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1 Introduction

The appearance, rapid evolution and success of interior point methods since their revival
by Karmarkar (1984) in the field of linear optimization problems, have prompted re-
searchers around the world to develop a whole arsenal of methods (software) allowing to
properly deal with several classes of problems once considered difficult to solve, including
nonlinear programming, semi-definite programming, etc.

Linear optimization is a general mathematical framework for modelling and solv-
ing some optimization problems and it appears in many areas of applications such as
agriculture, finance, economics, geometric problems and optimal control.

Mathematically, the problem is to optimize a linear function under linear constraints
on the variables.
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Historically, linear programming has been developed by George Bernard Danzig since
1947.

Our work concerns the linear optimization (LO) problem which has become a much
coveted research topic since the revival of interior point methods from new investigations
brought by Karmarkar (1984) and others.

These methods are recognized as formidable competitors of the famous simplex
method. Their major drawback (at about 80% of the computational value) is the calcu-
lation of the projection which dominates the cost of the iteration.

Our work is devoted to an approach inspired by the interior point logarithmic barrier
method, and to avoid the calculation of the projection in Karmarkar’s projective method,
we propose an original procedure for the calculation of the step size based on the idea
of the upper and lower bound functions and we introduce new functions. This study is
supported by interesting numerical tests.

To our knowledge, our new upper and lower bound functions have not been studied in
the linear optimization literature. These approximate functions have the advantage that
they allow computing the step size easily and without consuming much time, contrarily
to the line search method, which is time-consuming and expensive to identify the step
size. For this, our objective is to optimize a linear problem based on prior efforts, and we
propose a straightforward and effective logarithmic barrier method based on new upper
and lower bound functions.

The rest of the paper is built as follows. We first present in Section 2 of our paper, a
linear optimization problem formulation. We introduce in Section 3, a brief description
of the algorithm. In Sections 4 and 5, we establish new upper and lower bound functions
and the algorithm. Two lemmas are proved in Section 6 to show the convergence results.
A simulation study is carried out to show the good behaviour of our approach in Section
7. Finally, a conclusion is summarized in the last section.

2 Posing of the Problem

We consider the following linear optimization problem:

(ka)


min⟨c, x⟩ = 0,

Ax = 0,
x ≥ 0,
x ̸= 0,

which was applied to the Karmarkar algorithm. Here, c ∈ Rn and A is an m× n matrix
of rank m.

In all that follows, the following conventions are adopted: the vector e ∈ Rn is the
vector whose components are all equal to 1, given a vector x ∈ Rn, X is the diagnonal
matrix whose diagonal elements are the components of x (i.e., X = diag{x}).

The following assumptions are made:
1. Ax = 0 and x ≥ 0 ⇒ ⟨c, x⟩ ≥ 0.
2. We know a point x > 0 such that Ax = 0 and ⟨c, x⟩ > 0.
3. We know that the problem (ka) has solutions. We put

C = {x : Ax = 0, x ≥ 0, x ̸= 0}.

If x̄ is a solution of (ka), then kx̄ with k > 0 is also a solution.
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We can thus proceed to a normalization of x and consider, for example, the following
linear problem:

(pk)

 min ctx = 0,
Ax = 0,

⟨e, x⟩ = n, x ≥ 0.

We note that the set of optimal solutions of this problem is a convex polyhedron
contained in the relative boundary of the set of feasible points.

The potential function.
The convergence of the algorithm is based on the following function, called the ”mul-

tiplicative potential function”, defined for all x ∈ C, x > 0, by

f(x) =
⟨c, x⟩n
n∏

i=1

xi

,

which we extend by semi-continuity on C.
One can also consider the function called the ”logarithmic potential function” defined

by

q(x) = ln f(x) = n ln(⟨c, x⟩)−
n∑

i=1

ln(xi).

The function f has the following properties:
1) 0 < f(x) < +∞ if x > 0 and Ax = 0.
2) f(x) = +∞ if x belongs to the relative boundary of C without being a solution of

(ka).
3) f(x) = 0 if x is a solution of (ka) or if x = 0.
4) f(kx) = f(x) for all x ∈ C and all k > 0.
Thus, problem (ka) consists of finding the optimal solutions to the problem

(km)

 min f (x) = 0,
Ax = 0,

x ≥ 0, x ̸= 0.

3 Description of the Algorithm

Starting from the point x ∈ C which is known, the Karmarkar algorithm is a descent
method which generates, due to the barrier character of the objective function f, a
sequence of points all contained in the relative interior of C, hence the name of the
method of interior points. We will describe the transition from the initial iterate x to
the next iterate x̃.

It is assumed that the iterate x̃ verifies x̃ > 0 and Ax̃ = 0.

3.1 Normalisation

We normalize x by the relation

x =

√
n

⟨x, x⟩
x

so that ⟨x, x⟩ = n.
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3.2 Direction of descent

It is easy to see that we have
f (x̃)

f (x)
= g (z)

with

z = X−1x̃, g (z) =
⟨b, z⟩n
n∏

i=1

zi

and b =
1

⟨c, x⟩
Xc.

The conditions Ax̃ = 0, x̃ ≥ 0 and x̃ ̸= 0 transpose to

AXz = 0, z ≥ 0 and z ̸= 0.

Let B = AX. Problem (km) is equivalent to the problem

(kmz)


min g (z) = 0,

Bz = 0,
z ≥ 0,
z ̸= 0.

e is a feasible solution of this problem and we have g(e) = ⟨b, e⟩ = 1.
Since we have g(kz) = g(z) for all z ≥ 0 and all k > 0, we will work on the following

normalized problem:

(kz)


min g (z) = 0,

Bz = 0,
⟨e, z⟩ = n,
z ≥ 0.

It is easy to see that the matrix (At, x) is of rank m+1, so is the matrix (Bt, e) . The
Newtonian descent direction at point e for the problem (kz) is obtained by solving the
quadratic problem

(PQ)

 min 1
2

〈
∇2g (e) d, d

〉
+ ⟨∇g (e) , d⟩ ,

Bd = 0,
⟨e, d⟩ = 0.

To do this, let us introduce the matrix

P = I −
(
Bt, e

) [(
Bt, e

)t (
Bt, e

)]−1 (
Bt, e

)t
,

which corresponds to the projection on the linear subspace:

E = {d : Bd = 0, ⟨e, d⟩ = 0} .

We have

P 2 = P = P t, PBt = 0 and Pe = 0.

It is easy to see that we have

P∇g (e) = Pb and P∇2g(e)P = I + n (n− 1)PbbtP,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (1) (2024) 65–79 69

the quadratic problem is equivalent to{
min 1

2

〈
∇2g (e) d, d

〉
+ ⟨∇g (e) , d⟩ ,

Pd = d,

whose optimal solution is collinear with

d = −Pb = −P∇g (e) .

The direction d thus coincides with the direction given by the projected gradient. We
are now interested in some properties of d.

First of all, we have

⟨d, e⟩ = −⟨Pb, e⟩ = −⟨b, Pe⟩ = 0,

we then observe that on the one hand, we have{
z : ⟨e, z⟩ = n

∥z − e∥2 ≤ n
n−1

}
⊂
{

z : ⟨e, z⟩ = n
z ≥ 0

}
⊂
{

z : ⟨e, z⟩ = n

∥z − e∥2 ≤ n (n− 1)

}
.

and on the other hand, 
min ⟨b, z − e⟩ = −1,

Bz = 0,
⟨e, z⟩ = n,
z ≥ 0,

and since P (e− z̄) = e− z̄,

⟨b, z − e⟩ = ⟨Pb, z − e⟩ ,

we get

∥Pb∥
√

n

n− 1
≤ 1 ≤ ∥Pb∥

√
n (n− 1).

So, in summary,

⟨d, b⟩ = −∥d∥2 = −∥Pb∥2 , ⟨d, e⟩ = 0 and
1

n (n− 1)
≤ ∥d∥2 ≤ n− 1

n
.

In the following, we denote by d̄ and σ the mean and standard deviations of
(d1, d2, ..., dn) . We have

d̄ =
1

n

n∑
i=1

di = 0 and
1

n2 (n− 1)
≤ σ2 =

∥d∥2

n
− d̄2 ≤ n− 1

n2
. (1)

4 Calculation of the Step Size

The calculation of the step size consists in obtaining a value t > 0 such that we have
e+ td > 0 and which gives a significant decrease of µ0(t) = g(e+ td) or, equivalently, of
ω0(t) = ln(g(e+ td)).

Since the equation ω′
0(t) = 0 cannot be solved explicitly in a large class of optimization

problems, it is normal to think of iterative methods of solution, one can also apply to ω0
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an Armijo-Golstein-Price type method. In both cases, this requires several evaluations
of the function ω0 and its derivative and is therefore expensive. Our approach consists
in minimizing an upper bound ωMAJ and lower bound ωMIN of the function ω0 whose
minimum can be obtained explicitly. Recall that we have

ω0 (t) = n ln
(
1− t ∥d∥2

)
−

n∑
i=1

ln (1 + tdi) ,

it is clear that ω0(0) = 0.
We need the following theorem to find the upper bound and lower bound functions

of ω(t).

Theorem 4.1 [1] Suppose that xi > 0 for all i = 1, 2, . . . , n, then

n ln
(
x̄− σx

√
n− 1

)
≤ A ≤

n∑
i=1

ln (xi) ≤ B ≤ n ln (x̄) ,

with

A = (n− 1) ln

(
x̄+

σx√
n− 1

)
+ ln

(
x̄− σx

√
n− 1

)
and

B = ln
(
x̄+ σx

√
n− 1

)
+ (n− 1) ln

(
x̄− σx√

n− 1

)
,

such that x̄ and σx are, respectively, the mean and standard deviations of a statistical
series {x1, x2, ..., xn} of n real numbers. These quantities are defined as follows:

x̄ =
1

n

n∑
i=1

xi and σ2
x =

1

n

n∑
i=1

x2
i − x̄2 =

1

n

n∑
i=1

(xi − x̄2).

In the following, we take xi = 1 + tdi, i = 1, ...,m, we have x̄ = 1 + td and σx = tσd.

4.1 Upper bound functions

4.1.1 First upper bound function

From the previous theorem, we have

A ≤
n∑

i=1

ln(xi),

then

n∑
i=1

ln(1 + tdi) ≥ (n− 1) ln

(
x̄+

σx√
n− 1

)
+ ln(x̄− σx

√
n− 1),

n∑
i=1

ln (1 + tdi) ≥ (n− 1) ln

(
1 +

σt√
n− 1

)
+ ln

(
1− σt

√
n− 1

)
,
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multiplying by (−1), we find

−
n∑

i=1

ln(1 + tdi) ≤ −(n− 1) ln

(
1 +

σt√
n− 1

)
− ln(1− σt

√
n− 1),

and therefore

ω0 (t) ≤ ωMAJ (t) = n ln
(
1− ntσ2

)
− (n− 1) ln

(
1 +

σt√
n− 1

)
− ln

(
1− σt

√
n− 1

)
.

From this, we can deduce that the function ωMAJ reaches its minimum at the point

t̄MAJ =
n
√
n− 1√

n− 1 + n (n− 2)σ
.

4.1.2 Second upper bound function

Let us consider a function that contains only a logarithm and is simpler than the function
ωMAJ . Then, we consider the following function:

ωMAJ1(t) = −2n ∥d∥2 t− ln
(
1− σt

√
n− 1

)
.

Lemma 4.1 ωMAJ1(t) is strictly convex for all t ≥ 0; and we have

ω0(t) ≤ ωMAJ1(t) ≤ +∞.

Proof. We have

ω0 (t) = n ln
(
1− t ∥d∥2

)
−

n∑
i=1

ln (1 + tdi) .

We pose
g(t) = ωMAJ1(t)− ω0(t),

we have g(0) = 0 and

g′′(t) =
σ2(n− 1)

(1− σt
√
n− 1)2

+
n ∥d∥2

(1− t ∥d∥2)2
+

n∑
i=1

d2i
(1 + td2i )

2
≥ 0

for all t ≥ 0. This gives g(t) ≥ 0,∀t ≥ 0.
Then

ω0(t) ≤ ωMAJ1(t).

From this, we can deduce that the function ωMAJ1 reaches its minimum at the point

t̃ =
1

σ
√
n− 1

− 1

2n2σ2
.

The new iterate is
x̃ = X (e+ t̄d) = x+ t̄Xd.

By construction, we have x̃ > 0 and Ax̃ = 0.
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4.1.3 The decrease

Replacing t̃ with its value gives

ωMAJ1(t̃) = −2n2σ2t̃− ln(1− σt̃
√
n− 1)

= 1− 2n2σ√
n− 1

− ln

(
1− 2n2σ −

√
n− 1

2n2σ

)
= 1− 2n2σ√

n− 1
− ln

(√
n− 1

2n2σ

)
.

The quantity ωMAJ1(t̃)− ωMAJ1(0) = ωMAJ1(t̃) depends on σ.

Since we have

1

n
√
n− 1

≤ σ ≤
√
n− 1

n
,

we obtain

1 ≤ σn
√
n− 1 ≤ n− 1.

It is useful to put u = nσ
√
n− 1, then we get 1 ≤ u ≤ n− 1 and

ωMAJ1(t̃) = 1− 2n2σ√
n− 1

− ln

(√
n− 1

2n2σ

)
= 1− 2nu

n− 1
− ln

(
n− 1

2nu

)
= 1− 2nu

n− 1
− ln(n− 1) + ln(2nu)

= ξ(u).

The function ξ is concave (a sum of two concave functions) and therefore

ωMAJ1(t̃) = ξ(u) < ξ(1) + (u− 1)ξ′(1).

This leads to

ωMAJ1(t̃) = ξ(u) < ln

(
2ne

(n− 1)e
2n

n−1

)
− (u− 1)

(
2n

n− 1
− 1

)
.

We deduce that in the worst case (where u = 1), we have

ωMAJ1(t̃) = ξ(u) < ln

(
2ne

(n− 1)e
2n

n−1

)
≤ 0,

then we obtain

f(x̃) ≤

(
2ne

(n− 1)e
2n

n−1

)
f(x0).
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4.2 Lower bound function

4.2.1 First lower bound function

From the previous theorem, we have

n∑
i=1

ln(xi) ≤ B,

then

n∑
i=1

ln(1 + tdi) ≤ (n− 1) ln

(
x̄− σx√

n− 1

)
+ ln(x̄+ σx

√
n− 1),

n∑
i=1

ln(1 + tdi) ≤ (n− 1) ln

(
1− σt√

n− 1

)
+ ln(1 + σt

√
n− 1).

Multiplying by (−1), we find

−
n∑

i=1

ln(1 + tdi) ≥ −(n− 1) ln(1− σt√
n− 1

)− ln(1 + σt
√
n− 1),

and therefore

ω0(t) ≥ ωMIN (t) = n ln(1− nσ2t)− (n− 1) ln

(
1− σt√

n− 1

)
− ln(1 + σt

√
n− 1).

From this we can deduce that the function ωMIN reaches its minimum at the point

t̄MIN =
n
√
n− 1√

n− 1− n (n− 2)σ
.

4.2.2 Second lower bound function

We can consider a function that contains only a logarithm and is simpler than the
function ωMIN . Then let us consider the following function:

ωMIN1(t) = −2n ∥d∥2 t− (n− 1) ln

(
1− σt√

n− 1

)
.

Lemma 4.2 ωMIN1(t) is strictly convex for all t ≥ 0; and we have

−∞ ≤ ωMIN1(t) ≤ ωMIN (t).

Proof. We have

ωMIN (t) = n ln(1− nσ2t)− (n− 1) ln

(
1− σt√

n− 1

)
− ln(1 + σt

√
n− 1).

We put

g(t) = ωMIN1(t)− ωMIN (t).
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We obtain g(0) = 0 and

g′′(t) = − σ2(n− 1)

(1 + σt
√
n− 1)2

≤ 0

for all t ≥ 0. This gives g(t) ≤ 0,∀t ≥ 0, then

ωMIN (t) ≥ ωMIN1(t).

We deduce that the function ωMIN1 reaches its minimum at the point

t̃ =
2n2σ

√
n− 1− (n− 1)

2n2σ2
.

4.2.3 The decrease

Replacing t̃ with its value gives

ωMIN1(t̃) = −2n2σ2t̃− (n− 1) ln

(
1− σ√

n− 1
t̃

)
= (n− 1)− 2n2σ

√
n− 1− (n− 1) ln

(
n− 1

2n2σ
√
n− 1

)
.

The quantity ωMIN1(t̃)− ωMIN1(0) = ωMIN1(t̃) depends on σ.
Since we have

1

n
√
n− 1

≤ σ ≤
√
n− 1

n
,

we get
1 ≤ σn

√
n− 1 ≤ n− 1,

it is useful to set u = nσ
√
n− 1, then we obtain 1 ≤ u ≤ n− 1 and

ωMIN1(t̃) = (n− 1)− 2n2σ
√
n− 1− (n− 1) ln

(
n− 1

2n2σ
√
n− 1

)
= (n− 1)− 2nu− (n− 1) ln

(
n− 1

2nu

)
= ξ(u).

The function ξ is concave (a sum of two concave functions) and therefore

ωMIN1(t̃) = ξ(u) < ξ(1) + (u− 1)ξ′(1).

We can deduce

ωMIN1(t̃) = ξ(u) < ln

((
2ne

n− 1

)n−1

× 1

e2n

)
− (u− 1) (n+ 1) .

We deduce that in the worst case (where u = 1), we have

ωMIN1(t̃) = ξ(u) < ln

((
2ne

n− 1

)n−1

× 1

e2n

)
≤ 0,

so, we obtain

f(x̃) ≤

((
2ne

n− 1

)n−1

× 1

e2n

)
f(x0).
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5 The Algorithm

Karmarkar’s algorithm via the upper bound and lower bound functions.
Initialization: We start from x > 0 such that Ax = 0, ϵ is a given precision.
Result: x∗.
Iteration:
While ctx > ϵ do:
1- Normalization:

x =

√
n

⟨x, x⟩
x.

2- Descent direction: We take b and B as follows:

b =
1

⟨c, x⟩
Xc, B = AX.

We determine d projection of b onto the linear subspace:

{d : Bkd = 0, ⟨e, d⟩ = 0} .

Finally, the descent direction is:

δ = Xd.

3- The step size: We calculate:

σ =
∥d∥√
n
.

Case 1: upper bound function:

t̄MAJ =
2n2σ −

√
n− 1

2n2σ
√
n− 1

.

Case 2: lower bound function:

t̄MIN =
2n2σ

√
n− 1− (n− 1)

2n2σ2
.

4- The new iterate: is x̃ = x+ tδ.
5- Taking k = k + 1 and returning to (1) .
End While.
x∗ = x̃.
End Algorithm.

6 The Convergence

Upper bound function.

Lemma 6.1 At the kth iteration, we have

f (xk) <

(
2ne

(n− 1)e
2n

n−1

)k

f (x0) .

Therefore f (xk) converges linearly to 0. We deduce that any membership value of the
sequence {xk} is an optimal solution of problem (ka).
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Lower bound function.

Lemma 6.2 At the kth iteration, we have

f (xk) <

((
2ne

n− 1

)n−1

× 1

e2n

)k

f (x0) .

Therefore f (xk) converges linearly to 0. We deduce that any membership value of the
sequence {xk} is an optimal solution of problem (ka).

7 Numerical Tests

To evaluate our algorithm’s efficiency based on our upper and lower bound functions,
we conducted comparative numerical tests between our two new approximate functions
(the upper bound function (TUF)and the lower bound function (TLF) and Wolfe’s line
search method (LSW)). The algorithm is described in our work using Matlab10 software.
The examples tested are taken from the literature, see for example [4, 5].

We have taken ϵ between (10−4 et 10−6). We denote by
TUF: The upper bound function technique.
TLF: The technique of the lower bound function.
LSW: Wolfe’s line search method.
iter: The number of iterations required to obtain an optimal solution.
time (s): The calculation time in seconds.

7.1 Examples

Example 1:

A =

[
0 1 2
0 3 0

]
, b =

[
2
1

]
and c =

[
2 1 0

]t
.

The optimal value is z∗ = 1
3 .

The exact optimal solution is x∗ =
[
0 1

3
5
6

]t
.

Comparative table:

Method iter time (s)
TUF1 03 0:0:0:1
TLF1 04 0:0:0:19
LSW 11 0:0:01:31

Example 2:

A =

[
2 3 1 2
3 0 −2 1

]
, b =

[
2
0

]
and c =

[
4 1 2 0

]t
.

The optimal value is z∗ = 0.67.

The exact optimal solution is x∗ =
[
0 0.67 0 0

]t
.

Comparative table:
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Method iter time (s)
TUF1 06 0:0:0:1
TLF1 09 0:0:0:26
LSW 13 0:0:10:01

Example 3:

A =

 2 3 1 0 3
1 2 5 0 1
5 −1 2 3 0

 , b =

 1
2
3

 and c =
[
1 2 3 5 4

]t
.

The optimal value is z∗ = 22
9 .

The exact optimal solution is x∗ =
[

1
3 0 1

3
2
9 0

]t
.

Comparative table:

Method iter time (s)
TUF 09 0:0:0:01
TLF 11 0:0:0:02
LSW 32 0:0:11:09

Example 4:

A =

 2 1 0 −1 0 0
0 0 1 0 1 −1
1 1 1 1 1 1

 , b =

 0
0
1

 and c =
[
3 −1 1 0 0 0

]t
.

The optimal value is z∗ = −0.5.

The exact optimal solution is x∗ =
[
0 0.5 0 0.5 0 0

]t
.

Comparative table:

Method iter time (s)
TUF1 10 0:0:0:01
TLF1 13 0:0:0:01
LSW 33 0:0:12:08

Example 5:

A =


1 0 −4 3 1 1 1 0 0 0 0 0
5 3 1 0 −1 3 0 1 0 0 0 0
4 5 −3 3 −4 1 0 0 1 0 0 0
0 −1 0 2 1 −5 0 0 0 1 0 0

−2 1 1 1 2 2 0 0 0 0 1 0
2 −3 2 −1 4 5 0 0 0 0 0 1

 , b =


1
4
4
5
7
5


and c =

[
−4 −5 −1 −3 5 −8 0 0 0 0 0 0

]t
.

The optimal value is z∗ = −17.

The exact optimal solution is x∗ =
[
0 0 2.5 3.5 0 0.5 0 0 0.5 0.5 0 1

]t
.

Comparative table:
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Method iter time (s)
TUF1 09 0:0:0:01
TLF1 07 0:0:0:01
LSW 20 0:0:17:12

Example 6: The matrix A is

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 3 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 4 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 3 -1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 1


The vectors c and b are

c =

[
2 −1 −3 5 −2 0 4 1 2 −1 1 −1 0 2

0 0 0 0 0 0 0 0 0 0 0

]t
,

b =
[
8 4 6 2 5 1 2 6 3 9 4

]t
.

The optimal value is z∗ = −13.25.
The exact optimal solution is

x∗ =

[
0 1 2 0 0.5 1.33 0 0 0 1.5 0 3.48 0
0 7 0 0 0 1 2.33 2 0.18 4.5 0 0.15

]t
.

Comparative table:

Method iter time (s)
TUF1 05 0:0:0:01
TLF1 06 0:0:0:01
LSW 22 0:0:57:09

Example 7: (with a variable size)
We consider the following linear problem of variable size:

ζ = min[cTx : x ≥ 0, Ax = b],

where A is the m× 2m matrix defined by

A[i, j] =

{
1 if i = j or j = i+m,
0 if not.

c[i] = −1, c[i+m] = 0 and b[i] = 2, ∀i = 1, ...m,

where the vectors c ∈ R2m and b ∈ R2m.
The optimal value is z∗ = −2m. The exact optimal solution is

x∗
i =

{
2 if i = 1, ...,m,
0 if i = m+ 1, ..., n.

Comparative table:
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size Method iter time (s)

TUF 4 0:0:0:01
5× 10 TLF 6 0:0:0:01

LSW 90 0:02:40:12

TUF 9 0:0:0:09
25× 50 TLF 14 0:0:0:15

LSW 89 0:02:00:07

TUF 8 0:0:0:26
50× 100 TLF 10 0:0:0:33

LSW 89 0:02:33:40

Comments: The numerical tests carried out show that our approach of upper bound
and lower bound functions that we have proposed leads to a very significant reduction
in the cost of calculation and an improvement in the result. The number of iterations
and the computing time are considerably reduced in the upper bound and lower bound
functions in comparison with the line search method.

8 Conclusion

Despite the mathematical development in the field of linear programming, many problems
remain to be developed.

For this, in this study, we used a logarithmic barrier method for solving this problem.
We proposed a new upper and lower bound functions to compute the displacement step,
and we showed that our new technique is efficient in reducing the computational cost
in Karmarkar’s projective algorithm. This method has made it possible to significantly
reduce the number of iterations and the time of their calculation. Numerical simulations
confirm the efficiency of our approach.

Our future exciting work is to further improve the computational time of the logarith-
mic barrier algorithm by proposing more efficient upper and lower bound functions. But
extensions would be envisaged to the nonlinear, not necessarily to the linear programming
problem.
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