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Abstract: The current study focuses on the regional stabilization of time delay
infinite dimensional bilinear systems evolving in a spatial domain Ω. It consists in
studying the asymptotic behavior of such a system in a subregion ω of Ω. Then we
demonstrate regional weak stabilization under weak observability conditions, while
regional strong stabilization can be achieved under the exact observability condition.
Illustrative examples and simulations are included to affirm the accuracy of the the-
oretical results.
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1 Introduction

There has been a growing interest in the study of infinite dimensional bilinear systems,
which are a type of nonlinear systems that exhibit nonlinearity as a result of the interac-
tion between the state and control. These systems are widely used in various industrial
and natural processes, including heat transfer through conduction-convection, neutron
kinetics in nuclear reactors, and dynamic heat exchanger with a controlled flow [3], among
others. Bilinear systems are also often used as simple approximations for nonlinear sys-
tems [6]. In some cases, time delay may also be present in the system variables, either
due to intrinsic delays or due to delays in the reaction of the control. This makes it
important to consider time delay when designing these systems to accurately reflect real
processes. Bilinear systems with time delay can be found in the fields such as viscoelas-
ticity, mechanics, nuclear reactions, heat flow, and neural networks, etc [9].
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The stabilization of an infinite dimensional bilinear system with time delay has been
a topic of discussion in numerous research studies: in [7], the researchers delved into the
stabilization of a category of time-delayed bilinear systems within a Hilbert space. Their
approach was rooted in the decreasing energy property of the system under examina-
tion. By employing a set of continuous controls, the researchers analyzed both weak and
strong stabilization, and established a polynomial decay rate estimate for the stabilized
state. They also tackled exponential stabilization through bounded feedback control and
provided a clear decay rate estimate for the stabilized state.

The regional stabilization of an infinite dimensional bilinear system evolving over a
spatial domain Ω ⊂ Rn (n ≥ 1) and ω being a subregion of Ω refers to the ability to sta-
bilize the system only in the region ω or where the focus is solely on the state’s behavior
within ω. This concept is crucial because stabilizing the system in a subregion is more
cost-effective than stabilizing it over the entire domain. Additionally, there are systems
that cannot be stabilized over the entire domain of evolution, but stabilization can be
achieved in specific subdomains within it (see [11]). This notion has been developed
in many works: in [13], the researchers studied the regional stabilization of an infinite
dimensional bilinear system that evolves in a spatial domain Ω with an unbounded con-
trol operator. Likewise, in [12], the researchers introduced controls that guarantee weak,
strong, and exponential regional stabilization for a particular class of bilinear systems,
as well as a control that regionally weakly stabilizes these systems with a minimal per-
formance cost. In [14], the authors investigated the regional exponential stabilization of
an infinite dimensional bilinear systems using bounded controls.
In [4], the authors presented preliminary results on the well-posedness of time-delayed
bilinear systems in a real Hilbert space. They used a decomposition technique to demon-
strate strong stabilization.

In this study, we delve into the subject of regional stabilization for infinite dimensional
bilinear systems with time delay. Then we present sufficient conditions ensuring the
regional weak and strong stabilization of such systems. The approach is a combination
of energy decay, weak and exact observability conditions, and properties of semigroups.
Furthermore, we provide application examples and simulations to support the obtained
theoretical results.

More precisely, we consider a system defined by{
ẏ(t) = Ay(t) + u(t)By(t− r), t ≥ 0,

y0 = φ ∈ C,
(1)

where A is the infinitesimal generator of a linear C0-semigroup S(t) on L2(Ω), B :
L2(Ω) −→ L2(Ω) is a linear bounded control operator and u ∈ L2([0,+∞[: R) is
the scalar-valued control. The delay is indicated by the positive constant r, and
C is a Banach space of continuous functions ψ : [−r, 0] → L2(Ω) with the norm
||ψ||C = sup−r≤θ≤0 ||ψ(θ)||.
The history function yt : [−r;∞) −→ L2(Ω) is given by yt(θ) = y(t+θ) for all θ ∈ [−r, 0].
Let us consider a non-empty open subregion ω of Ω, with a positive Lebesgue measure.
Define the restriction operator to ω by

χω : L2(Ω) −→ L2(ω)

y 7−→ y|ω,
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and χ∗
ω : L2(ω) −→ L2(Ω) is the adjoint operator of χω given by

χ∗
ωy(x) =

{
y(x) if x ∈ ω,

0 else x ∈ Ω\ω.

Let us recall that system (1) is said to be regionally weakly stabilizable if there exists a
feedback control u such that for any initial condition φ ∈ C, the corresponding solution
y(t) of system (1) is global and verifies ∀ϕ ∈ L2(ω),

〈
χωy(t), ϕ

〉
L2(ω)

−→ 0 as t −→ ∞,

and regionally strongly stabilizable if there exists a feedback control u such that for any
initial condition φ ∈ C, the corresponding solution y(t) of system (1) is global and verifies
||χωy(t)||L2(ω) −→ 0 as t −→ ∞.

The paper is structured as follows. Section 2 focuses on the regional weak stabilization
of (1). Section 3 is dedicated to the regional strong stabilization of (1). Multiple examples
are given in Section 4 as applications. The final Sections 5 and 6 present illustrative
simulations and conclusions.

2 Regional Weak Stabilization

This section gives sufficient conditions for the regional weak stabilization of (1).

Theorem 2.1 Assume that A generates a semigroup (S(t))t≥0 of contractions on
L2(Ω), and B is a compact operator. If the conditions

1.
〈
χ∗
ωχωAϕ, ϕ

〉
≤ 0,∀ϕ ∈ D(A),

2.
〈
χ∗
ωχωBy(t− r), y(t)

〉〈
By(t− r), y(t)

〉
≥ 0, ∀y ∈ L2(Ω),

3.
〈
χ∗
ωχωBS(t− r)y(t), S(t)y(t)

〉
= 0, ∀t ≥ r =⇒ χωy(t) = 0

hold, then the control
u(t) = −

〈
χ∗
ωχωBy(t− r), y(t)

〉
(2)

regionally weakly stabilizes the system (1).

Proof. Since φ ∈ C, the function t 7−→∥ χωy(t) ∥2L2(ω) is continuously differentiable

(see [10]). Then

1

2

d

dt
||χωy(t)||2L2(ω) =

〈
χ∗
ωχωAy(t), y(t)

〉
+ u(t)

〈
χ∗
ωχωBy(t− r), y(t)

〉
.

Thanks to condition (1) of Theorem 2.1, it follows that

1

2

d

dt
||χωy(t)||2L2(ω) ≤ u(t)

〈
χ∗
ωχωBy(t− r), y(t)

〉
. (3)

In order to make the function
1

2

d

dt
||χωy(t)||2L2(ω) nonincreasing, we take the control

u(t) = −
〈
χ∗
ωχωBy(t− r), y(t)

〉
. (4)

The resulting closed-loop system becomes{
ẏ(t) = Ay(t) + f(yt), t ≥ 0,

y0 = φ ∈ C,
(5)
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where f(ψ) = −
〈
χ∗
ωχωBψ(−r), ψ(0)

〉
Bψ(−r), ∀ψ ∈ C. The function f is locally Lips-

chitz, indeed, for all ψ1, ψ2 ∈ C, with ||ψ1||C ≤ R and ||ψ2||C ≤ R, we have

||f(ψ1)− f(ψ2)|| ≤M ||ψ1 − ψ2||C ,

where M = ||χω||2L2(ω)||B||2(||ψ1||2C + ||ψ1||C ||ψ2||C + ||ψ2||2C). Then the system (5) pos-

sesses a unique mild solution y ∈ C([−r, tmax[;H) expressed asy(t) = S(t)φ(0) +

∫ t

0

S(t− s)f(ys)ds, t ∈ [0, tmax[,

y0 = φ ∈ C.
(6)

Since A generates a semigroup of contractions, we have

d

dt
||y(t)||2 ≤ −2

〈
χ∗
ωχωBy(t− r), y(t)

〉〈
By(t− r), y(t)

〉
. (7)

By integrating the inequality (7), for all t ≥ 0, we get

||y(t)||2 − ||y(0)||2 ≤ −2

∫ t

0

〈
χ∗
ωχωBy(s− r), y(s)

〉〈
By(s− r), y(s)

〉
ds.

Using condition (2) of Theorem 2.1, we obtain

||y(t)|| ≤ ||φ||C , t ≥ −r. (8)

Therefore, the system (1) possesses a unique global solution y ∈ C([−r,∞);H) (see
Theorem 2.6 in [10]).

By using (3) together with the control (2), we get

d

dt
||χωy(t)||2L2(ω) ≤ −2|

〈
χ∗
ωχωBy(t− r), y(t)

〉
|2. (9)

By integrating the inequality (9) over the interval [0, t], we get

||χωy(t)||2L2(ω) − ||χωy(0)||2L2(ω) ≤ −2

∫ t

0

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2 ds. (10)

From (6), we have

y(t)− S(t)φ(0) = −
∫ t

0

S(t− s)
〈
χ∗
ωχωBy(s− r), y(s)

〉
By(s− r)ds. (11)

For T > r fixed, using (8), (11), Schwartz’s inequality and the fact ||S(t)|| ≤ 1, ∀t ≥ 0,
we get

||y(t)− S(t)φ(0)|| ≤ ||B||||φ||C

(
(T − r)

∫ T

r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

) 1
2

, ∀t ∈ [r, T ].

(12)
For all φ ∈ C and t ≥ 0, we have

|
〈
χ∗
ωχωBS(t−r)φ(0), S(t)φ(0)

〉
| ≤ |

〈
χ∗
ωχωBS(t− r)φ(0)− χ∗

ωχωBy(t− r), S(t)φ(0)
〉
|

+|
〈
χ∗
ωχωBy(t− r), y(t)− S(t)φ(0)

〉
|

+|
〈
χ∗
ωχωBy(t− r), y(t)

〉
|.

(13)
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By using (13), and taking into account that both B and χω are bounded operators, we
obtain

|
〈
χ∗
ωχωBS(t− r)φ(0), S(t)φ(0)

〉
| ≤ ||χω||2L2(ω)||B|| ||y(t− r)− S(t− r)φ(0)|| ||φ||C

+||χω||2L2(ω)||B|| ||y(t)− S(t)φ(0)|| ||φ||C
+|
〈
χ∗
ωχωBy(t− r), y(t)

〉
|.

(14)
From (11), (12), and Schwartz’s inequality, we have

||y(t− r)− S(t− r)φ(0)|| ≤

||B||||φ||C (T − r)
1
2

(∫ T

r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

) 1
2

, ∀t ∈ [r, T ].
(15)

Replacing φ(0) by y(t) in (12) and (14), we get

|
〈
χ∗
ωχωBS(t− r)y(t), S(t)y(t)

〉
| ≤ N(T − r)

1
2

(∫ T

r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2 ds

) 1
2

+|
〈
χ∗
ωχωBy(t− r), y(t)

〉
|,

(16)
where N = 2||χω||2L2(ω)||B||2||φ||2

C
.

By integrating this relation over the interval [r, T ] and applying Schwartz’s inequality,
we get ∫ T

r

|
〈
χ∗
ωχωBS(s− r)y(s), S(s)y(s)

〉
|ds ≤

(N + 1)(T − r)
1
2

(∫ t+T

t+r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

) 1
2

.

(17)

Thus, as t −→ +∞,(∫ T

r

|
〈
χ∗
ωχωBS(s− r)y(s), S(s)y(s)

〉
|ds

)2

= O

(∫ t+T

t+r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

)
.

(18)
Let us consider the nonlinear semi-group Γ(t)φ(0) := y(t) and let (tn)n≥0 be a sequence
of real numbers such that tn −→ +∞ as n −→ +∞.

From (8), Γ(t)φ(0) is bounded in L2(Ω), and since L2(Ω) is reflexive, there exists a
subsequence (tϕ(n)) of (tn) such that Γ(tϕ(n))φ(0)⇀ ψ as n −→ +∞.

Since B is compact and χω continuous, we have

lim
n 7−→+∞

〈
χ∗
ωχωBS(t− r)Γ(tϕ(n))φ(0),S(t)Γ(tϕ(n))φ(0)

〉
=
〈
χ∗
ωχωBS(t− r)ψ, S(t)ψ

〉
.

For all n ≥ 0, we set

Λn(tϕ(n)) :=

∫ tϕ(n)+T

tϕ(n)+r

|
〈
χ∗
ωχωBΓ(s− r)φ(0),Γ(s)φ(0)

〉
|2ds.

Using (10), we obtain∫ t

0

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2 ds ≤ 1

2
||χωy(0)||2Y ,
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which gives

∫ t

0

|
〈
χ∗
ωχωBy(s − r), y(s)

〉
|2 ds < +∞. Then ∀t ≥ 0, Λn(t) −→ 0 as

n −→ +∞.
By replacing y(t) by Γ(t)φ(0) and y(t− r) by Γ(t− r)φ(0) in (17), we have∫ T

r

|
〈
χ∗
ωχωBS(s− r)Γ(s)φ(0), S(s)Γ(s)φ(0)

〉
|ds ≤ (N + 1)(T − r)

1
2

√
Λn(t).

Since Λn(tϕ(n)) −→ 0 as n −→ +∞, we get

lim
n 7−→+∞

∫ T

r

|
〈
χ∗
ωχωBS(s− r)Γ(tϕ(n))φ(0), S(s)Γ(tϕ(n))φ(0)

〉
|ds = 0.

Then, using the dominated convergence theorem, we have∫ T

r

|
〈
χ∗
ωχωBS(s− r)ψ,S(s)ψ

〉
|ds = 0.

It follows that 〈
χ∗
ωχωBS(s− r)ψ, S(s)ψ

〉
= 0, ∀s ∈ [0, t].

Using condition (3) of Theorem 2.1, we deduce that

χωΓ(tϕ(n))φ(0)⇀ 0 as n −→ +∞. (19)

On the other hand, it is clear that (19) holds for each subsequence (tϕ(n)) of (tn), and
χωΓ(tϕ(n))φ(0) weakly converges in L2(Ω). This implies that ∀ψ ∈ L2(Ω), we have〈
χωΓ(tn)φ(0), ψ

〉
−→ 0 as n −→ +∞ and hence χωΓ(t)φ(0)⇀ 0 as t −→ +∞.

3 Regional Strong Stabilization

The following results provide conditions for the regional strong stabilization of the system
(1).

Theorem 3.1 Assume that A generates a semiproup (S(t))t≥0 of contractions on
L2(Ω) and B is a bounded linear operator. If the conditions (1) and (2) of Theorem 2.1
hold, and there exist T , δ > 0 such that the inequality∫ T

r

|
〈
χ∗
ωχωBS(s− r)ψ, S(s)ψ

〉
|ds ≥ δ(r)||χωψ||2L2(ω), ∀ψ ∈ L2(Ω), (20)

holds, then the control defined in (2) regionally strongly stabilizes the system (1).

Proof. Let T ≥ r be such that (20) is satisfied. Using (10) allows

||χωy(kT )||2L2(ω)−||χωy((k+1)T )||2L2(ω) ≥ 2

∫ T (k+1)

kT

|
〈
χ∗
ωχωBy(s−r), y(s)

〉
|2ds, k ≥ 0.

From (18) and (20), we have

||χωy(kT )||2L2(ω) − ||χωy((k + 1)T )||2L2(ω) ≥ α||χωy(kT )||4L2(ω), (21)
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where α =
2δ(r)2

(N + 1)2(T − r)
. Taking pk = ||χωy(kT )||2L2(ω), the inequality (21) can be

expressed as follows:
βp2k + pk+1 ≤ pk, ∀k ≥ 0.

As pk+1 ≤ pk, we get βp2k+1 + pk+1 ≤ pk, ∀k ≥ 0.

Using Lemma 5.2 from [1], we have pk ≤ M

k + 1
for all k ≥ 0. As ||χωy(t)||L2(ω)

decreases, we conclude the estimate

||χωy(t)||L2(ω) = O

(
1√
t

)
as t −→ +∞,

which proves the regional strong stabilization of the system (1).

4 Applications

This section presents illustrative examples with respect to regional stabilization.

Example 4.1 Let us consider the system defined on Ω =]0,+∞) by
∂y(t, x)

∂t
= −∂y(t, x)

∂x
+ u(t)By(t− 1, x), x ∈ Ω, t ≥ 0,

y(t, x) = t sin(πx), x ∈ Ω, t ∈ [−1, 0],
(22)

where u ∈ L2([0,+∞[: R), By(.) =
∫
ω

y(x)dx1ω(.) for ω ⊂ Ω.

Let Ay = −∂y
∂x

, with the domain D(A) = {y ∈ H1(Ω)| y(0) = 0, y(x) −→ 0 as x −→
+∞}, the operator A generates a semigroup of contractions

S(t)y =

{
y(x− t) if x ≥ t

0 if x < t.

Let ω =]0, 1[ be a subregion of Ω. For all y ∈ D(A), we have

〈
χ∗
ωχωAy, y

〉
= −

∫ 1

0

y
′
(x)y(x)dx = −y

2(1)

2
≤ 0.

Then condition (1) of Theorem 2.1 is verified. The condition (2) of Theorem 2.1 is
satisfied since

〈
χ∗
ωχωBy(t− 1), y(t)

〉〈
By(t− 1), y(t)

〉
=

∫ 1

0

By(t− 1)y(t)dx

∫
Ω

By(t− 1)y(t)dx

=

∫ 1

0

(
By(t− 1)y(t)

)2
dx ≥ 0.

The operator B is compact and verifies

〈
χ∗
ωχωBS(t− 1)y, S(t)y

〉
=

(∫ 1−t

0

y(x)dx

)2

.
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Therefore 〈
χ∗
ωχωBS(t− 1)y, S(t)y

〉
= 0, ∀t ≥ 0 =⇒ χωy = 0.

Then the condition (3) of Theorem 2.1 holds.

We deduce that the control

u(t) = −
∫ 1

0

y(t− 1, x)y(t, x)dx

regionally weakly stabilizes the system (22).

Example 4.2 On Ω =]0, 1[, let us consider the following system:
∂y(t, x)

∂t
= −i∆y(t, x) + u(t)y(t− 2, x), x ∈ Ω, t ≥ 0,

y(t, 0) = y(t, 1) = 0, x ∈ ∂Ω, t ≥ 0,

y(t, x) = tx(1− x), x ∈ Ω, t ∈ [−2; 0] ,

(23)

where u ∈ L2([0,+∞[: R) and B = I.

Let ω be a subregion of Ω that verifies the geometric control condition (GCC) (see [2]).
The operator A = −i∆ (i ∈ C) with the domain D(A) = H2(Ω) ∩ H1

0 (Ω) generates a
semigroup of isometry on L2(Ω).

We have Re(
〈
χ∗
ωχωAy, y

〉
) = 0, ∀y ∈ D((A)). Then the condition (1) of Theorem

2.1 is satisfied. Since the operator B is the identity, the condition (2) of Theorem 2.1 is
satisfied. Indeed,

〈
χ∗
ωχωBy(t− 2), y(t)

〉〈
By(t− 2), y(t)

〉
=

∫
ω

y(t− 2)y(t)dx

∫
Ω

y(t− 2)y(t)dx

=

∫
ω

∫
Ω

(
y(t− 2)y(t)

)2
dx ≥ 0.

For all ψ ∈ L2(Ω), we obtain
〈
χ∗
ωχωBS(t− 2)ψ, S(t)ψ

〉
=
〈
S(t− 2)ψ, S(t)ψ

〉
L2(ω)

.

Integrating this inequality, we get∫ T

2

〈
χ∗
ωχωBS(t− 2)ψ, S(t)ψ

〉
dt ≥

∫ T

2

〈
S(t− 2)ψ, S(t)ψ

〉
L2(ω)

dt.

Since the subregion ω verifies GCC, there exist α, T > 0 such that the inequality∫ T

r

〈
χ∗
ωχωBS(t− 2)ψ, S(t)ψ

〉
dt ≥ α||ψ||2 ≥ α||χωψ||2L2(ω)

holds (see [2]). We deduce that the control

u(t) = −
∫
ω

y(t− 2, x)y(t, x)dx

regionally strongly stabilizes the system (23).
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5 Algorithm and Simulations

The algorithm for the computation of the stabilizing control is as follows.

Algorithm 5.1 Step 1: Initial data.
The information required includes the evolution domain Ω, a time discretization (ti),
initial state y0, delay r, initial control u0, and desired precision ε.
Step 2 : Calculating the Control.
Using formula (2), calculate the control to get u(ti).
Step 3 : Finding the State.
Solve system (24) using the explicit finite difference method to obtain the state y(ti+1).
Step 4 : Checking the Accuracy.
Proceed to Step 2 again by incrementing i if ∥ y(ti) ∥> ε.

For simulation purposes, we examine the transport equation, which is defined on
Ω =]0,+∞) by

∂y(x, t)

∂t
= −0.01

∂y(x, t)

∂x
+ u(t)By(x, t− r), x ∈ Ω, t ≥ 0,

y(x, t) = t sin(πx), x ∈ Ω, t ∈ [−r, 0],
(24)

where u ∈ L2([0,+∞[: R), By(.) =
∫
ω

y(x)dx1ω(.) for ω ⊂ Ω.

Consider the subregion ω =]0, 4[. The control

u(t) = −
∫
ω

y(x, t− r)y(x, t)dx (25)

regionally weakly stabilizes (24) on ω.
We take the delay r = 1, and applying the above algorithm with ε = 10−4, we have

the following figures.

0 1 2 3 4 5 6 7 8

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
(x

,t
)

For r=1

t=4

t=8

Figure 1: Stabilization on ω.
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Figure 2: The control function.

Figure 1 shows the stabilization of the state on ω with the error equal to 0.1725∗10−4.
Figure 2 shows the decay of the system energy.

For r = 2, we get Figure 4 which shows that system (24) is still stabilized on the
subregion ω.



108 E. ZERRIK, A. AKOUBI AND A. AADI

0 1 2 3 4 5 6 7 8

t

0

5

10

15

20

25

30

35

40

E
(t

)

e

Figure 3: The energy decay.
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Figure 5: The control function.
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Figure 6: The energy decay.

Remark 5.1 The control (25) only stabilizes the state within the subregion ω. Yet,
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if condition (2) outlined in Theorem 2.1 is satisfied, the state remains bounded even in
the residual region Ω\ω.

Now we consider system (24) with r = 10. Applying the previous algorithm with
control (25), we obtain Figures 7, 9 which show the instability of system (24) over the
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Figure 7: Instability on ω.
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Figure 8: The control function.
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Figure 9: The energy growth.

subregion ω.

Remark 5.2 The stabilization on ω is obtained for low delay, and when the delay
increases, the system (24) becomes unstable on ω.

6 Conclusion

This study examines the regional stabilization of an infinite dimensional delayed bilinear
system. It offers sufficient conditions for weak and strong stabilization. The approach is
a combination of energy decay, weak and exact observability conditions, and properties of
semigroups. Furthermore, we provide examples and illustrations to support the obtained
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theoretical results. At the same time, there are still some unanswered questions such as
the application of these results to delayed semilinear systems, these issues are currently
under investigation and will be dealt with in a future paper.
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