
≤ (LN∥y∥+2LN∥z∥)LN∥y∥∥y − z∥
≤ 3L2

N∥y∥2∥y − z∥.

Therefore

LrN∥y∥r∥f2(y)− f2(z)∥≤ 3Lr+2
N ∥y∥r+2∥y − z∥. (6)

There are two cases to increase the value of ∥f1(y) − f1(z)∥. This can be achieved by
utilizing the real function t 7→ tr, which satisfies the following conditions.

If r ⩾ 1, then |∥z∥r−∥y∥r| ≤ r∥z∥r−1|∥z∥−∥y∥|.
If r < 1, then |∥z∥r−∥y∥r| ≤| r | ∥y∥r−1|∥z∥−∥y∥|.

Case 1 : if r ⩾ 1. In this case, we have

∥f1(y)− f1(z)∥≤ r

∣∣∣∣ |⟨z,Nz⟩|∥z∥

∣∣∣∣r−1 ∣∣∣∣ |⟨y,Ny⟩|∥y∥
− |⟨z,Nz⟩|

∥z∥

∣∣∣∣
and since

| ⟨y,Ny⟩
∥y(t)∥

− ⟨z,Nz⟩
∥z(t)∥

| =| ∥z(t)∥⟨y,Ny⟩ − ∥y(t)∥⟨z,Nz⟩
∥y(t)∥∥z(t)∥

|

≤ ∥y∥(LN∥y∥) | ∥z∥−∥y∥| +∥y(t)∥(LN∥z∥+LN∥y∥) ∥z − y∥
∥y(t)∥∥z(t)∥

≤ LN∥y∥2| ∥z∥−∥y∥| +2LN∥y(t)∥2∥z − y∥
∥y(t)∥∥z(t)∥

≤ 3LN∥y∥
∥z∥

∥z − y∥,

we find

∥f1(y)− f1(z)∥ ≤ r

∣∣∣∣ |⟨z,Nz⟩|∥z∥

∣∣∣∣r−1
3LN∥y∥
∥z∥

∥z − y∥

≤ r(LN∥z∥)r−1 3LN∥y∥
∥z∥

∥z − y∥

≤ 3rLrN∥y∥r

∥z∥
∥z − y∥.
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Therefore
L2
N∥z∥3∥f1(y)− f1(z)∥≤ 3rL2+r

N ∥y∥r+2∥z − y∥. (7)

Based on the inequalities (6) and (7) presented above, we can conclude that

∥Fr(t, y)− Fr(t, z)∥ ≤ 3Lr+2
N (1 + r) ∥y0∥r+2∥y − z∥.

Case 2 : If − 2 ⩽ r ⩽ 1.

We have ∥f1(y)− f1(z)∥ ≤ 3 | r | LrN∥y∥r

∥z∥
∥z − y∥, therefore

L2
N∥z∥3∥f1(y)− f1(z)∥≤ 3 | r | Lr+2

N ∥y∥r+2∥z − y∥. (8)

By utilizing the inequalities (6) and (8), we can come to the conclusion that

∥Fr(t, y)− Fr(t, z)∥≤ 3Lr+2
N (1+ | r |)∥y0∥r+2∥y − z∥.

We have proven that for all r ⩾ −2, Fr(t; y(t)) satisfies a local Lipschitz condition in
y, uniformly in t on bounded intervals. It follows (see [8], p.185 ) that the system (5)
possesses a unique mild solution y(t) defined on a maximal interval [0, tmax[ , which is
given by the following variation of constants formula:

y(t) = S(t)y0 −
∫ t

0

Fr(s, y(s))S(t− s)Ny(s)ds.

To show that tmax = +∞, it is sufficient to prove that for each T > 0, the mild solution
y(t) is bounded by a constant independent of T . To do this, we discuss two cases:

• For y0 ∈ D(A), the solution y(t) is differentiable (see [8], p.189), and since S(t) is
a semigroup of contractions (so that A is dissipative), we can write

d

dt
∥y(t)∥2≤ −2

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
;∀t ∈ [0, T ].

Integrate this last inequality over the interval [s, t], it follows that

∥y(t)∥2−∥y(s)∥2≤ −2

∫ t

s

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
,∀t ≥ s ≥ 0.

Therefore,
∥y(t)∥≤ ∥y0∥ ,∀t ≥ 0.

• If y0 /∈ D(A), we can find a sequence (yn0 )n of elements in D(A) converging to y0
in H since D(A) = H. For all t ∈ [0, T ] and all integer n, we know from the first
case that ∥yn(t)∥ ≤ ∥yn0 ∥. We conclude that ∥y(t)∥≤ ∥y0∥ , ∀t ∈ [0, tmax[ , hence
tmax = +∞.

3 Strong Stabilization and Decay Estimate

Proposition 3.1 Let A generate a semigroup of contractions S(t) and N be locally
Lipschitz. Then, for all r ⩾ 0, the state of the system (4) satisfies the decay estimate as
t→ +∞,∫ T

0

|⟨NS(s)y(t), S(s)y(t)⟩|ds = O

(
∥y(τ)∥

r
r+2

(∫ T
0

|⟨y(s+τ),Ny(s+τ)+c⟩|r+2

∥y(s+τ)∥r ds
) 1

r+2

)
. (9)
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Proof. Using Proposition 3.1, we deduce that the system (9) admits a unique global
mild solution given by the following formula of variation of constants:

y(t) = S(t)y0 −
∫ t

0

⟨y(t), Ny(t)⟩ | ⟨y(t), Ny(t)⟩ |r

∥y(s)∥r
S(t− s)Ny(s)ds,

and due to the fact that S(t) is a semigroup of contractions, for all t ∈ [0, T ],

∥y(t)− S(t)y0∥ ⩽
∫ T

0

|⟨y(s), Ny(s)⟩|r+1

∥y(s)∥r
(∥Ny(s))∥ds

⩽ LN

∫ T

0

|⟨y(s), Ny(s)⟩|r+1

∥y(s)∥r
∥y(s)∥ ds.

We can apply the Hölder inequality

p =
r + 2

r + 1
, q = r + 2

(
1

p
+

1

q
= 1

)
, r ∈]− 1 +∞[

∥y(t)− S(t)y0∥ ⩽ LNT
1

r+2

(∫ T

0

(
|⟨y(s), Ny(s)⟩|r+1

∥y(s)∥r
∥y(s)∥

) r+2
r+1

ds

) r+1
r+2

⩽ LNT
1

r+2

(∫ T

0

|⟨y(s), Ny(s)⟩|r+2

∥y(s)∥r
∥y(s)∥

2
r+1 ds

) r+1
r+2

.

Since r ⩾ 0, we have 2
r+1 > 0 and the fact that ∥y(t)∥≤ ∥y0∥. We get ∥y(t)∥

2
r+1≤ ∥y0∥

2
r+1 .

So

∥y(t)− S(t)y0∥⩽ LNT
1

r+2 ∥y0∥
2

r+2

(∫ T

0

|⟨y(s), Ny(s)+⟩|r+2

∥y(s)∥r
ds

) r+1
r+2

. (9)

From the relation

⟨NS(t)y0, S(t)y0⟩ = ⟨NS(t)y0, S(t)y0 − y(t)⟩+ ⟨NS(t)y0 −Ny(t), y(t)⟩+ ⟨Ny(t), y(t)⟩ ,

when using ∥y(t)∥ ≤ ∥y(0)∥ ,∀t ∈ [0, tmax [ , the fact that S(t) is a semigroup of contrac-
tion, N is locally Lipschitz, and Schwartz’s inequality, it comes

|⟨NS(s)y0, S(s)y0⟩| ≤ 2LN ∥y0∥ ∥y(t))− S(t)y0∥+ | ⟨Ny(s), y(s)⟩ | . (10)

Using (9), we have

|⟨NS(s)y0, S(s)y0⟩| ≤ 2L2
NT

1
r+2 ∥y0∥

r+4
r+2

(∫ T

0

|⟨y(s), Ny(s)⟩|r+2

∥y(s)∥r
ds

) r+1
r+2

+ | ⟨Ny(s), y(s)⟩ | .

(11)
Replacing y0 by y(τ) in (11), we get

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩|

≤ 2L2
NT

1
r+2 ∥y(τ)∥

r+4
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ) + c⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

+|⟨Ny(s+ τ), y(s+ τ)⟩ |.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (1) (2024) 41–53 47

Integrate the last inequality over the interval [0, T ]

(12)

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩| ds

≤
∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩

ds+ 2L2
NT

1
r+2+1∥y(τ)∥

r+4
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

.

Due to the fact that ∥y(s+ τ)∥ ≤ ∥y(τ)∥ ∀t ≥ 0, and Hölder’s inequality∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩ ds ≤ T
r+1
r+2 ∥y(τ)∥

r
r+2

(∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩r+2

∥y(s+ τ)∥r
ds

) 1
r+2

,

(12) becomes

(13)

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩| ds

≤ 2L2
NT

1
r+2+1∥y(τ)∥

r+4
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

+T
r+1
r+2 ∥y(τ)∥

r
r+2

(∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩r+2

∥y(s+ τ)∥r
ds

) 1
r+2

.

We have(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

=

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) 1
r+2+

r
r+2

.

And by Schwartz’s inequality, it comes∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds ≤ TLr+2

N ∥y(τ)∥r+4

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

≤ T
r

r+2L
r

r+2

N |y(τ)∥
r2+4r
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) 1
r+2

.

Finally, using (13), we have∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩|ds

≤ M∥y0∥∥y(τ)∥
r

r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) 1
r+2

, (14)
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where M∥y0∥ = T
r+1
r+2

(
2L2

NTL
r

r+2

N ∥y(τ)∥r+2+1
)
.

Theorem 3.1 Let A generate a C0-semigroup Su(t), and suppose that the following
conditions hold:
1. Su(t) is a contraction semigroup;
2. there exist δ, T > 0 such that∫ T

0

|⟨NSs)y(t), S(s)y(t)⟩| ds ≥ δ ∥y(t)∥2 , ∀y ∈ H. (15)

Then the feedback (2) for all r ⩾ 0, strongly stabilizes the system (1) with the following
decay estimate:

∥y(t)∥= O
(
t−

r+2
4

)
as t→ +∞.

Proof. Let us consider the sequence sk = ∥y(kT )∥2, k ∈ IN .
Integrating the inequality (3) over the interval [kT, (k + 1)T ], we get∫ (k+1)T

KT

d

dt
∥y(t)∥2dt ≤ −2

∫ (k+1)T )

KT

(⟨Ny(t), y(t)⟩)r+2

∥y(t)∥r
dt

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2

∫ (k+1)T )

KT

(⟨Ny(t), y(t)⟩)2+r

∥y(t)∥r
dt.

Using now the estimate (14), we deduce that∫ T

0

|⟨NS(s+ τ)y(τ) + c, S(s+ τ)y(τ)⟩| ds

≤
(
M∥y0∥∥y(τ)∥

r
2+r
)(∫ T+τ

τ

|⟨Ny(s) + c, y(s)⟩|2+r

∥y(s)∥r
ds

) 1
2+r

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2

M∥y0∥∥y(τ)∥
r

2+r

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩| ds

and according to the inequality (15), we have

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2ρ

M∥y0∥
∥y(KT )∥

−r
2+r ∥y(KT )∥2

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2ρ

M∥y0∥
∥y(KT )∥1+

2
2+r .

Letting sk = ∥y(kT )∥2, k ∈ IN, the last inequality can be written as

sk+1 ≤ sk −
2ρ

M∥y0∥
s
1+ 2

2+r

k , ∀k ≥ 0.

Using the fact that t 7→ ∥y(t)∥ is a decreasing function on [0,+∞[, we get

sk+1 ≤ sk −
2ρ

M∥y0∥
s
1+ 2

2+r

k+1 , ∀k ≥ 0.
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sk+1 +
2ρ

M∥y0∥
s
1+ 2

2+r

k+1 ≤ sk, ∀k ≥ 0.

The last inequality can be written as follows: sk+1 + Cs2+αk+1 ≤ sk, ∀k ≥ 0,

where C = 2ρ
M∥y0∥

> 0 and α = −r
r+2 > −1 ∀r ∈ R/(−1,−2).

Now, to obtain the decay rate for the solutions of (1), we recall the following lemma,
see [9].

Lemma 3.1 (Lasiecka and Tataru, 1993) Let (sk)k≥0 be a sequence of positive real

numbers satisfying the relation sk+1 + Cs2+αk+1 ≤ sk, ∀k ≥ 0, where C > 0 and α > −1
are constants. Then there exists a positive constant M2 (depending on α and C) such
that sk ≤ M2

(k+1)
1

α+1
, k ≥ 0.

So, from the lemma (Lasiecka & Tataru, 1993), we have sk ≤ M2

(k+1)
r+2
2

, k ≥ 0.

For k = E
(
t
T

)
,
(
E
(
t
T

)
designed the integer part of t

T

)
, we obtain sk ≤ M3

t , (M3 > 0),

which gives ∥y(t)∥2≤ M3

t
r+2
2

.

Hence, ∥y(t)∥= O
(
t−

r+2
4

)
as t→ +∞.

Remark 3.1 For r = 0, we find the estimate guaranteed by u0(t) in [5] and [6].

4 Exponential Stabilization

Theorem 4.1 Let A generate a C0-semigroup S(t), and suppose that the following
conditions hold:
1. S(t) is a contraction semigroup;
2. there exist δ, T > 0 such that∫ T

0

|⟨NS(s)y(t), S(s)y(t)⟩| ds ≥ δ ∥y(t)∥2+
r

r+2 , ∀y ∈ H. (16)

Then the feedback (2) for all r ⩾ 0, exponentially stabilizes the system (5).

More precisely, there exists β > 0 such that ∥y(t)∥ ≤ e−β ∥y0∥ e−
β
T (t), ∀t > 0.

Proof. From

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2

M∥y0∥∥y(τ)∥
r

2+r

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩|ds

and according to the inequality (16), we have

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2ρ

M∥y0∥
∥y(KT )∥

−r
2+r ∥y(KT )∥2+

r
2+r

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2δ

M∥y0∥
∥y(KT )∥2. (17)

Letting sk = ∥y(kT )∥2, k ∈ IN, the inequality (17) can be written as

sk+1 − sk ≤ −2δ

M∥y0∥
sk, ∀k ≥ 0,

sk+1 ≤ Csk, ∀k ≥ 0,
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where C =
(
1− 2δ

M∥y0∥

)
< 1, which gives sk ≤ e−k ln 1

C s0, i.e, ∥y(kT )∥2e−k ln 1
C ∥y0∥.

For k = E
(
t
T

)
,
(
E
(
t
T

)
designed the integer part of t

T ), and using the fact that

E
(
t
T

)
T ≤ t and t 7→ ∥y(t)∥ is a decreasing function on [0,+∞[,

we get ∥y(t)∥ ≤ e−
ln( 1

C )
2 ∥y0∥ e−

ln( 1
C )

2T t for all t ≥ 0,

∥y(t)∥ ≤ e−β ∥y0∥ e−
β
T t for all t ≥ 0, where β =

ln( 1
C )
2 > 0.

5 Applications

Example 5.1 Let Ω ⊂ RN , H = L2(Ω). This example will study the nonlinear
Schrödinger equation in Ω ⊂ RN . Let us consider the system defined on an open and
bounded domain Ω with C∞ boundary ∂Ω by the equation

i∂tψ = ∆ψ +K(x)|ψ|αψ, in Ω×]0,∞[, α > 0,

ψ(·, t) = 0, on ∂Ω×]0,∞[,

ψ(·, 0) = φ.

(18)

For α = 2, it is the Gross-Pitaevskii equation describing the evolution of a Bose-Einstein
condensate.

The equation (18) has garnered much interest recently. Bergé conducted a formal
study on the stability condition of soliton solutions in [10]. Towers-Malomed, in [11],
discovered that a specific type of time-dependent nonlinear medium generates fully stable
beams through variational approximation and direct simulations. Merle in [12] and
Raphaël-Szeftel in [13] studied (18) for k1 < K(x) < k2 with k1, k2 > 0. Fibich-Wang
in [14] investigated (18) with K(x) := K(ϵ|x|), where ϵ > 0 is small and K ∈ C4

(
Rd
)
∩

L∞ (Rd).
In this example, we will study the stability of (18) by considering K(x) = ur(ψ(x, t)),

where

ur(ψ(x, t)) = −⟨ψ(x, t), Nψ(x, t)⟩|⟨ψ(x, t), Nψ(x, t)⟩|r

∥ψ(x, t)∥r
; r ⩾ 0.

We are considering the control operator Nψ(x, t) = |ψ(x, t)|αψ(x, t) in order to express
the system (18) in the following form:

i∂ψ(x,t)∂t = Aψ(x, t) + ur(ψ(x, t))Nψ(x, t), in Ω×]0,∞[,

ψ(x, t) = 0, on ∂Ω×]0,∞[,

ψ(x, 0) = φ.

(19)

Here, the state space H = L2(Ω) is endowed with its natural complex inner product.

• The operator A is defined by Aψ(x, t) = −i∆ψ(x, t),∀ψ(x, t) ∈ D(A), where
D(A) = H2(Ω) ∩H1

0 (Ω).
It is well known that the operator A = −i∆ with domain D(A) generates a semi-
group of isometries {T (t)}t∈R ∈ L ((D(A))∗)).

• The operator of control is given by Nψ = |ψ|αψ.
We pose N (ψ(x, t)) = f(t, ψ(x, t)) = ψ(x,t)

|ψ(x,t)|f(t, |ψ(x, t)|) ∀ψ ∈ D(A), ψ ̸= 0.

We deduce that
|ψ1||ψ2|(f(t, ψ1)− f(t, ψ2)|
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= |ψ1|ψ2|[f(t, |ψ1|)− f(t, |ψ2|)] + [ψ1(|ψ2|−|ψ1|+|ψ1|(ψ1 − ψ2))] f(t, |ψ2|)|.

We have f(t, |ψ1|) = |ψ1|α+1, so for every K > 0 and 0 < ψ1, ψ2 ⩽ K, there exists
LK <∞ such that

|f(t, |ψ1|)− f(t, |ψ2|)|≤ LK |ψ1 − ψ2|.

So

|ψ1∥ψ2∥f(t, ψ1)− f(t, ψ2)| ≤ |ψ1∥ψ2∥f(t, |ψ1|)− f(t, |ψ2|)|+2|ψ1||ψ1 − ψ2∥f(t, |ψ2|)|
≤ 3|ψ1∥ψ2|LK |ψ1 − ψ2|,

|f(t, ψ1)− f(t, ψ2)|≤ 3LK |ψ1 − ψ2|,
||ψ1|α ψ1 − |ψ2|αψ2|≤ LK |ψ1 − ψ2 | .

Therefore N is a nonlinear and locally Lipschitz operator such that N(0) = 0,
applying Theorem 2.1, we deduce that the system (18) possesses a unique global
mild solution ψ(x, t)) defined on the infinite interval [0,+∞[ , which is given by the
following variation of constants formula:

ψ(x, t) = T (t)φ+ i

∫ t

0

T (t− s)ur(ψ(x, s))Nψ(x, s)ds, ∀t ≥ 0.

Let us show that the condition of Theorem 3.1 is verified,

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H = ⟨|T (t)ψ(x, t)|αT (t)ψ(x, t), T (t)ψ(x, t)⟩H
= |T (t)ψ(x, t)|α⟨T (t)ψ(x, t), T (t)ψ(x, t)⟩H
= |T (t)ψ(x, t)|α|T (t)ψ(x, t)|2

= |T (t)ψ(x, t)|α+2.

We know that |T (t)ψ(x, t)|= |ψ(x, t)|, therefore,∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩Hdt =
∫ T

0

|ψ(x, t)|α+2dt.

Applying the Holder inequality, we obtain∫ T

0

|ψ(x, t)|2 dt ≤ T
α

α+2

(∫ T

0

|ψ(x, t)|α+2 dt

) 2
α+2

≤ T
α

α+2

(∫ T

0

|ψ(x, t)|α+2 dt

) 2
α+2

√∫ T

0

|ψ(x, t)|2H dt ≤ T
α

2α+4

(∫ T

0

|ψ(x, t)|α+2 dt

) 1
α+2

T
−α
2 ∥ψ(x, t)∥α+2

L2(]0,T [;H) ≤
∫ T

0

|ψ(x, t)|α+2 dt∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H dt ⩾ T
−α
2 ∥ψ(x, t)∥α+2

L2(]0,T [;H). (20)
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• For α = 0, the system (18) becomes
i∂tψ = ∆ψ +K(x)ψ, in Ω×]0,∞[,

ψ(·, t) = 0, on ∂Ω×]0,∞[,

ψ(·, 0) = φ.

(21)

Using (20), we can deduce that for δ = 1 and T > 0, we have the inequality∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H dt ⩾ δ∥ψ(x, t)∥2L2(]0,T [;H).

Based on the verification of condition (15), we can apply Theorem 3.1 to confirm
that the feedback ur(ψ(x, t)) stabilizes system (21) for all r ⩾ 0 with the following
decay estimate. Moreover, we can estimate solution decay using the following
formula:

∥ψ(x, t)∥= O
(
t−

r+2
4

)
as t→ +∞.

• For 0 < α < 1, when we set r = 2α
1−α , we ensure that r > 0 . Solving for α using

the equation α = r
r+2 and for δ = 1√

Tα
, we can then substitute this value into

equation (20) to obtain the modified expression∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H dt ⩾ δ∥ψ(x, t)∥2+
r

r+2 .

Based on the verification of condition (16), we can apply Theorem 4.1 to confirm
that the feedback ur(ψ(x, t)) exponentially stabilizes the system (20) for 0 < α < 1
and r = 2α

1−α .

More precisely, there exists β > 0 such that ∥ψ(x, t)∥ ≤ e−β ∥φ∥ e−
β
T (t), ∀t > 0,

where β =
ln( 1

C )
2 > 0, C =

(
1− 2δ

M|φ|

)
< 1,

M∥φ∥ = T
α+1
2 +1

(
2T (α+ 1)

3+5α
2 + | φ |

α(3+5α)
2 + 2

1−α +1
)
.

6 Conclusion

This paper introduces a new type of control to enhance the stability of a semilinear
system. The suggested control results in strong and exponential stability of the closed-
loop system, particularly the inhomogeneous nonlinear Schrödinger equation. Moreover,
an estimate of the decay can be achieved through approximate observation assumptions
depending on r. Therefore, implementing the new control results in a significantly faster
response time than quadratic control. This research raises questions about applying
the same family of controls to stabilize inhomogeneous semi-linear systems in physics,
including the non-homogeneous case considered in [15].
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[13] Pierre Raphaël and Jeremie Szeftel. Existence and uniqueness of minimal blow-up solutions
to an inhomogeneous mass critical NLS. Journal of the American Mathematical Society,
24 (2) (2011) 471–546.

[14] Gadi Fibich and Xiao-Ping Wang. Stability of solitary waves for nonlinear Schrödinger
equations with inhomogeneous nonlinearities. Physica D: Nonlinear Phenomena 175 (2)
(2003) 96–108.

[15] M. Baddi, M. Chqondi and Y. Akdim. Exponential and Strong Stabilization for Inhomo-
geneous Semilinear Control Systems by Decomposition Method. Nonlinear Dynamics and
Systems Theory 23 (1) (2023) 1–13.


	Introduction
	Well-Possedness
	Strong Stabilization and Decay Estimate 
	Exponential Stabilization
	Applications
	Conclusion

