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Abstract: The paper presents an original general mathematical model of the
glycolysis-gluconeogenesis metabolic processes chain. The scenario of the appear-
ance of auto-periodic and chaotic modes for the system is studied with the help of
the Fourier series of one of the system variables. The invariant measure of the strange
attractor is calculated. The histograms of the invariant measure projections of the
system onto the phase space plane are constructed. Conclusions are made about the
self-organization and adaptation of the system to changes in the cell and the environ-
ment.
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1 Introduction

An essential task of natural sciences is a search for the general physical laws of self-
organization in Nature. The gradual development of nonlinear thermodynamics led to
the emergence of a new scientific direction - synergetics. The mechanism of structure
formation in open nonlinear systems became clear thanks to synergetics [1]. The science
of self-organization and evolution of living organisms suggests an answer about the flow
of physical and chemical processes in a cell [2].

One of the general chains of metabolic reactions running in each cell is glycolysis and
its inverse process, gluconeogenesis. Cells receive energy from glucose in the form of ATP
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by way of glycolysis. Cells further synthesize glucose from nonhydrocarbon substrates
using gluconeogenesis.

Glycolysis and gluconeogenesis are two opposite metabolic processes in a cell, where
7 of 10 metabolic reactions are reversible. Three reactions are irreversible and are per-
formed in gluconeogenesis via detouring thermodynamically favorable reactions.

A number of scientists have studied this chain of metabolic reactions. As a result of
experimental studies of glycolysis, the auto oscillations were discovered in [3]. In order
to explain the origin of auto oscillations, several mathematical models were developed.
These models clarified that the oscillations in glycolysis occur as a result of the activation
of phosphofructokinase by its products or due to the allosterism of this enzyme [4,5].

The study in the present work is based on the mathematical model of glycolysis
and gluconeogenesis developed in [6]. The peculiarity of this model is that for the first
time, it analized the influence of the adenine nucleotide cycle and gluconeogenesis on the
phosphofructokinase complex of this allosteric enzyme. It has been claimed that their
effects cause fluctuations in glycolysis.

In works [7, 8], this model was improved. The system of equations of the model
was refined by applying the conservation law to the intermediate reactions products. It
also accounted for the description of the complete closed chain of metabolic processes of
glycolysis-gluconeogenesis encircled by a positive feedback loop. The metabolic processes
of glycolysis-gluconeogenesis with a positive feedback loop are the electron transfer chain
NAD ·H ⇐⇒ NAD+.

The results obtained in papers [7,8] allowed the authors to construct a general math-
ematical model of the chain of metabolic glycolysis-gluconeogenesis reactions as a single
dissipative system of a cell.

Since gluconeogenesis uses mainly the same reversible reactions as glycolysis, the bio-
chemical evolution of the former occurred together with glycolysis. The symbiosis of the
given biochemical processes can be considered as a primary open nonlinear biochemical
system in a state far from the equilibrium. As a result of self-organization of this bio-
chemical system, a stable dissipative system emerged. It was independent of the other
biochemical processes of the primary broth.

The direction of the running reactions in such a system was determined by the energy-
beneficial balance. The organic molecule ATP was formed as a result of glycolysis. It
became a main carrier of the energy consumed in all the other biochemical processes. But
if some biochemical processes needed glucose, then the direction of biochemical reactions
in the given system reversed. This chain of metabolic reactions forced all other metabolic
processes in a cell to self-organize. During the subsequent biochemical evolution, the
given dissipative system was preserved in all types of cells, which indicates their common
prehistory. The analysis of the metabolic process allows us to state that this dissipative
system probably arose in protobionts in the primary broth in the oxygen-free atmosphere
of the Earth 3.5 billion years ago. This primary cell, in which life originated, was named
the LUCA (the last universal common ancestor) [9, 10].

2 Mathematical Model and Method of Investigation

A mathematical model of the metabolic process of glycolysis-gluconeogenesis is con-
structed according to the general schemes of the metabolic reactions presented in Figure
1 and the general schemes of two active and two inactive forms of the allosteric enzyme
phosphofructokinase (Figure 2) [7,8]. The model describes the flow of the metabolic pro-
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cess in straightforward direction, that corresponds to glycolysis, and in opposite direction
during gluconeogenesis.

The mathematical model is a system of 16 nonlinear differential equations. The
equations correspond to the basic sections of the metabolic process. They determine a
sequence of the reactions, and they influence the stability of the process of glycolysis-
gluconeogenesis. Some sections of the metabolic network that are insignificant for the
self-organization are described by the equations in the extended meaning. In Figure 1,
we show the sections of the metabolic network from the 1-st to 16-th. Each of them
corresponds to the number of the differential equation:
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where V (X) = X/(1 +X) is the function that describes the adsorption of an enzyme in
the locally connected region. The variables of the system are made unitless.

The parameters of the system are: l1 = 0.0535, l2 = 0.046, l3 = 0.0017, l4 = 0.01334,
l5 = 0.3, l6 = 0.001, l7 = 0.01, l8 = 0.0535, l9 = 0.001, k1 = 0.07, k2 = 0.01, k3 = 0.0015,
k4 = 0.0005, k5 = 0.05, k6 = 0.005, k7 = 0.03, k8 = 0.005, m1 = 0.3, m2 = 0.15,
m3 = 1.6, m4 = 0.0005, m5 = 0.007, m6 = 10, m7 = 0.0001, m8 = 0.0000171, m9 = 0.5,
G0 = 18.4, L = 0.005, S = 1000, A = 0.6779, M = 0.005, S1 = 150, α = 184.5, β = 250,
δ = 0.3, γ = 79.7.

At the first stage (1), glucose G0 entering a cell is phosphorylized with the help of
the enzyme hexokinase to glucose-6-phosphate. The donor of a phosphoryl group is a
molecule ATP (T ) (1), (9). This reaction is irreversible. The molecules of glucose-6-
phosphate are the allosteric inhibitor of the reaction and cannot leave the cell. If the
concentration of glucose-6-phosphate in a cell increases above the normal level, then hex-
okinase is inhibited by glucose-6-phosphate (1). The speed of glucose-6-phosphate forma-
tion corresponds to the speed of its consumption in the subsequent reactions. Further, an
inverse isomerization of glucose-6-phosphate to fructose-6-phosphate occurs. However, it
does not affect the irreversibility of the process.

Equations (2) and (3) describe the processes of fructose-6-phosphate creation (F1)
and its transformation into fructose-1,6-diphosphate (F2). The last reaction occurs under
the catalytic action of the enzyme phosphofructokinase. This enzyme catalyzes the irre-
versible transfer of a phosphoryl group from ATP (2), (9) onto fructose-6-phosphate with
its transformation into fructose-1,6-diphosphate. The substrate fructose-6-phosphate is
an activator, and ATP is an inhibitor of the given process. In addition to such regula-
tion, the enzyme is also regulated by the adenine-nucleotide cycle ATP −ADP −AMP
(see below). The latter helps to support the optimum stable stationary state.

The equations (2) and (3) also describe the process of gluconeogenesis. The enzyme
fructose-1,6-biphosphatase catalyzes the irreversible reaction F2 −→ F1 (parameter l5)
by creating the positive feedback loop. It affects the stability of the process.

The subsequent splitting of fructose-1,6-biphosphate into glyceraldehyde-3-phosphate
and dioxyacetone-phosphate occurs in a reversible way.

Equation (4) describes the formation of 1,3-diphosphoglycerate (ψ1). The enzyme
glyceraldehyde-3-phosphate is oxidized and joins phosphoric acid using glyceraldehyde-3-
phosphate-dehydrigenase. In this case, the coenzyme NAD+ is an acceptor of hydrogen.
The following enzymatic restoration occurs: NAD+ → NAD ·H (4), (16).

With the help of equation (5), we described a transfer process of a high-energy phos-
phoryl group from the carboxyl group of 1,3-diphosphoglycerate by the enzyme phos-
phoglycerate kinase onto ADP . As a result, ATP (9) and 3-phosphoglycerate ψ2 (5) are
formed.

Equation (6) deals with the formation of 2-phosphoglycerate with the help of the
phosphoglycerate mutase enzyme. Then a molecule of water is eliminated with the
creation of phosphoenolpyruvate ψ3 (6).
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Figure 1: The general scheme of the metabolic process of glycolysis-gluconeogenesis.

The formation of the pyruvate P was considered in (7) under the action of the pyru-
vate kinase enzyme. So, the phosphorylation of the substrate occurs.

Equation (8) describes the formation of lactate L, which is the second product. With
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Figure 2: The general scheme of mutual transformations of two active and two nonactive forms
of the allosteric enzyme phosphofructokinase.

the help of the lactate dehydrogenase enzyme, the enzymatic oxidation happens: NAD ·
H → NAD+. The balance between NAD+ and NAD+ · H is preserved, see equation
(16).

Equations (9)-(11) are related to the kinetics of the changes in the levels of ATP
(9), ADP (10), and AMP (11) according to the metabolic scheme of glycolysis-
gluconeogenesis (see above). In general, the adenine-nucleotide cycle arises between
given reagents with mutual transitions: ATP − ADP − AMP . The adenine-nucleotide
cycle helps to conserve the optimum stationary state of the metabolic process.

Equations (12)-(15) demonstrate the kinetics of levels of the allosteric phosphofruc-
tokinase enzyme (Figure 2).

We assume that the enzyme has two active forms: R1 (12) and R2 (13), and two
nonactive: T1 (14) and T2 (15). In this case, we can observe the mutual transformation
of the forms T1 and R1, as well as T2 and R2. The equations show the general scheme
of regulatory connections. The form R1 (12) was created from the form T1 as a result
of the saturation of the two allosteric centers by molecules F1 and the form R2 with the
participation of two molecules D. Inactivation of the form R1 takes place at the expense
of T and with the formation of R2 (13) and two molecules T (12) with the formation of
the form T1 (14). The invertible inactivation is inhibited by an increase of A according to
a high level of T (parameter α) (12). Equations (13)-(15) were constructed in a similar
way.

Equation (16) represents the kinetics of changes in the nicotinamide adenine din-
ucleotide recovered form NAD · H according to its consumption and recovery of the
oxidized form NAD+ (4). The balance between the recovered and oxidized forms is
preserved in the glycolytic cycle in invariable form. In this case, the integral of motion
is NAD ·H(t) +NAD+(t) =M .

The stability dynamics is investigated using the second Liapunov method [12]. The
chaotic dynamics of mathematical models can be studied using harmonic analysis [13].

In this paper, we used the Fourier series and invariant measure [14] for system inves-
tigation. Let us write down the system (1)-(16) in generalized form

ẋ = F (x), x ∈ Rn, (17)

where F (x) = (f1(x), f2(x), ..., fn(x))
T , the continuous dynamical system φt(x) is defined

by the system of differential equations. Such dynamical system for each τ generates a
cascade of

xk+1 = f(xk) ≡ φτ (xk). (18)
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Definition 2.1 The measure µ is an invariant measure of dynamical system (18) if
for any measurable set A, the following relation fulfills:

µ(A) = µ(f−1(A)).

Theorem 2.1 (the Krylov–Bogolyubov theorem on the existence of invariant mea-
sures) If a compact set A ⊂ P is invariant for the dynamic system φt(x), then there
exists at least one probability measure µ (where µ(P ) = 1) which is invariant for φ [14].

Let us divide some phase space region into small enough subsets Ai. The result
of solution for the system of differential equations (17) will be trajectories xk, where
k = 1, N , N is a big enough number of points. The measure of each set is estimated as

µ(Ai) = Ni/N, (19)

where Ni is the number of points in the subset Ai.

Theorem 2.2 (The Fourier coefficients) The Fourier series representation of f(x)
defined on [0, 2π], when it exists, is given by

f(x) =
a0
2

+

∞∑
n=1

(ancosnx+ bnsinnx) , (20)

with the Fourier coefficients

an =
1

π

∫ 2π

0

f(x)cosnxdx, bn =
1

π

∫ 2π

0

f(x)sinnxdx, n = 0, 1, 2...

3 Result of Studies

The mathematical model is the system of nonlinear differential equations (1)-(16). It
describes the open nonlinear biochemical system of glycolysis-gluconeogenesis. Input
and output flows for the model are glucose and lactate, respectively. The concentrations
of these substances determine the straightforward or inverse directions of the metabolic
process dynamics. Both processes are irreversible and are running in the open nonlinear
system, far from the equilibrium point. The presence of glycolysis and gluconeogenesis
in the system is a cause for autocatalysis in the system. Besides, the whole metabolic
process of glycolysis contains the feedback formed byNAD·H and the adenine-nucleotide
cycle. These factors influence the appearance of instability in the given metabolic system.

Let us investigate the dependence of the dynamics of the metabolic glycolysis-
glucogenesis process on the activity of gluconeogenesis, which is regulated by a small pa-
rameter l5. The authors want to show that the fluctuations of fructose-6-phosphate [1,2]
can be explained by gluconeogenesis, which occurs under the action of enzyme fructose-
1,6-bisphosphatase in the area: fructose-1,6-bisphosphate - fructose-6-phosphate. This is
different from the commonly used explanation by phosphofructokinase enzyme allosteric-
ity.

In [9], the phasoparametric diagrams of the process dynamics dependence on the
parameter l5 were constructed. Bifurcation points for doubling of the period and the
transition to chaos according to Feigenbaum’s scenario were found. When the parameter
l5 decreases, the following stable modes are formed:

2× 21(l5 = 0.268), 2× 22(l5 = 0.264), 2× 24(l5 = 0.262), 2x(l5 = 0.25).
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Figure 3: The distribution of the harmonics of the Fourier spectrum for a metabolic process
in the system of glycolysis-gluconeogenesis in the modes: a - the autoperiodic process 2 ×
21(l5 = 0.268); b – the autoperiodic process 2 × 22(l5 = 0.264); c – the autoperiodic process
2× 24(l5 = 0.262); d - the chaos mode 2x(l5 = 0.25).

Figure 4: The distribution of the harmonics of the Fourier spectrum for the metabolic process
in the system of glycolysis-gluconeogenesis for the parameter l5 = 0.3 in the following modes: a
– the quasistable autoperiodic process 2× 22(G0 = 17.25); b – the chaos mode 2x(G0 = 16.8).

The spectral plots of the decomposition into a trigonometric Fourier series (20) of
the kinetic curve G(t) from equation (1) were constructed for the found self-oscillating

modes. Ĝi, i = 1, n, are the harmonics of the Fourier series and they were obtained using
equation (20). The kinetic curves for each spectrum are presented in the upper right
corner of the corresponding figure. The basis of the decomposition is 1000 harmonics.
The decomposition interval is 2l = 8000, which is equal to the decomposition interval of
the kinetics of the strange attractor (Figure 3d). This allowed us to accurately calculate
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all the harmonics of the possible oscillating modes of the system, including for the strange
attractor.

Doubling of the multiplicity of the periodic regime (see the transition from Figure
3a to Figure 3b and to Figure 3c) leads to the doubling of the number of fundamental
harmonics that characterize the multiplicity of periodicity in the laminar phase trajectory
of the attractor.

In the transition from Figure 3c to Figure 3d, there was no doubling of the cycle. So
there was no increase in the multiplicity of fundamental harmonics. The graph (Figure
3d) shows a significant increase in the turbulence harmonics (compare Figure 3d with
the graphs Figure 3a, b, c). The phase trajectory of the system becomes unstable and
is characterized as a strange attractor. In this mode, the strict synchronicity of the
metabolic processes of the system is violated. The desynchronized chain of glycolysis-
gluconeogenesis reactions continues to execute its function, but not strictly periodically,
which means the adaptation of cell metabolism to the changes in the cell and to the
environment.

Figure 4a and Figure 4b show the distributions of the Fourier spectra of the variable
G(t) kinetics, with the increase of the parameter of gluconeogenesis to l5 = 0.3 and
with the change of the parameter G0, for the following two modes: the quasi-stable
autoperiodic process - 2× 22(G0 = 17.25) (a) and the chaos mode 2x(G0 = 16.8) (b).

Figure 5: The histograms of the projections of the invariant measure of the strange attractor
2x, at l5 = 0.25: t ∈ [106, 106 + 8 · 105]: a - onto the plane (L,N); b - onto the plane (T2, P ); c
- onto the plane (R1, ψ3); d - onto the plane (T2, ψ3)
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In order to more clearly represent the dynamics of the metabolic process of the
glycolysis-gluconeogenesis system, the invariant measure (19) of the strange attractor
2x was calculated for l5 = 0.25: t ∈ [106, 106 + 8 · 105].

The histograms of the projections of the invariant measure onto some planes of the
phase space of the system (Figure 5) were constructed, using the obtained values. For our
results, we took the number of points N = 5010 and the time of solving t ∈ (106, 106 +
8× 105).

The histograms of projections of the invariant measure make it possible to generally
evaluate the projections of the invariant measure of the corresponding variables of the
system and to find its largest value. And this means that the found cell with the maximum
of the projection of the invariant measure is also a place of instability in the variables of
the system, where bifurcations and the chaotic regime of the strange attractor occur. This
makes it possible to determine the sources of instability in the modeled cell biosystem
dynamics.

From the presented diagrams, the largest projection of the invariant measure µ =
0.01875 is obtained in Figure 5a, onto the coordinate plane (L,N). These variable
models describe the change in lactate levels (8) and NAD · H (16). This means that
the instability of these values in the metabolic process of glycolysis-gluconeogenesis most
likely leads to the violation of the stability of the biosystem’s attractor and the emergence
of a strange attractor regime.

So, on the basis of the obtained results, in order to get rid of the chaotic regime and
establish the stability of the attractor of the cell biosystem, we recommend to change the
level NAD ·H (electron carrier) or ψ (kinetic potential of the cell) via the corresponding
biochemical action influencing these values.

We calculated the histograms of the invariant measure for other variables. It is also
possible to determine their influence on the stability of the biosystem’s attractor. In this
case, the biochemical effect on the cell will be different.

4 Conclusion

The constructed mathematical model of glycolysis-gluconeogenesis is one of the main
constructed models of synergy in biology. Using this model, the authors managed to
simulate the structure of protobionts: the LUCA (the last universal common ancestor),
from which the life of the primary cell could get its origin and get sustained. Thanks to
biological evolution, this process has been reproduced in all living cells.

It was found that the cause of the auto-oscillating process in glycolysis is cell gluco-
neogenesis.

The results of the paper are as follows.

- The spectrum of the Fourier harmonic decomposition of the kinetics of system
attractor formation was calculated. It can be used to determine system modes.

- For the first time, the invariant measures and the histograms of the invariant mea-
sures for the chaotic attractors of a dynamic system were calculated using a computer
program for the mathematical model of glycolysis-gluconeogenesis.

- The histograms of the invariant measure of the strange attractor of the cell biosystem
were constructed.

- Recommendations are made on how to biochemically get rid of the chaotic regime
and restore the stability of the cell’s life cycle.
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