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Abstract: In this work, we consider a dynamical unilateral contact problem with
Coulomb’s friction and thermo-electroelastic effects. We focus here on the dynamical
effects such as frictional heating and thermal softening at the contact interface. The
thermo-electro-elastic constitutive law is assumed to be linear and the foundation
is thermally and electrically conductive. We derive a variational formulation of the
problem and establish the existence of a weak solution. The proof is based on a suit-
able combination of the penalty method, standard arguments of variational equations
and fixed point theorem.
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1 Introduction

A piezoelectric material is a substance that generates electrical charges when mechani-
cal pressure is applied and mechanically deforms when an electric field is applied. As a
result, the piezoelectric material performs the function of a transducer, converting elec-
trical energy into mechanical energy and vice versa. These so-called smart materials,
among other things, are used as switches in radio-logic, electric-acoustic, and measuring
devices. Piezoelectric materials have been extensively studied, and one natural extension
of these coupled electro-mechanical models is to include temperature as an additional
state variable to account for thermal effects as well as piezoelectric effects.
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General mathematical models on piezoelectricity were studied in [3,9,13]. Results on
static frictional contact problems for piezoelectric materials under the assumption that
the foundation is insulated can be found in [5, 11, 16], and these results were extended
in [7, 8, 12] in the case of an electrically conductive foundation. In the quasi-static case,
we refer to [6,10] and references therein. Moreover, the theory of thermo-piezoelectricity
was first proposed by [14], the physical laws and the governing equations for thermo-
piezoelectric materials have been explored in [7,14,15,17] and for some recent results on
the thermo-piezoelectric contact problem, we refer to [1, 4].

Here, we seek to apply the static/quasi-static instances of our previous studies to a
dynamical contact problem with temperature-dependent friction. Heat is produced as a
result of the body and foundation sliding against one another through friction. This fact
serves as the inspiration for our expansion of the dynamic thermo-electroelastic contact
issue, which takes into consideration the effects of thermal softening and frictional heating
at the contact surface.

The remainder of the paper is organized as follows. The model of the dynamical
frictional contact process between a thermo-electro-viscoelastic body and a conductive
deformable foundation is described in Section 2. Section 3 introduces some notations,
lists the data assumptions, and derives the variational formulation of the model. The
main existence and uniqueness result of the model’s weak solution is stated in Theorem
4.1. This theorem is proved in several steps in Section 4, the proof is based on the
arguments of compactness, time discretization, and the Banach fixed point theorem.

2 Preliminaries

In this section, we recall some useful definitions and lemmas which will be used in the
sequel. Let X be a reflexive Banach space and ⟨·, ·⟩ denote the duality of X and X∗, we
have the following interesting results (see e.g., [2]).

Definition 2.1 A single-valued operator A : X → X∗ is pseudomonotone if

1. A is a bounded, i.e., it maps the bounded sets in X into the bounded sets in X∗,

2. for every sequence {xn} ⊂ X converging weakly to x of X such that
lim sup

n∞
⟨Axn, xn −x⟩ ≤ 0, we have ⟨Ax, x− y⟩ ≤ lim inf

n∞
⟨Axn, xn − y⟩ for all y ∈ X.

Definition 2.2 A multi-valued operator T : X → 2X
∗
is pseudo-monotone if

1. for every v ∈ V, the set Tv ⊂ X∗ is nonempty, closed and convex,

2. the operator T is upper semi-continuous from each finite-dimensional subspace of
X to X∗ endowed with weak topology,

3. for any sequences {un} ⊂ X and {u∗n} ⊂ X∗ such that un → u weakly in X,
u∗n ∈ Tun for all n, and lim sup

n∞
⟨u∗n, un − u⟩ ≤ 0, we have that for every v ∈ X,

there exists u∗(v) ∈ Tu such that ⟨u∗(v), u− v⟩ ≤ lim inf
n∞

⟨u∗n, un − v⟩.

Let (F, ∥ · ∥F ) ⊂ (G, ∥ · ∥G) be the reflexive Banach spaces such that ∥ · ∥F ≥ ∥ · ∥G
and F = G, thus, we may write F ⊂ G ≡ G′ ⊂ F ′. Suppose that B is a linear, bounded,
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positive and symmetric operator from G to G′. Let F = L2([a, b], F ), G = L2([a, b], G)
and define X = {w ∈ F : (Bw)′ ∈ F′} which is a reflexive Banach space for the norm

∥w∥X = ∥w∥F + ∥(Bw)′∥F ′ .

Moreover, let A(t, ·) be an operator from F to F ′, and denote by A : F → F′ its natural
extension, given by Aw(t) = A(t, w(t)). Assume that

A : X → X′ is pseudo-monotone,

A : F → F′ is a bounded operator,
(1)

and for some λ ∈ R, one has

lim
∥w∥F+∞

λ ⟨Bw,w⟩G′×G + ⟨Aw,w⟩F′×F

∥w∥F
= ∞. (2)

Then the following existence theorem holds, see [18, Theorem 3.1].

Theorem 2.1 Let A and B be defined above. Then, for each w0 ∈ G and ℓ ∈ F′,
there exists a w ∈ X such that{

(Bw)′ +Aw = ℓ in F′,

Bw(0) = Bw0 in G′.

3 Problem Statement and Variational Formulation

We consider an elastic body in the reference configuration Ω ⊂ Rd with the dimension
d = 2, 3. We are interested in the displacement field u(x; t), the electrical potential
φ(x, t) and the temperature θ(x; t) for (x; t) ∈ Ω× (0;T ), where (0;T ) is the given time
interval. For the sake of simplicity, we will omit the dependence of various functions on
the spatial variable x ∈ Ω̄. Hence, the local momentum of balance for stress, electric
displacement and heat conduction are given as follows:

ü−Div σ = f0 in Ω× (0, T ),

divD = ϕ0 in Ω× (0, T ),

θ̇ + div q = −M ε(u̇)− P E(φ) + q0 in Ω× (0, T ).

Here, the quantities f0, ϕ0 and q0 describe the given body forces, volume electric charge
and heat source term, acting on Ω. In the case of linear thermo-visco-piezoelectricity,
the stress tensor is given by

σ = A ε(u̇) + F ε(u)− E∗E(φ)−M θ in Ω× (0, T ),

where A is the linear viscosity operator, F = (fijkl) is the linear elasticity operator, ε(u)
is the linearized strain tensor, E(φ) = −∇φ is the electric field, E = (eijk) is the third-
order piezoelectric tensor and E∗ = (ekij) is its transpose, M = (mij) is the thermal
expansion tensor. Moreover, the electric displacement and the heat flux are defined by

D = E ε(u) + β E(φ) + P∗ θ in Ω× (0, T ),

q = −K∇θ in Ω× (0, T ),
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where β = (βij) is the electric permittivity tensor, P = (pi) and K = (kij) are the
thermal expansion and thermal conductivity tensors.

Recall that Sd is the space of second order symmetric tensors on Rd. The canonical
inner products and associated norms on Rd and Sd are given by

∀u, v ∈ Rd, u · v = ui vi ; ∀σ, τ ∈ Sd, σ · τ = σij τij ,

∀u, v ∈ Rd, ∥v∥ = (v · v) 1
2 ; ∀σ, τ ∈ Sd, ∥τ∥ = (τ · τ) 1

2 .

If ν is the outward unit normal vector on the boundary Γ = ∂Ω, then the normal and
tangential components of the displacement vector v and the stress field σ on Γ are

vν = v · ν , vτ = v − vν ν and σν = σ ν · ν , στ = σ ν − σν ν.

In order to formulate the boundary conditions and the initial boundary values, we divide
the boundary Γ into three disjoint open subsets ΓD, ΓN and ΓC such that ΓD∪ΓN∪ΓC =
Γ. We also assume that ΓD ∪ΓN is partitioned into two disjoint open parts Γa and Γb of
nonzero measure such that ΓD ∪ΓN = Γa ∪Γb. We assume that the body is clamped on
ΓD×(0, T ), the surface traction of density fN acts on ΓN ×(0, T ), the electrical potential
vanishes on Γa × (0, T ), the surface electric charge of density ϕb acts on Γb × (0, T ) and
the temperature is assumed to be zero on ΓD ∪ ΓN × (0, T ). Therefore, we have

u = 0 on ΓD × (0, T ),

σ ν = fN on ΓN × (0, T ),

φ = 0 on Γa × (0, T ),

D · ν = ϕb on Γb × (0, T ),

θ = 0 on ΓD ∪ ΓN × (0, T ).

On the contact surface ΓC , the body is supposed to be in unilateral contact with a rigid
foundation by Coulomb’s friction law

σν(u, φ, θ) ≤ 0 , (uν − g) ≤ 0 , σν(u, φ, θ) (uν − g) = 0 on ΓC × (0, T ),
∥στ∥ ≤ µ(θ) |Rσν |
∥στ∥ < µ(θ) |Rσν | =⇒ [u̇]τ = 0

∥στ∥ = µ(θ) |Rσν | =⇒ ∃λ ∈ R, στ = −λ2 u̇τ ,
on ΓC × (0, T ),

where for the temperature dependent coefficient of friction µ(θ) ≥ 0, we use

µ(θ) = µ0
[θ − θd]

2

[θd − θf ]2
,

where µ0 is the static coefficient of friction at the given reference temperature θf and θd
is a damage temperature on the interface. Temperature θd is related to the temperature
at which frictional stress is no longer due to the solid shearing effects, but is generated by
the viscous shear of a molten film on the contact interface. It can be taken as the lowest
melting temperature of the body and the foundation in contact. Since θ < θd, we have
µ′(θd) ≤ 0 and lim

θd
µ(θ) = 0. Therefore this equation shows a thermal softening effect.

Moreover, the thermal and electrical flow conditions on the contact zone are given by

|D · ν| ≤ k , |D · ν| = k
φ

|φ|
if φ ̸= 0 on ΓC × (0, T ).
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This condition represents the electric condition on the contact surface and we assume
them by analogy with Tresca’s friction law, where k is a given positive function, the
electric conductivity coefficient

q · ν = kc(uν − g)ϕL(θ − θF ) on ΓC × (0, T ),

describes the heat balance on the contact interface, where ϕL is the truncation function,
kc represents the thermal conductance function that is supposed such that

ϕL(s) =


−L if s < −L
s if − L ≤ s ≤ L

L if s > L

, kc(r) =


kc(r) = 0 if r < 0,

kc(r) > 0 if r ≥ 0,

where L > 0 is a sufficiently large constant. Finally, we denote by u0, v0, φ0 and
θ0 the initial displacement, initial velocity, initial potential and initial temperature,
respectively. We collect the above relations to obtain the following mathematical model.

Problem (P ) : Find a displacement u : Ω × [0, T ] → Rd, an electric potential φ :
Ω× [0, T ] → R and a temperature θ : Ω× [0, T ] → R such that

σ = A ε(u̇) + F ε(u)− E∗E(φ)−M θ in Ω× (0, T ), (3)

D = E ε(u) + β E(φ) + P θ in Ω× (0, T ), (4)

q = −K∇θ in Ω× (0, T ), (5)

ü−Div σ = f0 in Ω× (0, T ), (6)

divD = ϕ0 in Ω× (0, T ), (7)

θ̇ + div q = −M∗ ε(u̇)−N E(φ) + q0 in Ω× (0, T ), (8)

u = 0 on ΓD × (0, T ), (9)

σν = f2 on ΓN × (0, T ), (10)

σν(u, φ, θ) ≤ 0 , (uν − g) ≤ 0 , σν(u, φ, θ) (uν − g) = 0 on ΓC × (0, T ), (11)
∥στ∥ ≤ µ(θ) |Rσν |

∥στ∥ < µ(θ) |Rσν | =⇒ [u̇]τ = 0

∥στ∥ = µ(θ) |Rσν | =⇒ ∃λ ∈ R, στ = −λ2 [u̇]τ

on ΓC × (0, T ), (12)

φ = 0 on Γa × (0, T ), (13)

D · ν = q2 on Γb × (0, T ), (14)

|D · ν| ≤ k , |D · ν| = k
φ

|φ|
if φ ̸= 0 on ΓC × (0, T ), (15)

θ = 0 on ΓD ∪ ΓN × (0, T ), (16)

q · ν = kc(uν − g)ϕL(θ − θF ) on ΓC × (0, T ), (17)

u(·, 0) = u0 , u̇(·, 0) = v0 , θ(·, 0) = θ0 in Ω. (18)

To derive the weak formulation of Problem P , we introduce the following spaces:

H = L2(Ω)d , H = {τ = (τij) , τij = τji ∈ L2(Ω)},
H1 = H1(Ω)d , H1 = {σ ∈ H , Div σ ∈ H},
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which are the real Hilbert spaces for the associated Euclidean norms to the inner products

(u, v)H =

∫
Ω

uivi dx , (u, v)H1
= (u, v)H + (ε(u), ε(v))H,

(σ, τ)H =

∫
Ω

σijτij dx , (σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H.

Keeping in mind (9), (13) and (16), we define the following variational subspaces:

V = {v ∈ H1 , v = 0 on ΓD},
W = {ψ ∈ H1(Ω) , ψ = 0 on Γa},
Q = {η ∈ H1(Ω), η = 0 on ΓD ∪ ΓN}.

Over spaces V , Q and W , we use the following inner products and norms given by

(u, v)V = (ε(u), ε(v))H , ∥u∥V = (u, u)
1/2
V , ∀u, v ∈ V, (19)

(φ,ψ)W = (∇φ,∇ψ)H , ∥φ∥W = (φ,φ)
1/2
W , ∀φ, ψ ∈W, (20)

(θ, η)Q = (∇θ,∇η)H , ∥θ∥Q = (θ, θ)
1/2
Q , ∀ θ, η ∈ Q. (21)

Since V is a closed subspace of the Hilbert spaceH1, andmeas(Γ1) > 0, Korn’s inequality
holds, then there exists a constant ck > 0 depending only on Ω and Γ1 such that

∥ε(v)∥H ≥ ck ∥v∥H1 , ∀ v ∈ V. (22)

Then the norms ∥ · ∥H1
and ∥ · ∥V are equivalent on V and therefore (V, ∥ · ∥V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem, there exists a constant c0 > 0
depending only on Ω, ΓC and ΓD such that

∥v∥L2(Γ)d ≤ c0 ∥v∥V , ∀ v ∈ V. (23)

Since meas(Γa) > 0, the Friedrichs-Poincaré inequality holds and thus

∥∇ψ∥H ≥ cF ∥ψ∥H1(Ω), ∀ψ ∈W, (24)

where cF > 0 is a constant which depends only on Ω and Γa. It follows from (20) and
(24) that ∥ · ∥W and ∥ · ∥H1(Ω) are equivalent norms on W and then (W, ∥ · ∥W ) is a real
Hilbert space. The Sobolev trace theorem implies that there exists c1 > 0 depending on
Ω, Γa and ΓC such that

∥ξ∥L2(ΓC) ≤ c1 ∥ξ∥W , ∀ ξ ∈W. (25)

In an analogous way, we can get that ∥ · ∥Q and ∥ · ∥H1(Ω) are equivalent norms on Q and
then (Q, ∥ · ∥Q) is a real Hilbert space. Using the Sobolev trace theorem, we obtain that
there exists a constant c2 > 0 depending only on Ω, ΓD, ΓN and ΓC such that

∥η∥L2(Γ) ≤ c2 ∥η∥Q, ∀ η ∈ Q. (26)

For a real Banach space (X, ∥ · ∥X), we denote by X
′
the dual space of X and by

⟨·, ·⟩X′×X the duality pairing between X
′
and X. We consider the following standard

Bochner-Lebesgue function spaces:

H = L2([0, T ], H) , V = L2([0, T ], V ) , W = L2([0, T ],W ) , Q = L2([0, T ], Q). (27)
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The notations ∥.∥H, ∥.∥V, ∥.∥W and ∥.∥Q stand for the norms of H, V, Q and W, respec-
tively. We also denote by ⟨., .⟩ the duality pairing between V ′ and V or W ′ and W or Q′

and Q , as the meaning is evident from the context.
To solve the mechanical problem (3)-(18), we need the following assumptions.

A1: (a) The elasticity and the viscosity tensors F, A : Ω × Sd → Sd, the electric
permittivity and the thermal conductivity tensors β, K : Ω×Rd → Rd satisfy

Fijkl = Fklij = Fjikl ∈ L∞(Ω) , βij = βji ∈ L∞(Ω),

Aijkl = Ajikl = Alkij ∈ L∞(Ω) , Kij = Kji ∈ L∞(Ω),

(b) There exist positive constants mF , mA, mβ and mK such that

Fijkl(x) ξijξkl ≥ mF ∥ξ∥2 , Aijkl(x) ξijξkl ≥ mA ∥ξ∥2, ∀ ξ = (ξij) ∈ Sd,
βij(x) ζiζj ≥ mβ ∥ζ∥2 , Kij(x) ζiζj ≥ mK ∥ζ∥2, ∀ ζ = (ζi) ∈ Rd.

Under the previous assumptions, the following constants are well-defined:

MF = sup
ijkl

∥Fijkl∥L∞(Ω) , Mβ = sup
ij

∥βij∥L∞(Ω),

MA = sup
ijkl

∥Aijkl∥L∞(Ω) , MK = sup
ij

∥Kij∥L∞(Ω).

A2 : The piezoelectric tensor E : Ω× Sd → Rd, the pyroelectric tensor P : Ω×R → Rd,
the thermal expansion tensor M : Ω × R → Rd and the tensors N : Ω × Rd → R
satisfy the following properties:

Eijk = Eikj ∈ L∞(Ω) , Mij = Mji ∈ L∞(Ω) , Pi ∈ L∞(Ω) , Ni ∈ L∞(Ω).

Under the previous assumptions, the following constants are well-defined:

ME = sup
ijk

∥Eijk∥L∞(Ω) , MM = sup
ij

∥Mij∥L∞(Ω),

MP = sup
i

∥Pi∥L∞(Ω) , MN = sup
i

∥Ni∥L∞(Ω).

A3 : The friction coefficient µ : ΓC × R → R+ satisfies

(a) ∃µ∗ > 0 such that |µ(x, u)| ≤ µ∗, ∀u ∈ R, a.e. x ∈ ΓC ,

(b) ∃Lµ > 0 such that, for all u, v ∈ R, one has

|µ(x, u)− µ(x, v)| ≤ Lµ|u− v|, a.e. x ∈ ΓC ,

(c) x 7→ µ(x, u) is measurable on ΓC for all u ∈ R.

A4 : The function kc : ΓC × R → R+ satisfies

(a) ∃Mkc
> 0 such that |kc(x, u)| ≤Mkc

, ∀u ∈ R, a.e. x ∈ ΓC ,

(b) ∃Lkc
> 0 such that, for all u, v ∈ R, one has

|kc(x, u)− kc(x, v)| ≤ Lkc
|u− v|, a.e. x ∈ ΓC ,
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(c) 7→ kc(x, u) is measurable on ΓC for all u ∈ R.

A5 : The truncation function φL : ΓC × R → R satisfies

(a) (φL(s1)− φL(s2)) (s1 − s2) ≥ 0 for all s1, s2 ∈ R a.e. x ∈ ΓC ,

(b) ∃Lφ > 0 such that, for all s1, s2 ∈ R, one has

|φL(x, s1)− φL(x, s2)| ≤ Lφ |s1 − s2| a.e. x ∈ ΓC ,

(c) ∃Mφ > 0 such that |φL(x, s)| ≤Mφ, ∀ s ∈ R a.e. x ∈ ΓC

(d) x 7→ φL(x, s) is measurable on ΓC for all s ∈ R.

A6: The function R : H− 1
2 (ΓC) → L∞(ΓC) is bounded and Lipschitz continuous, i.e.,

(a) ∃LR > 0 such that for all s1, s2 ∈ H− 1
2 (ΓC), we have

∥Rs1 −Rs2∥L∞(ΓC) ≤ LR ∥s1 − s2∥
H

1
2 (ΓC)

,

(b) ∃MR > 0 such that for all s ∈ H− 1
2 (ΓC), we have ∥Rs∥L∞(ΓC) ≤MR.

A7: The given forces, charge densities and heat sources satisfy the below regularity

(a) f0 ∈ L2([0, T ], L2(Ω)d) , f2 ∈ L2([0, T ];L2(ΓN )d) , g ∈ L2(ΓC),

(b) ϕ0 ∈ L2([0, T ];L2(Ω)) , q2 ∈ L2([0, T ];L2(Γb)) , φf ∈ L2([0, T ], L2(ΓC)).

A8: The initial data satisfy u0 ∈ V , v0 ∈ V , φ0 ∈W and θ0 ∈ Q.

We move now to deriving the weak formulation of the problem (3)-(18). To this end, we
assume that (u, σ, φ, θ) are smooth functions which solve (3)-(18), by invoking standard
Green’s formula, we obtain the following weak formulation of Problem (P ).

Problem (PV ) : Find a displacement u ∈ V, an electric potential φ ∈ W, and a
temperature θ ∈ Q such that

⟨ü, v − u̇⟩H + ⟨Aε(u̇), ε(v − u̇)⟩H + ⟨Fε(u), ε(v − u̇)⟩H

− ⟨E∗E(φ), ε(v − u̇)⟩H − ⟨Mθ, ε(v − u̇)⟩H +

∫
ΓC

µ(θ)|Rσν | · (|vτ | − |u̇τ |) da

≥ ⟨f0, v − u̇⟩H + ⟨fN , v − u̇⟩L2(ΓN ) , ∀ v ∈ V,

(28)

⟨β∇φ,∇φ−∇ψ⟩H − ⟨Eε(u),∇φ−∇ψ⟩H − ⟨Pθ,∇φ−∇ψ⟩H

+

∫
ΓC

k · (|φ| − |ψ|) da ≥ ⟨ϕ0, φ− ψ⟩H + ⟨q2, φ− ψ⟩L2(ΓN ) , ∀ψ ∈ W,
(29)

⟨θ̇, θ − η⟩H + ⟨K∇θ,∇θ −∇η⟩H + ⟨Nφ,∇θ −∇η⟩H − ⟨M∗ε(u̇),∇θ −∇η⟩H

+

∫
ΓC

kc(uν − g)φL(θ − θf ) · (η − θ) da = ⟨q0, η − θ⟩H , ∀η ∈ Q.
(30)
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4 Existence and Uniqueness Result

In this section, we will prove the existence and uniqueness of the solution of the previous
contact problem, by using the penalty method and intermediate problem. We first rewrite
the variational formulation in abstract form. For this purpose, we consider the operators
A, F ∈ L(V,V∗), B ∈ L(W,W∗), K ∈ L(Q,Q∗), E1 ∈ L(W,V∗), M1 ∈ L(Q,V∗),
M2 ∈ L(V,Q∗), N ∈ L(W,Q∗), E2 ∈ L(V,W∗) and P ∈ L(Q,W∗) defined as follows:

⟨Au, v⟩ = (A ε(u), ε(v))H , ⟨Fu, v⟩ = (Fε(u), ε(v))H , ⟨E1φ, v⟩ = (E∗∇φ, ε(v))H ,

⟨M1θ, v⟩ = (Mθ, ε(v))H , ⟨Bφ, ξ⟩ = (β∇φ,∇ξ)H , ⟨E2u, ξ⟩ = (Eε(u),∇ξ)H ,

⟨Pθ, ξ⟩ = (Pθ,∇ξ)H , ⟨Kθ, η⟩ = (K∇θ,∇η)H , ⟨M2u, η⟩ = (M∗ε(u), η)H ,

⟨Nφ, η⟩ = (N∇φ, η)H .

(31)

We next introduce the friction functional j1 : Q × H−1/2 × V → R, the thermal and
electrical transfer functional j2 :W → R and hc : V ×Q→ Q′, respectively defined by

j1(θ, s, v) =

∫ T

0

∫
ΓC

µ(θ) |Rs| · |vτ | da dt, ∀v ∈ V, (32)

j2(φ) =

∫ T

0

∫
ΓC

k |φ| da dt, ∀η ∈W, (33)

⟨hc(u, θ), η⟩ =
∫
ΓC

kc(uν − g)φL(θ − θf ) · η da, ∀η ∈ Q. (34)

By Riesz’s representation theorem, there exist f ∈ V′, qe ∈ W′ and Θ ∈ Q′ such that

⟨f, v⟩V′×V =

∫ T

0

∫
Ω

f0(t) · v dx dt+
∫ T

0

∫
ΓN

f2(t) · v da dt, ∀ v ∈ V, (35)

⟨qe, ξ⟩W′×W =

∫ T

0

∫
Ω

ϕ0(t) · ξ dx dt−
∫ T

0

∫
Γb

q2(t) · ξ da dt, ∀ ξ ∈W, (36)

⟨Θ, η⟩Q′×Q =

∫ T

0

∫
Ω

q0(t) · η dx dt, ∀ η ∈ Q. (37)

Then, Problem (PV) can be formulated in the following abstract form.

Problem (PV1): Find u ∈ V, φ ∈ W, and θ ∈ Q such that

ü ∈ V∗, u̇ ∈ V , θ̇ ∈ Q, (38)

f ∈ ü+Au̇+ Fu+ E1φ−M1θ + ∂3j1(θ, σν , u̇) in V∗, (39)

qe ∈ Bφ− E2u− Pθ + ∂j2(φ) in W∗, (40)

θ̇ +Kθ +Nφ−M2u̇+ hc(u, θ) = Θ in Q∗, (41)

u(·, 0) = u0 , u̇(·, 0) = v0 , θ(·, 0) = θ0 in Ω, (42)

where ∂3j1(θ, s, v) denotes the partial sub-differential with respect to v of j1(θ, s, v), and
∂j2(φ) for the partial sub-differential with respect to φ of j2(φ).

We are now able to state the following existence and uniqueness result.
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Theorem 4.1 Suppose assumptions (A1)-(A8) hold. Then Problem (PV1) has at
least one solution (u, φ, θ) ∈ V×W×Q.

Proof. The proof is based on the arguments from the theory of multi-valued pseudo-
monotone operators and the fixed point theorem. It consists of two steps. First, let
ζ = (ζ1, ζ2) ∈ L2(0, T ;L2(Γ3)× V ) be a given function, we consider the mappings

j1ζ (v) :=

∫ T

0

∫
ΓC

ζ1(t) |vτ | da dt, ∀v ∈ V, (43)

⟨hc(θζ), η⟩ :=
∫
ΓC

ζ2(s)φL(θζ − θf ) · η da, ∀η ∈ Q. (44)

Then, for any given ξ ∈ L2(0, T ;L2(ΓC)× V ), we consider the intermediate problem.

Problem (PV1
ζ): Find uζ ∈ V, φζ ∈ W and θζ ∈ Q such that

üζ ∈ V′ , u̇ζ ∈ V , θ̇ζ ∈ Q′, (45)

f ∈ üζ +A u̇ζ + Fuζ + E1φζ −M1θζ + ∂j1ζ (u̇ζ) in V′, (46)

qe ∈ Bφζ − E2uζ − Pθζ + ∂j2(φζ) in W′, (47)

θ̇ζ +Kθζ +Nφζ −M2u̇ζ + hc(θζ) = Θ in Q′, (48)

uζ(·, 0) = u0, u̇ζ(·, 0) = v0, θζ(·, 0) = θ0 in Ω. (49)

Lemma 4.1 Assume (A1)-(A2), (A4)-(A5) and (A7)-(A8) hold. Then, for any given
ζ = (ζ1, ζ2) ∈ L2(0, T ;L2(ΓC)×V ), Problem (PV1

ζ) admits a unique solution (uζ , φζ , θζ).

Proof. The proof of Lemma 4.1 will be carried out by considering a sequence of
regularized approximations to problem (PVζ), and the solution of this problem is the
limit of the regularized problem. To this end, let {ψh}h>0 be a sequence of positive
convex functions of C1(Rd) which approximate the inner product | · |Rd , and satisfy for
any h > 0, the following conditions:

|∇ψh(s)| ≤ 2 , 0 ≤ ⟨∇ψh(s), s⟩ ,
∣∣∇ψh(s)− |s|

∣∣ ≤ s, ∀ s ∈ Rd. (50)

We next consider the operator Jh
ζ : V → V defined as follows:

(Jh
ζ(t)v, w)V :=

∫
ΓC

ζ1(t)∇ψh(vτ ) · wτ da, ∀ v ∈ V. (51)

We then approximate the functional j2 by a family of regularized functions Jh
2 : V → R,

depending on h > 0, given for all v ∈ V , by

Jh
2 (φ) =

∫
ΓC

√
|φ|2 + h da. (52)

The functional Jh
2 is Gateaux-differentiable and its derivative Jh

2 is defined as follows:

⟨Jh
2 φ, ξ⟩ =

∫
Γ3

φ ξ√
|φ|2 + h

da, ∀ v ∈ V. (53)
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Let Re : V → V ′ be a Riesz isomorphism, i.e., u 7→ ℓu, where ℓu(v) = ⟨u, x⟩. Next, for
each h > 0, we consider the following regularized problem.

Problem (PV1h
ζ ): Find ωh

ζ ∈ V, uhζ ∈ V, φh
ζ ∈ W and θhζ ∈ Q such that

ω̇h
ζ ∈ V′, θ̇hζ ∈ Q′, (54)

ω̇h
ζ +Aωh

ζ + Fuhζ + E1φ
h
ζ −M1θ

h
ζ + Jh

ζ ω
h
ζ = f in V′, (55)

Bφh
ζ − E2u

h
ζ − Pθhζ + Jh

2 φ
h
ζ = qe in W′, (56)

θ̇hζ +Kθhζ +Nφh
ζ −M2ω

h
ζ + hc(θ

h
ζ ) = Θ in Q′, (57)

Reu̇
h
ζ −Reω

h
ζ = 0 in V′, (58)

uhζ (·, 0) = u0 , ωh
ζ (·, 0) = v0 , θhζ (·, 0) = θ0 in Ω. (59)

Lemma 4.2 For every h > 0 and ζ ∈ L2(0, T ;L2(ΓC)× V ), Problem (PV1h
ζ ) has a

unique solution (wh
ζ , u

h
ζ , φ

h
ζ , θ

h
ζ ). Moreover, under the assumptions of Theorem 4.1, the

solution (wh
ζ , u

h
ζ , φ

h
ζ , θ

h
ζ ) of Problem (PV1h

ζ ) has the following estimation:

∥ωh
ζ (t)∥2L2(Ω)d + ∥uhζ (t)∥2V +

∫ t

0

∥ωh
ζ (s)∥2V ds+ ∥θhζ (t)∥2L2(Ω)

+

∫ t

0

∥θhζ (s)∥2Qds+ ∥φh
ζ (t)∥2W ds ≤ c, ∀ t ∈ (0, T ),

(60)

for a positive constant c which is independent of h.

Proof. To prove Lemma 4.2, we use Theorem 2.1 with F := V ×W × V × Q and
G = L2(Ω)d ×W × V × L2(Ω). We also define the following two operators defined by

B : G→ G′, BX = B


ω
φ
u
θ

 =


ω
0
θ

Re u

 , (61)

A(t, ·) : F → F ′, A(t,X) =


Aω + F u+ E1 φ−M1θ + Jhω

Bφ+ Jh
2 φ− E2 u− P θ

Kθ + hζ(θ)−Mω +Nφ

−Re ω

 . (62)

We also choose the two elements X0 ∈ G and L ∈ F given by

X0 =


v0
φ0

u0
θ0

 and L =


f
qe
Θ
0

 . (63)
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By using (61) and (63), we get that Problem (PV1h
ζ ) is equivalent to the problem below.

Find Xh
ζ = (ωh

ζ , φ
h
ζ , θ

h
ζ , u

h
ζ )

′
such that

BẊh
ζ (t) +AXh

ζ (t) = L in F
′
,

BXh
ζ (0) = BX0 in G

′
.

(64)

We will show that the operators A and B satisfy conditions of Theorem 2.1. Indeed,
from the assumptions stated in Theorem 4.1, we can easily prove that the operator
B : G → G

′
is linear, bounded, positive and symmetric and the operator A(t, ·) verifies

the conditions (1) and (2). Thus, due to Theorem 2.1, we get that problem (64) has a
unique solution Xh

ζ = (wh
ζ , φ

h
ζ , u

h
ζ , θ

h
ζ ). Consequently, Problem (PV1h

ζ ) admits a unique

solution (wh
ζ , φ

h
ζ , u

h
ζ , θ

h
ζ ) ∈ V×W×V×Q. Next, in order to verify the estimate (60), we

multiply (55) by wh
ζ to obtain

⟨ẇh
ζ , w

h
ζ ⟩+ ⟨Awh

ζ + Fuhζ + Jh
ζ w

h
ζ , w

h
ζ ⟩ − ⟨M1θ

h
ζ , w

h
ζ ⟩ = ⟨f, wh

ζ ⟩. (65)

Recalling (A1), (A2) and (65), by employing several times Cauchy’s inequality

ab ≤ ϵa2 +
1

4ϵ
b2, ∀a, b ∈ R, ϵ > 0, (66)

we find

∥wh
ζ (t)∥2L2(Ω)d + ∥uhζ (t)∥2V +

∫ t

0

∥wh
ζ (s)∥2V ds

≤ c
(
∥u0∥2V + ∥v0∥2 +

∫ t

0

(∥ζ1(s)∥2L2(ΓC) + ∥f(s)∥2L2(Ω)) ds

+

∫ t

0

∥θhζ (s)∥2Qds+
∫ t

0

∥φh
ζ (s)∥2W ds

)
, ∀t ∈ (0, T ).

(67)

Next, we let the potential equation (56) act on φh
ζ to get

⟨Bφh
ζ , w

h
ζ ⟩ − ⟨E2u

h
ζ , φ

h
ζ ⟩ − ⟨M2w

h
ζ , φ

h
ζ ⟩+ ⟨Jh

2 φ
h
ζ , φ

h
ζ ⟩ = ⟨Θ, φh

ζ ⟩.

Then, from assumptions (A1), (A2) and (53), we deduce after some manipulations that

∥φh
ζ (t)∥2W ≤ c

(
∥uhζ (t)∥2V + ∥θhζ (t)∥2L2(Ω) + ∥qe(t)∥2W

)
, ∀ t ∈ (0, T ). (68)

Next, let the energy equation (57) act on θhζ . Then we have

⟨θ̇hζ , θhζ ⟩+ ⟨Kθhζ +Nφh
ζ −M2w

h
ζ , θ

h
ζ ⟩+ ⟨hc(θhζ ), θhζ ⟩ = ⟨Θ, θhζ ⟩.

It follows from hypotheses (A1), (A2), (A4), (A5) and the monotonicity of φL that

∥θhζ (t)∥2L2(Ω) +

∫ t

0

∥θhζ (s)∥2Qds

≤ c
(
∥θ0∥2Q +

∫ t

0

∥φh
ζ (s)∥2W ds+

∫ t

0

∥wh
ζ (s)∥2V ds

+

∫ t

0

∥Θ(s)∥2
Q′ds+

∫ t

0

∥ζ2(s)∥2V ds
)
.

(69)
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Inserting the estimation (67) and (68) into (69), we find

∥θhζ (t)∥2L2(Ω) +

∫ t

0

∥θhζ (s)∥2Qds

≤ c
(
∥θ0∥2L2(Ω) + ∥u0∥2V + ∥v0∥2L2(Ω)d +

∫ t

0

∥Θ(s)∥2
Q′ds+

∫ t

0

∥qe(s)∥2W ds

+

∫ t

0

∥f(s)∥2L2(Ω)ds+

∫ t

0

∥ζ1(s)∥2L2(ΓC)ds+

∫ t

0

∥ζ2(s)∥2V ds
)
.

Thus,

∥θhζ (t)∥2L2(Ω) +

∫ t

0

∥θhζ (s)∥2Qds ≤ c. (70)

Integrate (68) over (0, t), where t ∈ [0, T ], and combine the result with (67) to obtain

∥wh
ζ (t)∥2L2(Ω)2 + ∥uhζ (t)∥2V +

∫ t

0

∥wh
ζ (s)∥2V ds+

∫ t

0

∥φh
ζ (s)∥2W ds

≤ c
(
∥u0∥2V + ∥v0∥2L2(Ω)d +

∫ t

0

∥qe(s)∥2W ds+

∫ t

0

∥ζ1(s)∥2L2(ΓC)ds

+

∫ t

0

∥f(s)∥2L2(Ω)ds+

∫ t

0

∥uhζ (s)∥2V ds
)
.

Then, Grönwall’s inequality and the inequality (70) lead to

∥uhζ (t)∥V ≤ c. (71)

Hence,

∥φh
ζ (t)∥W ≤ c. (72)

Moreover, the estimations (70), (71) and (72) complete the proof of Lemma 4.2. 2

Now, we have the ingredient which allows us to prove the existence and uniqueness
of the solution of Problem (PVζ). Indeed, due to Lemma 4.2, we have for a given set
of initial conditions {wh

0 , u
h
0 , θ

h
0}h>0 that the family of solutions {wh

ζ , φ
h
ζ , u

h
ζ , θ

h
ζ }h>0 is

bounded in V × W × V × Q. Then, from the latter result and Problem (PV h
ζ ), we get

that {ẇh
ζ , Reu̇

h
ζ , θ̇

h
ζ } is also bounded in V′ ×V′ ×Q′

. Then there exists a subsequence of
parameters {hk} such that hk → 0 as k → ∞ so that

uhk

ζ ⇀ u∗ζ weakly in V, (73)

ωhk

ζ ⇀ ω∗
ζ weakly in V, (74)

φhk

ζ ⇀ φ∗
ζ weakly in W, (75)

θhk

ζ ⇀ θ∗ζ weakly in Q, (76)

θ̇hk

ζ ⇀ θ̇∗ζ weakly in Q′, (77)

ω̇hk

ζ ⇀ ω̇∗
ζ weakly in V′, (78)

Reu̇
hk

ζ ⇀ Reu̇
∗
ζ weakly in V′. (79)
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We are going now to prove that the triplet (w∗
ζ , φ

∗
ζ , u

∗
ζ , θ

∗
ζ ) verifies (53)-(59). Indeed, by

passing to the limit as k → ∞ in the relations Jhk

ζ , Jhk
2 and hc(θ

hk

ζ ), we obtain

lim
k→∞

⟨Jhk

ζ ωhk

ζ , v − ω∗
ζ ⟩ = lim

k→∞

∫ T

0

∫
ΓC

ζ1(t)∇ψh(ωhk

ζτ ).(vτ − ω∗
ζτ ) da dt

≤ lim
k→∞

∫ T

0

∫
ΓC

|ζ1(t)|(ψh(vτ − ω∗
ζτ + ωhk

ζτ )− ψh(ω∗
ζτ )) da dt

≤ lim
k→∞

∫ T

0

∫
ΓC

|ζ1(t)|(|vτ |)− |ω∗
ζτ |)) da dt,

(80)

lim
k→∞

⟨Jhk
2 φhk

ζ , ξ − φ∗
ζ⟩ = lim

k→∞

∫
ΓC

φhk

ζ (ξ − φ∗
ζ)√

|φhk

ζ |2 + h
da

≤ lim
k→∞

∫
ΓC

|φhk

ζ | |ξ|√
|φhk

ζ |2 + h
−

φhk

ζ φ∗
ζ√

|φhk

ζ |2 + h
da ≤ j2(ξ)− j2(φ

∗
ζ),

(81)

and

lim
k→∞

⟨hc(θhk

ζ ), η⟩ = ⟨hc(u∗ζ , θ∗ζ ), η⟩. (82)

Next, due to assumptions (A1)-(A6), and conditions (73)-(79) and (80)-(82), the weak
limit (u∗ζ , φ

∗
ζ , θ

∗
ζ ) of the subsequence (u

hk

ζ , φhk

ζ , θhk

ζ ) is a solution to Problem (PV1
ζ). Fur-

thermore, to prove the uniqueness of the solution of Problem (PVζ), let (u1, φ1, θ1) ∈
V × W × Q and (u2, φ2, θ2) ∈ V × W × Q be two solutions corresponding to the same
data ζ. We substitute uζ in (46) by u1 and u2, respectively, we obtain

f ∈ ü1 +A u̇1 + Fu1 + E1φ1 −M1θ1 + ∂j1ζ (u̇1) in V′,

f ∈ ü2 +A u̇2 + Fu2 + E1φ2 −M1θ2 + ∂j1ζ (u̇2) in V′.

Let the resulting expressions act on u̇2 − u̇1 and u̇1 − u̇2, respectively, we find

⟨f, u̇2 − u̇1⟩ = ⟨ü1, u̇2 − u̇1⟩+ ⟨Au̇1, u̇2 − u̇1⟩+ ⟨Fu1, u̇2 − u̇1⟩
+ ⟨E1φ1, u̇2 − u̇1⟩ − ⟨M1θ1, u̇2 − u̇1⟩
+ ⟨Z(u̇1), u̇2 − u̇1⟩ with Z(u̇1) ∈ ∂j1ζ (u̇1) in V′,

(83)

⟨f, u̇1 − u̇2⟩ = ⟨ü2, u̇1 − u̇2⟩+ ⟨Au̇2, u̇1 − u̇2⟩+ ⟨Fu2, u̇1 − u̇2⟩
+ ⟨E1φ2, u̇1 − u̇2⟩ − ⟨M1θ2, u̇1 − u̇2⟩
+ ⟨Z(u̇2), u̇1 − u̇2⟩ with Z(u̇2) ∈ ∂j1ζ (u̇2) in V′.

(84)

On the other hand, it comes from the convexity of the functional j1ζ that

⟨Z(u̇1), u̇2 − u̇1⟩ ≤ j1ζ (u̇2)− j1ζ (u̇1) and ⟨Z(u̇2), u̇1 − u̇2⟩ ≤ j1ζ (u̇1)− j1ζ (u̇2).

Therefore, the sum of two previous relations leads to

⟨Z(u̇2)−Z(u̇1), u̇1 − u̇2⟩ ≤ 0. (85)
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Keeping in mind (85), by adding two inequalities (83) and (84), we find

⟨ü2 − ü1, u̇1 − u̇2⟩+ ⟨Au̇2 −Au̇1, u̇1 − u̇2⟩
+ ⟨Fu2 − Fu1, u̇1 − u̇2⟩+ ⟨E1φ2 − E1φ1, u̇1 − u̇2⟩
− ⟨M1θ2 −M1θ1, u̇1 − u̇2⟩ = −⟨Z(u̇2)−Z(u̇1), u̇1 − u̇2⟩ ≥ 0.

Now, by integrating the previous inequality over (0, t), we deduce∫ t

0

⟨ü1 − ü2, u̇1 − u̇2⟩ds+
∫ t

0

⟨Au̇1 −Au̇2, u̇1 − u̇2⟩ds+
∫ t

0

⟨Fu1 − Fu2, u̇1 − u̇2⟩ds

≤
∫ t

0

⟨E1φ1 − E2φ2, u̇1 − u̇2⟩ds+
∫ t

0

⟨M1θ1 −M1θ2, u̇1 − u̇2⟩ds.

Then, using the same assumptions as in Lemma 4.1, we can obtain

∥u̇1(t)− u̇2(t)∥2L2(Ω)d +

∫ t

0

∥u̇1(s)− u̇2(s)∥2V ds+ ∥u1(t)− u2(t)∥2V

≤ c
( ∫ t

0

∥φ1(s)− φ2(s)∥2W ds+

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds
)
.

(86)

Following the same tricks as above, we can also find∫ t

0

∥φ1(s)−φ2(s)∥2W ds ≤ c
( ∫ t

0

∥u1(s)−u2(s)∥2V ds+
∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω)ds
)
. (87)

Next, we replace θ1 and θ2 in the relation (48), respectively, we get

θ̇1 +Kθ1 +Nφ1 −M2u̇1 + hc(θ1) = Θ in Q′,

θ̇2 +Kθ2 +Nφ2 −M2u̇2 + hc(θ2) = Θ in Q′.

Then, by acting the obtained results on θ1 − θ2 and by subtracting them, we find

⟨θ̇1 − θ̇2, θ1 − θ2⟩+ ⟨K(θ1 − θ2), θ1 − θ2⟩
+ ⟨N(φ1 − φ2), θ1 − θ2⟩ − ⟨M2(u̇1 − u̇2), θ1 − θ2⟩ = hc(θ2)− hc(θ1).

We next integrate over (0, t), then the first integrals are estimated by∫ t

0

⟨θ̇1(s)− θ̇2(s), θ1(s)− θ2(s)⟩ ds =
1

2

∫ t

0

d ∥θ1(s)− θ2(s)∥2L2(Ω)

ds
ds

=
1

2
∥θ1(s)− θ2(s)∥2L2(Ω) −

1

2
∥θ1(0)− θ2(0)∥2L2(Ω).

For more details on the relation above, see [18, Theorem 1(2)]. The other integrals are
estimated by using Cauchy’s inequality, the properties of the operators K, N and M2,
and of the functional hc. Combining all estimates of these integrals, we obtain

∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2Q ds

≤ c
( ∫ t

0

∥φ1(s)− φ2(s)∥2W ds+

∫ t

0

∥u̇1(s)− u̇2(s)∥2V ds
)
.

(88)
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Then, we deduce that

∥θ1(t)− θ2(t)∥2L2(Ω) + ∥u1(t)− u2(t)∥2V

≤ c
( ∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds+

∫ t

0

∥u1(s)− u2(s)∥2V ds
)
.

(89)

Now Gronwall’s inequality implies that θ1 = θ2 and u1 = u2, and consequently, φ1 = φ2,
which completes the proof of Lemma 4.1. 2

Now, we introduce L : L2(0, T ;L2(ΓC)× V ) → L2(0, T ;L2(ΓC)× V ) defined by

L(ζ) := (µ(θζ) |Rσν(uζ , φζ , θζ)| ; kc(uζ,ν − g)) (90)

for all ζ = (ζ1, ζ2) ∈ L2(0, T ;L2(ΓC) × V ) and where (uζ , φζ , θζ) is the unique solution
of Problem (PVζ) corresponding to ζ. We also consider the space Y defined as follows:

Y =
{
ζ ∈ L2([0, T ], L2(ΓC)×V ) : ∥ζ∥L2([0,T ],L2(ΓC)×V ) ≤ T

√
meas(ΓC)(MµMR+Mkc

)
}
.

Then, we provide the following result that states that L has a fixed point on Y .

Lemma 4.3 The operator L has a unique fixed point ζ∗ ∈ Y .

Proof. Let ζ = (ζ1, ζ2), λ = (λ1, λ2) ∈ L2(0, T ;L2(ΓC) × V ), and let us denote by
(uζ , φζ , θζ) and (uλ, φλ, θλ) the solution of Problem (PV1

ζ) corresponding to ζ and λ,
respectively. By using the definition (90) of the operator L, we obtain

∥L(ζ)(t)− L(λ)(t)∥2L2(ΓC)×V

= ∥µ(θζ) |Rσν(uζ , φζ , θζ)| − µ(θλ) |Rσν(uλ, φλ, θλ)|∥2L2(ΓC)

+ ∥kc(uζν − g)− kc(uλν − g)∥2V .

(91)

First, it comes from hypothesis (A4)(b) that

∥kc(uζν − g)− kc(uλν − g)∥2V ≤ L2
kc
c21∥uζ − uλ∥2V . (92)

Also, by using the hypotheses (A3) and (A6), we deduce∥∥µ(θζ) |Rσν(uζ , φζ , θζ)| − µ(θλ) |Rσν(uλ, φλ, θλ)|
∥∥2
L2(Γ3)

≤M2
µL

2
R∥σν(uζ , φζ , θζ)− σν(uλ, φλ, θλ)∥2

H− 1
2 (ΓC)

+M2
RL

2
µ∥θζ − θλ∥2L2(Γ3)

.

Moreover, we know that there exists a constant cF > 0 such that∥∥σν(uζ , φζ , θζ)− σν(uλ, φλ, θλ)
∥∥
H− 1

2 (ΓC)

= sup
v∈H1/2(ΓC)

⟨σν(uζ , φζ , θζ)− σν(uλ, φλ, θλ), vν⟩L2(0,T ;H)×H−1/2(ΓC)

∥vν∥H−1/2(ΓC)

≤ cF (∥u̇ζ − u̇λ∥V + ∥uζ − uλ∥V + ∥φζ − φλ∥W + ∥θζ − θλ∥Q) .

Thus, by combining two previous inequalities, we get∥∥µ(θζ) |Rσν(uζ , φζ , θζ)| − µ(θλ) |Rσν(uλ, φλ, θλ)|
∥∥2
L2(Γ3)

≤ c∗ (M2
µL

2
R +M2

RL
2
µ)

(
∥u̇ζ − u̇λ∥2V + ∥θζ − θλ∥2Q

)
+ c

(
∥φζ − φλ∥2W + ∥θζ − θλ∥2L2(Ω) + ∥uζ − uλ∥2V

)
.

(93)
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Using relations (39), (51), and assumptions (A1), (A7), we get

∥u̇ζ(t)− u̇λ(t)∥2L2(Ω)d + ∥uζ(t)− uλ(t)∥2V +

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds

≤ c
( ∫ t

0

∥ζ1(s)− λ1(s)∥2L2(ΓC)ds+

∫ t

0

∥uζ(s)− uλ(s)∥V ds

+

∫ t

0

∥φζ(s)− φλ(s)∥2W ds
)
, ∀ t ∈ [0, T ].

(94)

From relation (40) and assumptions (A1)-(A2), we find

∥φζ(t)− φλ(t)∥2W ≤ c
(
∥uζ − uλ∥2V + ∥θζ(t)− θλ(t)∥2Q

)
, ∀ t ∈ [0, T ]. (95)

Moreover, keeping in mind (41), assumptions (A1), (A2), (A4) and (A5), we obtain

∥θζ(t)− θλ(t)∥2Q +

∫ t

0

∥θζ(s)− θλ(s)∥2Q ds

≤ c
( ∫ t

0

∥φζ(s)− φλ(s)∥2W ds+

∫ t

0

∥ζ2(s)− λ2(s)∥2V ds

+

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds
)
, ∀ t ∈ (0, T ).

(96)

We combine now the inequalities (94)-(96) to get that for all t ∈ [0, T ], we have

∥θζ(t)− θλ(t)∥2Q + ∥u̇ζ(t)− u̇λ(t)∥2V + ∥uζ(t)− uλ(t)∥2V + ∥φζ(t)− φλ(t)∥2W

+

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds+
∫ t

0

∥θζ(s)− λ(s)∥2Q ds

≤ c
( ∫ t

0

∥ζ2(s)− λ2(s)∥2V ds+
∫ t

0

∥ζ1(s)− λ1(s)∥2L2(ΓC) ds

+

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds+
∫ t

0

∥θζ(s)− θλ(s)∥2Q ds+
∫ t

0

∥φζ(s)− φλ(s)∥2W ds
)
.

Moreover, by employing Gronwall’s inequality, we deduce

∥θζ(t)− θλ(t)∥2Q + ∥u̇ζ(t)− u̇λ(t)∥2V + ∥uζ(t)− uλ(t)∥2V + ∥φζ(t)− φλ(t)∥2W

+

∫ t

0

∥u̇λ(s)− u̇λ(s)∥2V +

∫ t

0

∥θζ(s)− θλ(s)∥2Q ds

≤ c
( ∫ t

0

∥ζ2(s)− λ2(s)∥2V ds+
∫ t

0

∥ζ1(s)− λ1(s)∥2L2(ΓC) ds
)
, ∀ t ∈ (0, T ).

(97)

We integrate (91) over [0, t] for a given t ∈ (0, T ), then use (92), (93) and (97) to get

∥L(ζ)(t)− L(λ)(t)∥2L2([0,T ],L2(ΓC)×V ) ≤ c ∥ζ(s)− λ(s)∥2L2([0,T ],L2(ΓC)×V ). (98)

Thus, the operator L is Lipschitz continuous on L2([0, T ], L2(ΓC)× V ). In addition, we
can easily show that the operator Λ is continuous from Y into itself. We have also Y
is a nonempty, convex closed subset of the reflexive space L2([0, T ], L2(ΓC) × V ), then
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Y is weakly compact. Finally, it follows from Schauder’s fixed point theorem that the
operator L admits a unique fixed point ζ∗ ∈ Y , and finally, Lemma 4.3 holds. 2

To finish the proof of Theorem 4.1, let ζ∗ ∈ Y be a fixed point L defined by (90), it is
straightforward to show that the solution (uζ∗ , φζ∗ , θζ∗) of Problem (PVζ) corresponding
to ζ∗, is also a solution of Problem (PV ) (called the weak solution of Problem (P )).
Moreover, the uniqueness of the solution to Problem (PV ) can be provided from the
uniqueness of the solution to Problem (PVζ), which ends the proof of Theorem 4.1. 2

5 Conclusion

The main contribution here is the proof of the unique solvability of a new dynamic
thermo-electro-elastic contact model, i.e., Problem (P ), which takes into account the
effects of thermal softening and frictional heating at the contact surface. So, an existence
and uniqueness result has been obtained when MµLR +MRLµ is sufficiently small. We
note here that estimating the allowed size of coefficient MµLR +MRLµ remains an open
and very interesting question.
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[5] P. Bisegna, F. Lebon and F. Maceri. The unilateral frictional contact of a piezoelectric
body with a rigid support. In: Contact Mechanics. Kluwer, Dordrecht, 2002, 347–354.

[6] M. Cocu, E. Pratt and M. Raous. Formulation and approximation of quasistatic frictional
contact. Int. Jou. Engng. Sc. 34 (7) (1996) 783–798.
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