
NONLINEAR DYNAMICS AND SYSTEMS THEORY
An International Journal of Research and Surveys

Volume 24                           Number 1                                 2024

   CONTENTS

© 2024,  InforMath Publishing Group                ISSN 1562-8353                    Printed in Ukraine
To receive contents and abstracts by e-mail, visit our Website at:   http://www.e-ndst.kiev.ua

Nonlinear Dynamics
and

Systems Theory
An International Journal of Research and Surveys

Volume 24, Number 1, 2024                                    ISSN   1562-8353

N
O

N
LIN

E
A

R
 D

Y
N

A
M

IC
S
 &

 S
Y
S
TE

M
S
 TH

E
O

R
Y
                                  V

o
lu

m
e 2

4
,   N

o
. 1

,   2
0

2
4

InforMath Publishing Group
http://www.e-ndst.kiev.ua

Sequential Initial Value Problems with Delay ................................ ................................ ......... 1 

 A. Adoui, A. Guezane-Lakoud and R. Khaldi 

 
A General Kinematic-Based Walking Algorithm of a Hexapod Robot 

on Irregular Terrain ................................ ................................ ................................ .................. 12 

 A. Aissaoui, C. Mahfoudi and S. Djeffal 

 
Analysis of Customer Satisfaction Survey on E-Wallets Using Simple 

Additive Weighting and TOPSIS Methods ................................ ................................ .............. 28 

 M. Y. Anshori, I. H. Santoso, T. Herlambang, M. Tafrikan, 

 and M. Adinugroho, K. Oktafianto and A. A. Firdaus 

 
A New Feedback Control for Exponential and Strong Stability of 

Semi-Linear Systems with General Decay Estimates ................................ ..............................  41 

 M. Chqondi, S. Chqondi, K. Tigma and Y. Akdim 

 
Spectral Analysis and Invariant Measure in Studying the Dynamics 

of a Metabolic Process in the Glycolysis-Gluconeogenesis System ................................ ........ 54 

 V. I. Grytsay and I. V. Musatenko 

 
A New Efficient Step-Size in Karmarkar’s Projective Interior Point 

Method for Optimization Problems ................................ ................................ ..........................  65 

 F. Leulmi and A. Leulmi 

 
Thermo-Electroelastic Contact Problem with Temperature Dependent 

Friction Law ................................ ................................ ................................ .............................  80 

 A. Oultou, O. Baiz and H. Benaissa 

 
Regional Weak and Strong Stabilization of Time Delay Infinite 

Dimensional Bilinear Systems ................................ ................................ ................................ . 99 

 E. Zerrik, A. Akoubi and A. Ait Aadi 

 

EDITOR-IN-CHIEF  A.A.MARTYNYUK 
S.P.Timoshenko Institute of Mechanics 

National Academy of Sciences of Ukraine, Kiev, Ukraine

MANAGING EDITOR  I.P.STAVROULAKIS
Department of Mathematics, University of Ioannina, Greece

REGIONAL EDITORS

S.G. GEORGIEV, Paris, France
A.OKNIŃSKI, Kielce, Poland

Europe

M.BOHNER, Rolla, USA
HAO WANG, Edmonton, Canada

USA and Canada 

T.A.BURTON, Port Angeles, USA
, Ensenada, MexicoC.CRUZ-HERNANDEZ

Central and South America

 M.ALQURAN, Irbid, Jordan
Jordan and Middle East

T.HERLAMBANG, Surabaya, Indonesia
Indonesia and New Zealand



(1) General. Nonlinear Dynamics and Systems Theory (ND&ST) is an international journal 
devoted to publishing peer-refereed, high quality, original papers, brief notes and review 
articles focusing on nonlinear dynamics and systems theory and their practical applications in 
engineering, physical and life sciences. Submission of a manuscript is a representation that the 
submission has been approved by all of the authors and by the institution where the work was 
carried out. It also represents that the manuscript has not been previously published, has not 
been copyrighted, is not being submitted for publication elsewhere, and that the authors have 
agreed that the copyright in the article shall be assigned exclusively to InforMath Publishing 
Group by signing a transfer of copyright form. Before submission, the authors should visit the 
website:  

http://www.e-ndst.kiev.ua 
for information on the preparation of accepted manuscripts. Please download the archive 
Sample_NDST.zip  containing example of article file (you can edit only the file 
Samplefilename.tex).  
(2) Manuscript and Correspondence. Manuscripts should be in English and must meet 
common standards of usage and grammar. To submit a paper, send by e-mail a file in PDF 
format directly to 

Professor A.A. Martynyuk, Institute of Mechanics,  
Nesterov str.3, 03057, Kiev-57, Ukraine 

e-mail:  journalndst@gmail.com 
or to one of the Regional Editors or to a member of the Editorial Board. Final version of the 
manuscript must typeset using LaTex program which is prepared in accordance with the style 
file of the Journal. Manuscript texts should contain the title of the article, name(s) of the 
author(s) and complete affiliations. Each article requires an abstract not exceeding 150 words. 
Formulas and citations should not be included in the abstract. AMS subject classifications and 
key words must be included in all accepted papers. Each article requires a running head 
(abbreviated form of the title) of no more than 30 characters. The sizes for regular papers, 
survey articles, brief notes, letters to editors and book reviews are: (i) 10-14 pages for regular 
papers, (ii) up to 24 pages for survey articles, and (iii) 2-3 pages for brief notes, letters to the 
editor and book reviews. 
(3)  Tables, Graphs and Illustrations. Each figure must be of a quality suitable for direct 
reproduction and must include a caption. Drawings should include all relevant details and 
should be drawn professionally in black ink on plain white drawing paper. In addition to a 
hard copy of the artwork, it is necessary to attach the electronic file of the artwork (preferably 
in PCX format). 
(4)  References. Each entry must be cited in the text by author(s) and number or by number 
alone. All references should be listed in their alphabetic order. Use please the following style: 

Journal: [1] H. Poincare, Title of the article. Title of the Journal volume  
(issue) (year) pages. [Language] 

Book: [2] A.M. Lyapunov, Title of the Book. Name of the Publishers, Town, year. 

Proceeding: [3] R. Bellman, Title of the article. In: Title of the Book. (Eds.).  
Name of the Publishers, Town, year, pages. [Language] 

(5)  Proofs and Sample Copy. Proofs sent to authors should be returned to the Editorial 
Office with corrections within three days after receipt. The corresponding author will receive 
a sample copy of the issue of the Journal for which his/her paper is published. 
(6)  Editorial Policy. Every submission will undergo a stringent peer review process. An 
editor will be assigned to handle the review process of the paper. He/she will secure at least 
two reviewers’ reports. The decision on acceptance, rejection or acceptance subject to revision 
will be made based on these reviewers’ reports and the editor’s own reading of the paper.   

INSTRUCTIONS FOR CONTRIBUTORS

© 2024,  InforMath Publishing Group, ISSN 1562-8353 print, ISSN 1813-7385 online, Printed in Ukraine
No  part  of  this  Journal  may  be  reproduced  or  transmitted  in  any  form  or  by  any  means  without 
permission from InforMath Publishing Group.

Nonlinear Dynamics and Systems Theory
An International Journal of Research and Surveys

 EDITOR-IN-CHIEF    A.A.MARTYNYUK 
The S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 

Nesterov Str. 3, 03057, Kyiv-57, UKRAINE / e-mail: journalndst@gmail.com

MANAGING EDITOR    I.P.STAVROULAKIS 
Department of Mathematics, University of Ioannina 

451 10 Ioannina, HELLAS (GREECE) / e-mail: ipstav@cc.uoi.gr 

ADVISORY EDITOR    A.G.MAZKO,
Institute of Mathematics of NAS of Ukraine, Kiev (Ukraine) 

e-mail: mazko@imath.kiev.ua 

REGIONAL  EDITORS
S.G. GEORGIEV, France, e-mail: svetlingeorgiev1@gmail.com

 A. OKNINSKI, Poland, e-mail: fizao@tu.kielce.pl
M. BOHNER, USA, e-mail: bohner@mst.edu

HAO WANG, Edmonton, Canada, e-mail: hao8@ualberta.ca
T.A. BURTON, USA, e-mail: taburton@olypen.com

C. CRUZ-HERNANDEZ, Mexico, e-mail: ccruz@cicese.mx
M. ALQURAN, Jordan, e-mail: marwan04@just.edu.jo

T. HERLAMBANG, Indonesia, e-mail: teguh@unusa.ac.id

EDITORIAL BOARD

ADVISORY  COMPUTER  SCIENCE  EDITORS
A.N.CHERNIENKO and A.S.KHOROSHUN,  Kiev, Ukraine

ADVISORY  LINGUISTIC  EDITOR
S.N.RASSHYVALOVA,  Kiev, Ukraine

Adzkiya, D. (Indonesia)
Artstein, Z. (Israel)
Awrejcewicz, J. (Poland)
Braiek, N. B. (Tunisia)
Chen Ye-Hwa (USA)
De Angelis, M. (Italy)
Denton, Z. (USA)
Djemai, M. (France)
Dshalalow, J. H. (USA)
Gajic Z. (USA)
Georgiou, G. (Cyprus)
Honglei Xu (Australia)
Jafari, H. (South African Republic)
Khusainov, D. Ya. (Ukraine)

Kloeden, P. (Germany)
Kokologiannaki, C. (Greece)
Kouzou A. (Algeria)
Krishnan, E. V. (Oman)
Kryzhevich, S. (Poland)
Limarchenko, O. S. (Ukraine)
Lopez Gutierrez R. M. (Mexico)
Lozi, R. (France)
Peterson, A. (USA)
Radziszewski, B. (Poland)
Shi Yan (Japan)
Sivasundaram, S. (USA)
Staicu V. (Portugal)
Vatsala, A. (USA)



NONLINEAR DYNAMICS AND SYSTEMS THEORY
An International Journal of Research and Surveys

Published by InforMath Publishing Group since 2001

Volume 24 Number 1 2024

CONTENTS

Sequential Initial Value Problems with Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A. Adoui, A. Guezane-Lakoud and R. Khaldi

A General Kinematic-Based Walking Algorithm of a Hexapod Robot
on Irregular Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A. Aissaoui, C. Mahfoudi and S. Djeffal

Analysis of Customer Satisfaction Survey on E-Wallets Using Simple
Additive Weighting and TOPSIS Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

M.Y. Anshori, I. H. Santoso, T. Herlambang, M. Tafrikan,
and M. Adinugroho, K. Oktafianto and A.A. Firdaus

A New Feedback Control for Exponential and Strong Stability of
Semi-Linear Systems with General Decay Estimates . . . . . . . . . . . . . . . . . . . 41

M. Chqondi, S. Chqondi, K. Tigma and Y. Akdim

Spectral Analysis and Invariant Measure in Studying the Dynamics
of a Metabolic Process in the Glycolysis-Gluconeogenesis System . . . . . . 54

V. I. Grytsay and I. V. Musatenko

A New Efficient Step-Size in Karmarkar’s Projective Interior Point
Method for Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

F. Leulmi and A. Leulmi

Thermo-Electroelastic Contact Problem with Temperature Dependent
Friction Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A. Oultou, O. Baiz and H. Benaissa

Regional Weak and Strong Stabilization of Time Delay Infinite
Dimensional Bilinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

E. Zerrik, A. Akoubi and A. Ait Aadi

Founded by A.A. Martynyuk in 2001.

Registered in Ukraine Number: KB No 5267 / 04.07.2001.



NONLINEAR DYNAMICS AND SYSTEMS THEORY

An International Journal of Research and Surveys

Impact Factor from SCOPUS for 2022: SJR – 0.293, SNIP – 0.784 and CiteScore – 1.5

Nonlinear Dynamics and Systems Theory (ISSN 1562–8353 (Print), ISSN 1813–
7385 (Online)) is an international journal published under the auspices of the S.P. Timo-
shenko Institute of Mechanics of National Academy of Sciences of Ukraine and Curtin
University of Technology (Perth, Australia). It aims to publish high quality original
scientific papers and surveys in areas of nonlinear dynamics and systems theory and
their real world applications.

AIMS AND SCOPE

Nonlinear Dynamics and Systems Theory is a multidisciplinary journal. It pub-
lishes papers focusing on proofs of important theorems as well as papers presenting new
ideas and new theory, conjectures, numerical algorithms and physical experiments in
areas related to nonlinear dynamics and systems theory. Papers that deal with theo-
retical aspects of nonlinear dynamics and/or systems theory should contain significant
mathematical results with an indication of their possible applications. Papers that em-
phasize applications should contain new mathematical models of real world phenomena
and/or description of engineering problems. They should include rigorous analysis of
data used and results obtained. Papers that integrate and interrelate ideas and methods
of nonlinear dynamics and systems theory will be particularly welcomed. This journal
and the individual contributions published therein are protected under the copyright by
International InforMath Publishing Group.

PUBLICATION AND SUBSCRIPTION INFORMATION

Nonlinear Dynamics and Systems Theory will have 6 issues in 2024, printed
in hard copy (ISSN 1562–8353) and available online (ISSN 1813–7385), by InforMath
Publishing Group, Nesterov str., 3, Institute of Mechanics, Kiev, MSP 680, Ukraine,
03057. Subscription prices are available upon request from the Publisher, EBSCO In-
formation Services (mailto:journals@ebsco.com), or website of the Journal: http:

//e-ndst.kiev.ua. Subscriptions are accepted on a calendar year basis. Issues are sent
by airmail to all countries of the world. Claims for missing issues should be made within
six months of the date of dispatch.

ABSTRACTING AND INDEXING SERVICES

Papers published in this journal are indexed or abstracted in: Mathematical Reviews /
MathSciNet, Zentralblatt MATH / Mathematics Abstracts, PASCAL database (INIST–
CNRS) and SCOPUS.

mailto:journals@ebsco.com
http://e-ndst.kiev.ua
http://e-ndst.kiev.ua


Nonlinear Dynamics and Systems Theory, 24 (1) (2024) 1–11

Sequential Initial Value Problems with Delay

A.Adoui ∗, A.Guezane-Lakoud and R.Khaldi

Laboratory of Advanced Materials,
Faculty of Sciences, Badji Mokhtar-Annaba University,

P.O. Box 12, 23000 Annaba, Algeria.

Received: May 6, 2023; Revised: January 21, 2024

Abstract: In this paper, we discuss the solvability of a nonlinear Riemann-Liouville
sequential initial value problem with infinite delay. We give sufficient conditions for
the existence, uniqueness and stability of solutions. Proofs are carried out employing
fixed point theory.

Keywords: sequential fractional derivative; initial value problem; delay; existence
of solution; fixed point theorem; stability.

Mathematics Subject Classification (2010): 26A33, 34A08, 34K37, 93D05.

1 Introduction

In the last few centuries, non-integer order derivatives were widely expanded as a useful
theoretical concept and numerous books were devoted to this field, see monographs [21,
24, 26]. Due to their nonlocal nature, fractional derivatives play a significant role in
describing physical phenomena with memory effect and hereditary processes. Hence,
they give better accuracy when compared to classical derivatives, the evidence of which
has been provided for instance in [3] by virtue of numerical simulations. Consequently,
more study has been conducted on new classes of fractional differential equations. In
particular, fractional differential equations with time delay were capable to attract the
attention of many researchers over the last few years, see [1,4,6,7,9], and the references
therein.

Very recently, sequential fractional differential equations have been the subject of
many investigations. Sequential fractional derivatives were introduced for the first time
by Miller and Ross in their book [24]. As a matter of fact, they appear often in
physics, where the substitution of formulas containing derivatives for one another is

∗ Corresponding author: mailto:ahlem.a.adoui@gmail.com, ahlem.adoui@univ-annaba.org
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very common. Many recent works are devoted to sequential boundary value problems
of Caputo, Hadamard, mixed, Caputo-Hadamard, and Hilfer type fractional derivatives,
see [27], [23], [5, 13, 14, 19, 20], [2] and [25], respectively. In the following interesting pa-
pers, the authors established existence results for fractional differential equations, these
results are pertinent to the topic of this work.

In [12], the following Riemann-Liouville sequential fractional differential equation is
studied:

Dυ
0+[(t− a)rDϱ

0+x(t)] = f(t, x), t ∈ (0, b].

In [11], the authors studied a general Basset-Boussinesq-Oseen fractional equation
and proved the global existence, uniqueness and regularity of solutions in a partially
ordered Banach space for the following problem:

Dυ
0+(D

ϱ
0+ +A)x(t) +Bx(t) = f(t), 0 < t ≤ 1, 0 < υ, ϱ ≤ 1,

x(0) = a,

Dϱ
0+x(0) = b.

Nonetheless, the analysis of fractional sequential initial value problems is still not
sufficiently enriched. To the best of our knowledge, sequential fractional differential
equations involving the Riemann-Liouville fractional derivatives associated with infinite
delay have not been considered yet. The primary focus of this paper is the investigation
of sufficient criteria for nonlinearity that ensure the existence and uniqueness of solutions
for the following initial value problem:

Dϱ
0+D

υ
0+y(t) = f(t, yt), t ∈ (0, b],

y(t) = χ(t), t ∈ (−∞, 0],

Dυ
0+y(0) = 0,

(1)

where 0 < υ, ϱ < 1, f : [0, b]× B → R, χ ∈ B, χ(0) = 0, xt(θ) = x(t+ θ), θ ≤ 0.
The phase space B is a semi-normed linear space of functions mapping (−∞, 0] into R
and characterized by the following axioms.
If y : (−∞, b] → R and y0 ∈ B, then for any t ∈ [0, b],

1. yt ∈ B and we have

∥yt∥B ≤ K(t) sup
s∈[0,t]

|y(s)|+M(t)∥y0∥B,

|y(t)| ≤ H∥yt∥B,

where H ≥ 0 is a constant, K : [0, b] → [0,∞[ is continuous andM : [0,∞[→ [0,∞[
is locally bounded. H,K,M are independent of y(.).

2. yt is a B−valued function on [0, b].

3. B is complete.

For more details on the theory of delay differential equations, we refer the interested
reader to [15,17,22]. The main motivation for our paper is to continue the quest of broad-
ening the study of fractional operators for much larger classes of differential equations.
We emphasize that our results are novel in the aforementioned context.
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The rest of this paper is structured as follows. In Section 2, we recall some prelim-
inary results which are relevant to our work. Section 3 is devoted to the existence and
uniqueness results. In Section 4, in order to enhance the physical meaning of our main
outcomes, we study the stability of the problem under consideration. We exhibit an
example in Section 5 to illustrate the applicability of our results. Finally, a conclusion is
given.

2 Preliminaries

In this section, we recall the basic definitions and properties needed in our proofs.

Definition 2.1 [26] If f ∈ L1(a, b) and υ > 0, then the left-sided Riemann-Liouville
fractional integral is defined by

Iυa+f(x) =
1

Γ(υ)

∫ x

a

f(t)

(x− t)1−υ
dt, x > a.

Lemma 2.1 [21] The operator Iυa+ maps continuous functions into continuous func-
tions.

Definition 2.2 [26] Let 0 < υ < 1. The left-sided Riemann-Liouville fractional
derivative is defined by

Dυ
a+f(x) =

1

Γ(1− υ)

d

dt

∫ x

a

f(t)

(x− t)υ
dt, x > a.

Moreover, if I1−υf ∈ AC[a, b], then Dυ
a+f exists almost everywhere on [a, b].

The following lemma gives some properties of the composition of the Riemann-
Liouville fractional integral and derivative.

Lemma 2.2 [21] Let υ, ϱ > 0 and f ∈ L1(a, b), then

Iυa+I
ϱ
a+f = Iυ+ϱ

a+ f (2)

is satisfied at almost every point x ∈ [a, b].
Let υ > 0 and f ∈ L1(a, b). Then

Dυ
a+Iυa+f(x) = f(x) (3)

at almost every x ∈ [a, b].
Let 0 < υ < 1, f ∈ L1(a, b) and I1−υ

a+ f ∈ AC[a, b]. Then

Iυa+Dυ
a+f(x) = f(x)−

I1−υ
a+ f(a)

Γ(υ)
(x− a)υ−1 (4)

holds almost everywhere on [a, b].

Let a = 0. In the following, we denote Iυ0+ by Iυ, and Dυ
0+ by Dυ, for simplicity.
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Proposition 2.1 Let 0 < υ < 1, F : [0, b] → R be a continuous function. Then y is
a solution of the IVP

Dυy(t) = F (t), t ∈ (0, b],

y(0) = 0
(5)

if and only if y ∈ C[0, b] is a solution of the integral equation

y(t) =
1

Γ(υ)

∫ t

0

(t− s)υ−1F (s)ds. (6)

Proof. Let y ∈ C[0, b] be such that Dυy = F, i.e., DI1−υy = F. Integrating, we get
I1−υy(t) = I1−υy(0) + I1F so that I1−υy is absolutely continuous. Apply operator Iυ to
the differential equation in (5), then by virtue of (4), we obtain y(t) = c

Γ(υ) t
υ−1+ IυF (t).

Employing the initial condition, we find c = 0. Hence, (6) holds.
Conversely, if y = IυF, then, taking into account Lemma 2.1, we see that y is contin-

uous. Moreover, y(0) = IυF (0) = 0 because F is continuous. Then, applying operator
I1−υ and (2), we obtain I1−υy = I1F. Deriving, we get Dυy = F .

3 Existence Results

In this section, we give an existence and uniqueness result based upon Banach’s fixed
point theorem. Moreover, we retrieve an existence result by means of the nonlinear
alternative of Leray-Schauder for a larger class of functions f(t, yt).

The following space will be considered hereafter. Let Ω be the Banach space of all
continuous functions y : (−∞, b] → R such that y0 ∈ B and y∣∣[0,b] is continuous.

Definition 3.1 A function y ∈ Ω is said to be a solution of (1) if y satisfies the frac-
tional differential equation DϱDυy(t) = f(t, yt) on (0, b], the initial condition Dυy(0) = 0,
and y(t) = χ(t) on (−∞, 0].

Lemma 3.1 Let F (t) = f(t, yt) ∈ C[0, b]. Then y is a solution of the IVP

DϱDυy(t) = f(t, yt), t ∈ (0, b],

Dυy(0) = 0,

y(0) = 0

(7)

if and only if y is a solution of the fractional integral equation

y(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, ys)ds.

Proof. Since F is continuous, applying Proposition 2.1, we obtain that

Dυy(t) =
1

Γ(ϱ)

∫ t

0

(t− s)ϱ−1f(s, ys)ds,

y(0) = 0.
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IϱF is continuous. Hence, using Proposition 2.1 again, we get

y(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, ys)ds,

y(0) = 0.

Similarly, the converse is easily shown.

Theorem 3.1 Let f : [0, b]×B→ R be a continuous function. Suppose that there
exists L > 0 such that

|f(t, u)− f(t, v)| ≤ L∥u− v∥B, t ∈ [0, b], for every u, v ∈ B.

Then the IVP (1) has a unique solution on [0, b] provided that bυ+ϱKbL
Γ(υ+ϱ+1) < 1, where

Kb = sup
t∈[0,b]

|k(t)|.

Proof. Using the previous lemma, we show that solving the initial value problem is
equivalent to proving that the operator S : Ω → Ω has a unique fixed point, where

(Sy)(t) =

{
χ(t), t ∈ (−∞, 0],

1
Γ(υ+ϱ)

∫ t

0
(t− s)υ+ϱ−1f(s, ys)ds, t ∈ [0, b].

(8)

Consider the following decomposition.
Let x(.) : (−∞, b] → R be the function defined by

x(t) =

{
0, t ∈ [0, b],

χ(t), t ∈ (−∞, 0].
(9)

Then take z(.) : (0, b] → R given by z = y∣∣[0,b], denote by z the function defined by

z(t) =

{
z(t), t ∈ [0, b],

0, t ∈ (−∞, 0].
(10)

Thus, y(t) = z(t) + x(t), t ∈ [0, b], then yt = zt + xt, t ∈ [0, b].
In addition, set C0 = {z ∈ C([0, b]) : z0 = 0} equipped with the semi-norm in C0 defined
by ∥z∥b = sup

t∈[0,b]

|z(t)|. Consider now the operator T : C0 → C0 given by

(Tz)(t) =

{
0, if t ∈ (−∞, 0],

1
Γ(υ+ϱ)

∫ t

0
(t− s)υ+ϱ−1f(τ, zs + xs)ds, if t ∈ [0, b].

(11)

Then the operator S has a fixed point is equivalent to T has a fixed point.
Indeed, T is a contraction mapping.
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Consider z, z∗ ∈ C0. Then we have for every t ∈ [0, b],

|(Tz)(t)− (Tz∗)(t)|

≤ 1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1|f(s, zs + xs)− f(s, z∗s + xs)|ds

≤ 1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1L∥zs − z∗s∥Bds

≤ LKb

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1 sup
τ∈[0,s]

|z(τ)− z∗(τ)|ds

≤ LKb∥z − z∗∥b
Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1ds ≤ LKbb
υ+ϱ

Γ(υ + ϱ+ 1)
∥z − z∗∥b.

Therefore, T is a contraction mapping. Hence, applying Banach’s fixed point theorem,
we see that T has a unique fixed point.

Now, we give an existence result based upon the nonlinear alternative of Leray-
Schauder.

Lemma 3.2 [16] Let v : [0, b] → [0,∞) be a real function and w(.) be a nonnegative,
locally integrable function on [0, b] and there exist constants a > 0 and 0 < υ < 1 such
that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)υ
ds.

Then there exists a constant K = K(υ) such that v(t) ≤ w(t)+Ka
∫ t

0
w(s)

(t−s)υ ds, t ∈ [0, b].

Theorem 3.2 Under the following assumptions:

1. f is a continuous function,

2. there exists p, q ∈ C([0, b],R+) such that

|f(t, u)| ≤ p(t) + q(t)∥u∥B, t ∈ [0, b], u ∈ B,

the IVP (1) has at least one solution on [0, b].

Proof. Let T : C0 → C0 be defined as in (11). We will show that T is a continuous
and a completely continuous operator.
Step 1: T is continuous.
Let (zn) be a sequence in C0 such that zn → z in C0. Then

|(Tzn)(t)− (Tz)(t)|

≤ 1

Γ(υ + ϱ)

∫ b

0

(t− s)υ+ϱ−1|f(s, zns
+ xs)− f(s, zs + xs)|ds

≤ bυ+ϱ

Γ(υ + ϱ+ 1)
∥f(., zn(.)

+ x(.))− f(., z(.) + x(.))∥∞,
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which tends to 0 as n→ ∞.
Step 2: T maps bounded sets into bounded sets in C0.

Let z ∈ Bη := {z ∈ C0 : ∥z∥b ≤ η}, since f is a continuous function, we have for each
t ∈ [0, b],

|(Tz)(t)| ≤ 1

Γ(υ + ϱ)

∫ b

0

(t− s)υ+ϱ−1(p(s) + q(s)∥zs + xs∥B)ds

≤ bυ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +

bυ+ϱ

Γ(υ + 1)Γ(ϱ+ 1)
∥q∥∞η∗ =: l,

where ∥zs + xs∥B ≤ ∥zs∥B + ∥xs∥B ≤ Kbη +Mb∥χ∥B := η∗. Hence, ∥Tz∥∞ ≤ l.
Step 3: T maps bounded sets into equicontinuous sets of C0.
Let t1, t2 ∈ [0, b], t1 < t2 and let Bη be a bounded set of C0 as in Step 2. Let z ∈ Bη.

|(Tz)(t2)− (Tz)(t1)|

≤ 1

Γ(υ + ϱ)
(

∫ t1

0

|(t2 − s)υ+ϱ−1 − (t1 − s)υ+ϱ−1||f(s, zs + xs)|ds

+

∫ t2

t1

|(t2 − s)υ+ϱ−1f(s, zs + xs)|ds)

≤ ∥p∥∞ + ∥q∥∞η∗
Γ(υ + ϱ)

∫ t1

0

|(t2 − s)υ+ϱ−1 − (t1 − s)υ+ϱ−1|ds

+
∥p∥∞ + ∥q∥∞η∗

Γ(υ + ϱ)

∫ t2

t1

(t2 − s)υ+ϱ−1ds.

As t1 → t2, the right-hand side of the above inequality tends to zero. By virtue of Steps
1-3, along with the Arzelà-Ascoli theorem, we infer that T : C0 → C0 is continuous and
completely continuous.
Step 4: A priori bounds.
It is sufficient to show that there exists an open set U ⊆ C0 with z ̸= λTz, for λ ∈ (0, 1)
and z ∈ ∂U.
Take z ∈ C0 and z = λT(z) for some 0 < λ < 1, then for each t ∈ [0, b],

|z(t)| ≤ 1

Γ(υ + ϱ)

∫ t

0

(t− τ)υ+ϱ−1(p(τ) + q(τ)∥zτ + xτ∥B)dτ

≤ bυ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +

1

Γ(υ + ϱ)

∫ t

0

(t− τ)υ+ϱ−1q(τ)∥zτ + xτ∥Bdτ.

Then ∥zτ + xτ∥B ≤ Kb sup
s∈[0,τ ]

|z(s)|+Mb∥χ∥B := w(τ), which implies that

|z(t)| ≤ 1

Γ(υ + ϱ)

∫ t

0

(t− τ)υ+ϱ−1q(τ)w(τ)dτ +
bυ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞, t ∈ [0, b].

By inserting the above in w, we get for each t ∈ [0, b],

w(t) ≤Mb∥χ∥B +
Kbb

υ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +

Kb∥q∥∞
Γ(υ + ϱ)

∫ t

0

(t− τ)υ−1(t− τ)ϱw(τ)dτ.
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To this end, applying Lemma 3.2 yields that there exists a constant K = K(υ) such that
for each t ∈ [0, b],

|w(t)| ≤Mb∥χ∥B +
Kbb

υ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞ +K(υ)

Kb∥q∥∞bϱ

Γ(υ + ϱ)

∫ t

0

(t− τ)υ−1R dτ,

where

R =Mb∥χ∥B +
Kbb

υ+ϱ

Γ(υ + ϱ+ 1)
∥p∥∞.

Hence,

∥w∥∞ ≤ R+R
K(υ)Kbb

υ+ϱ

υΓ(υ + ϱ)
∥q∥∞ := r.

Then ∥z∥∞ ≤ r∥Iυ+ϱq∥∞ + bυ+ϱ

Γ(υ+ϱ+1)∥p∥∞ := r∗.

Set U = {z ∈ C0 : ∥z∥b < r∗ + 1}. T : U → C0 is continuous and completely continuous.
From the choice of U, there is no z ∈ ∂U such that z = λT(z), for λ ∈ (0, 1).
Consequently, the nonlinear alternative of Leray-Schauder is applicable. It follows that
T has a fixed point z in U .

4 Stability

In this section, we provide sufficient conditions that ensure the Hyers-Ulam stability of
our problem.

Definition 4.1 Problem (1) is said to be Hyers-Ulam stable if there exists a constant
λ > 0 such that for each ϵ > 0 and for each u ∈ Ω,

|DϱDυu− f(t, ut)| ≤ ϵ, t ∈ [0, b],

u(t) = χ(t), t ∈ (−∞, 0],
(12)

there exists a solution v ∈ Ω of (1) such that |u(t)− v(t)| ≤ λϵ, t ∈ [0, b].

Theorem 4.1 Let f : [0, b]× → R be continuous and satisfy the Lipschitz condition
with respect to the second variable, i.e., there exists L > 0 such that

|f(t, u)− f(t, v)| ≤ L∥u− v∥B, t ∈ [0, b] u, v ∈ B.

Then (1) is Hyers-Ulam stable provided that bυ+ϱKbL
Γ(υ+ϱ+1) < 1.

Proof. Since f satisfies the assumptions of Theorem 3.1 , the solution of (1) can be
written as

v(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, vs)ds.

Now, let u be a solution to (12), then there exists a function γ such that |γ(t)| ≤ ϵ and

DϱDυu = f(t, ut) + γ(t).

Proceeding as in Section 2, we find

u(t) =
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, us)ds+
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1γ(s)ds,
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which gives |u(t)− 1
Γ(υ+ϱ)

∫ t

0
(t− s)υ+ϱ−1f(s, us)ds| ≤ ϵ

Γ(υ+ϱ+1)b
υ+ϱ := Λϵ so that

|u(t)− v(t)| ≤ |u(t)− 1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, us)ds|

+
1

Γ(υ + ϱ)
|
∫ t

0

(t− s)υ+ϱ−1f(s, us)−
1

Γ(υ + ϱ)

∫ t

0

(t− s)υ+ϱ−1f(s, vs)ds|

≤ Λϵ+
L

Γ(υ + ϱ)

∫ t

0

(t− s)υ−1(t− s)ϱ∥us − vs∥Bds

≤ Λϵ+
LbϱKb

Γ(υ + ϱ)

∫ t

0

(t− s)υ−1 sup
τ∈[0,s]

|u(τ)− v(τ)|ds.

(13)

Set ψ(t) = sup
τ∈[0,t]

|u(τ) − v(τ)|, so ψ(t) ≤ Λϵ + LbϱKb

Γ(υ+ϱ)

∫ t

0
(t − s)υ−1ψ(s)ds. Applying the

Gronwall lemma, we find

ψ(t) ≤ Λϵ+
LbϱKb

Γ(υ + ϱ)

∫ t

0

(t− s)υ−1Λϵds

≤ Λϵ+K
LKb

υ

bυ+ϱ

Γ(υ + ϱ)
Λϵ = Λ(1 +K

LKb

υ

bυ+ϱ

Γ(υ + ϱ)
)ϵ.

(14)

5 Example

In this section, we provide a numerical example to show the viability of our outcomes.
Take υ = ϱ = 1

2 , b = 1, γ > 0. The nonlinearity f : [0, 1]× Bγ → R is given by

f(t, x) = e−γt(
1√
t+ 4

x2 + 2|x|
1 + |x|

+ sin(t))

and χ ∈ Bγ which is defined by

Bγ = {χ : C((−∞, 0],R) : lim
s→−∞

eγs|χ(s)|exists in R}

and endowed with the norm ∥χ∥Bγ
= sup

s∈(−∞,0]

eγs|χ(s)|. It is easily verified that Bγ is an

admissible phase space, i.e., it is a Banach space and it fulfills the phase space axioms
with K(t) = 1,M(t) = e−γt and H = 1.
Moreover, for any t ∈ [0, 1], x, y ∈ Bγ , we have

|f(t, x)− f(t, y)| = e−γt 1√
t+ 4

|x
2 + 2|x|
1 + |x|

− y2 + 2|y|
1 + |y|

|

≤ e−γt 1√
t+ 4

| x2 − y2

(1 + |x|)(1 + |y|)
|

≤ e−γt 1√
t+ 4

|x− y| ≤ 1

2
∥x− y∥Bγ

so that f satisfies the Lipschitz condition with L = 1
2 and bυ+ϱKbL

Γ(υ+ϱ+1) =
1
4 < 1, so the IVP

has exactly one solution by virtue of Theorem 3.1. Also, the hypothesis from Theorem
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4.1 is satisfied, and therefore the IVP is shown to be Hyers-Ulam stable.
Furthermore, for any t ∈ [0, 1] and x ∈ Bγ , we have

|f(t, x)| ≤ e−γt

√
t+ 4

2 + |x|
1 + |x|

|x|+ e−γt sin(t) ≤ p(t)∥x∥Bγ
+ q(t),

where p(t) = 2√
t+4

and q(t) = e−γt sin(t). We see that f satisfies the conditions of

Theorem 3.2. Thus, the existence of solutions follows immediately.

6 Conclusion

In this work, we gave sufficient conditions for the existence, uniqueness and stability of
solutions of nonlinear sequential IVPs with delay. The novelty of our findings resides in
the usefulness of our existence results in proving the controllability of a more generalized
system by the aid of semigroup techniques. Namely, when we extend the differential
equation to a fractional differential evolution equation with control, i.e., when the non-
linear part takes the form Ax(t)+Bu(t)+f(t, xt), where x takes values in a Banach space
X, A is a generator of a strongly continuous semigroup of bounded linear operators, B
is a bounded linear operator and the control function u is given in L2([0, b], U), where U
is a Banach space. This will make the subject of a future publication.
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Abstract: Developing an algorithm for ensuring a feasible gait of Hexapod Walking
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utilizing the mobility of its six legs that alternately make contact with the ground. To
this end, a kinematic-based approach is applied that individually takes into account
the movements of each leg, while maintaining compatibility with the body’s motion
through a non-symmetrical tripod gait. Accordingly, the forward kinematics of the
robot is established using the Denavit-Hartenberg parameterization and its inverse
kinematics is derived using Paul’s method. Then, the uneven terrain is represented by
elevation differences in a 3D curve trajectory. After that, an algorithm is proposed
to ensure the adaptability of the robot’s legs with respect to the terrain’s shape,
namely, the algorithm allows each leg to follow its own trajectory independently.
To validate the proposed approach, 3D simulations are conducted using MATLAB
software, demonstrating the accuracy and reliability of the purely kinematic approach.
The results show that the algorithm enables the HWR to adapt its walking to irregular
terrain in various general cases.
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1 Introduction

Hexapod Walking Robots (HWRs) are mechanical vehicles that emulate the locomotion
of insects, characterized by their mobility, maneuverability, adaptability, flexibility, and
stability in natural terrains. These robots are inspired by the biological features of insects
and utilize six legs for walking, enabling them to navigate various terrains with efficiency
and versatility [1,2]. In legged locomotion, HWRs are favored by static stability gait due
to having three legs in contact with the ground all the time, flexibility where they move,
fault tolerant locomotion, possibility to manipulate objects using their legs as arms.

In addition to the advantages mentioned earlier, Hexapod Walking Robots (HWRs)
have superior terrain adaptation capabilities compared to wheeled robots. By utilizing
discrete contacts with the ground, HWRs can bypass undesirable footholds, avoid obsta-
cles, select optimal terrain contacts, and adapt their walking posture to navigate through
confined spaces. This is made possible due to their high degrees of freedom and flexi-
bility, which make them the ideal solution for locomotion on rough and uneven terrains.
HWRs have a unique advantage in navigating complex environments and are well-suited
for applications that require versatile and agile mobility in challenging terrains [3–5].
HWRs can be used for intervention in hostile environments like humanitarian demining
operations, disaster recovery missions, nuclear plant maintenance, operations in volcanic
sites, underwater searching and space exploration. Beyond this type of applications,
HWRs can also be used in a wide variety of service tasks such as forest harvesting and
service robots [6–9].

In current realizations, hexapod robots are very far from the complexity of real insects
in terms of the number of degrees of freedom, velocity and dimensions. Researchers are
only interested in extracting the essential characteristics of the insects’ walking system
and implementing them in real robots. A gait can be described as a sequence of leg
motions coordinated with a sequence of body motions for transporting the robot’s body
[10]. The choice of the gait’s mode is the first essential step to guarantee stability and
efficiency of the hexapod walking robot motion.

Most studies used for hexapod locomotion the common and basic gait called a tripod
gait where the body is propelled continuously by the cyclic sequencing of the movements
of three legs which were in the air and come to rest on the ground while the other three
release the contact there and return after half a period (legs coordination). Each leg
performs a walking step in two phases [11]: a support phase during which the foot of the
leg remains in contact with the ground, its active joints cause the robot’s body to move
forward horizontally; and a swing phase where the end of the leg follows a trajectory
in the air and then comes back into contact with the ground to start a new step. This
tripod gait of the hexapod can achieve fast movement with stability.

In terms of the hexapod robot’s gait generation, we note that the legged locomo-
tion of the HWRs is performed according to two major types of approaches: analytical
approaches and bio-inspired approaches. Since it does not require complex geometrical
calculation, the majority of studies are made according to the bio-inspired approaches
to generate symmetrical gaits and reproduce different type of gaits for a hexapod robot.
The most common approach for the design of a bio-inspired architecture consists of a
Central Pattern Generator (CPG) network with six coupled nonlinear oscillators [12]. By
controlling the durations of the ascending and descending phase of the limb trajectory,
they control the durations of the swing and stance step phases, respectively. This network
produces synchronized rhythms that give the correct pattern for locomotion [13,14].
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As regards the analytical approaches, we note firstly that the existing works regard-
ing gait generation in flat terrain, only deal with a single X direction and describe the
kinematic model by using a matrix approach and propose different gaits (tripod gait,
quadrangular gait, and pentagonal gait) where the sequences of coordination legs ac-
cording to different rhythms are converted by the Inverse Kinematics Model (IKM) and
preloaded on a computer which sends commands to the servo controller and the hexapod
executes corresponding instructions [10,15–17]. The models mentioned above only work
on flat ground and constitute a compulsory phase to begin with, but in reality, it is
necessary to take into account, during the modeling, the nature of the real terrain which
is uneven and which presents irregularities.

A synthesis of the works quoted above allowed us to notice that the generation of
trajectories of HWRs on an uneven ground which presents irregularities in terms of
variation of altitude is an extension of walking on flat ground, which is a reduced case of
walking. For this, we are motivated by the study of the general case of real walking which
can model at the same time and in an exact mathematical way the HWRs with all its
24 degrees of freedom in walking interaction on a rough terrain of arbitrary shape which
can be modeled by a 3D curve without any restriction either on the model of the robot
or on the terrain. The rest of the paper is structured as follows. Section 2 presents the
kinematic modeling of the HWR. The proposed walking algorithm is studied in detail
in Section 3. Section 4 illustrates the results obtained using this approach. Finally,
conclusions are made in Section 5.

2 HWR Model

A hexapod walking robot consists of a rectangular body to which six identical legs are
articulately attached, see Figure 1. Each leg of the robot has three degrees of freedom
allowing the robot to move its legs dexterously according to the given position within its
workspace.

Figure 1: (Left) CAD Model of the HWRs with six legs; (Right) Attachment of the reference
frames for the robot’s five legs as a model.

2.1 Forward kinematic model of the hexapad robot

The forward kinematic model (FKM) [18–20] for a hexapod robot resides in finding
the location of robot body with respect to robot’s legs joint variables according to the
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coordinate frames established in Figure 1 (right). To model the HWRs having a body
of length 2a and a width 2b, the leg number five is chosen as the leg-model [21]. It is
made up of three segments of respective lengths l1, l2, l3 and three rotoid articulations
of angle θ1, θ2 and θ3. The D-H parameters of the leg-model are shown in equation
(6). The FKM of a leg relative to the world frame is calculated by the product of the
homogeneous transformation matrices according to equation (1), namely it provides the
positions of the contact points of each leg according to the world frame.

WT4,j =
WTb

bT0,j
0,jT1,j

1,jT2,j
2,jT3,j

3,jT4,j (1)

with j = 1, 6 being the legs’ index.
The matrix situation of the robot’s base can be expressed as follows:

WTb =
WTransb

WRotb(Zψ, Yθ, Xφ) (2)

with

0Transb =


1 0 0 xb
0 1 0 yb
0 0 1 zb
0 0 0 1

 . (3)

The matrix of articulations points of each leg can be expressed by the following:

bT0,j =


1 0 0 x0,j

0 1 0 y0,j
0 0 1 z0,j
0 0 0 1

 , (4)

x0,j =
[
−a −a −a a a a

]
,

y0,j =
[
b b b −b − b − b

]
,

z0,j =
[
0 0 0 0 0 0

]
.

(5)

The parameters table of Denavit-Hertberg corresponding to the legj is

DHj =


0 0 θ1,j −l1

−π/2 0 θ2,j 0
0 l2,j θ3,j 0
0 l3,j 0 0

 . (6)

The homogenous matrix of Denavit-Hertberg can be expressed as follows:

j−1Tj =


Cθj −Sθj 0 dj

CαjSθj CαjCθj −Sαj −rjSαj
SαjSθj SαjCθj Cαj rjCαj

0 0 0 1


with C(.) = Cos(.) , S(.) = Sin(.).

(7)

Four matrices of the leg-model are worth, respectively,

0T1 =


C1 −S1 0 0
S1 C1 0 0
0 0 1 −l1
0 0 0 1

 , (8)
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1T2 =


C2 −S2 0 0
0 0 1 0

−S2 −C2 0 0
0 0 0 1

 , (9)

2T3 =


C3 −S3 0 l2
S3 C3 0 0
0 0 1 0
0 0 0 1

 , (10)

3T4 =


1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1

 . (11)

This yields the FKM of leg model 5 ( Figure 2).

Figure 2: FKM of the leg model 5. Figure 3: HWR’s FKM.

After calculating the FKM of the leg-model, the FKM of the entire robot consists in
distributing six legs around its body as it is shown in Figure 3.

2.2 Inverse kinematic model of hexapod robot

The inverse kinematic model (IKM) of the HWR’s leg is firstly calculated according to
the body frame Rb. As previously mentioned, the FKM of the robot can be expressed
by the following equation:

U0 =


sx nx ax PX
sy ny ay PY
sz nz az PZ
0 0 0 1

 = bT0,j
0,jT1,j

1,jT2,j
2,jT3,j

3,jT4,j . (12)

Paul’s method consists in multiplying the equation (12) by 1,jTb which is the inverse of
bT1,j :

1,jTbU0 = 1,jT2,j
2,jT3,j

3,jT4,j , j = 1, 6. (13)

By identifying the elements of the fourth column of the product on the left-hand side of
equation (13) with those of the fourth column of the product on the right, we will have

S1 =PY − y0,j , S1 = PX − x0,j ,

θ1 = ATAN2(S1, C1), θ
′

1 = θ1 + π.
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The second multiplication yields

X = (PX − x0,j)C1 + (PY − y0,j)S1 ,

Y = PZ + l1 , Z1 = −l2 , Z2 = 0 , W = l3,

B1 = −2(XZ2 + Y Z1) , B2 = 2(XZ1− Y Z2),

B3 = W 2 −X2 − Y 2 − Z12 − Z22,

S2 = (B1B3 +B2(B12 +B22 −B32)
0.5

)/(B12 +B22),

C2 = (B2B3−B1(B12 +B22 −B32)
0.5

)/(B12 +B22),

θ2 = ATAN2 (S2, C2) ,

S3 = (−XS2− Y C2 + Z2)/W,

C3 = (XC2− Y S2 + Z1)/W,

θ3 = ATAN2(S3, C3) .

The hexapod robot simulation via MATLAB is executed to verify the efficiency of the
derived IKM with different curbs followed by the robot leg points of contact. As it is
shown in Figures 4, 5, 6, 7, the robot’s leg follows spatial straight line, circle-like shape,
cycloid and spiral trajectories, respectively.

Figure 4: The robot’s leg fol-
lows spatial linear trajectory.

Figure 5: The robot’s leg fol-
lows circular trajectory.

Figure 6: The robot’s leg fol-
lows cycloid trajectory.

Figure 7: The robot’s leg fol-
lows spiral trajectory.

Figure 8: Simultaneous
movement of the leg’s point of
contact (linear) and body of
the robot (circular).

Figure 9: Simultaneous
movement of the leg’s point of
contact (spiral) and body of
the robot (linear-spatial).
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Figure 10: Linear trajectory
along X.

Figure 11: Linear trajectory
along Y.

Figure 12: Linear trajectory
along Z.

Additionally, the movement of robot’s leg point of contact can be performed simul-
taneously with that of the body as is depicted in Figures 8, 9.

Finally, we validate the established IKM of the whole robot, namely the robot’s
body can perform six degrees of freedom (xb, yb, zb, Zψ, Yθ, Xφ), meanwhile its legs can
further move according to any given trajectory belonging to the robot’s workspace as it
is graphically represented in Figures 10, 11, 12, 13, 14, 15.

Figure 13: HWR’s body ro-
tation ϕ around X

Figure 14: HWR’s body ro-
tation θ around Y

Figure 15: HWR’s body ro-
tation ψ around Z

.
In conclusion, for the HWR’s IKM, an example is given in Figure 16 which represents

the eighteen values of the angles (θ1, θ2, θ3) of the HWR’s six legs corresponding to the
posture of Figure 16 previously presented.

Figure 16: Values of angles (θ1, θ2, θ3) which correspond to the posture of Figure 15.
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3 Proposed Walking Algorithm of a HWR on Irregular Terrain

The generation of the walk of an HWR on irregular terrain must take into account,
in addition to the modeling of the robot, the irregular shape of the terrain which is
manifested by differences in altitudes of the contact points with the ground. These
differences express the variation of the Z component of these contact points which is zero
for a flat terrain and different from zero for irregular terrain. To achieve this objective
of walking on irregular terrain, we propose in this paper a general algorithm that works
according to the following flowchart.

• Step 1: input: Geometrical parameters of the HWR (a=180; b=120; l1=50;
l2=100; l3=100).

• Step 2: input: Any 3D terrain composed of 6 trajectories, each comprising nsteps.

• Step 3: Model of irregular terrain and extraction of its parameters.

✓ for each step k (k=1: nsteps) do:

✓ for t=0:n ( n refers to the step’s period)

∗ if t≤n/2 do

– for each legj (j = 1 : 6) do:

• Step 4: Adaptation of the Normal Cycloidj (NC)j (legj : j = 1, 3, 5) to its irregular
terrainj .

• Step 5: Adaptation of legj to follow the Adapted Cycloidj (AC)j .

• Step 6: Synchronization of the movements of six legs (tripod gait: 135swing and
246stanse).

• Step 7: Adaptation of the movement of the HWR’s body to the movements of its
six legs.

• Step 8: IKM of legj .

• Step 9: FKM of legj .

• Step 10: End for each legj .

• if t>=n/2: do

• Step 11: Actualization of body position.

• for each legj do

• Step 12: Adaptation of the Normal Cycloidj (NC)j (legj : j = 2, 4, 6) to its irregular
terrainj .

• Step 13: Adaptation of legj to follow the Adapted Cycloidj (AC)j .

• Step 14: Synchronization of the movements of six legs (tripod gait: 246swing and
135stanse).
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• Step 15: Adaptation of the movement of the body of the HWR to the movements
of its six legs.

• Step 16: IKM of legj .

• Step 17: FKM of legj .

• End for each legj .

• End for t=0:n.

• End for each step k.

It is noteworthy to say that the aforementioned algorithm’s steps for HWR walking
are elaborately detailed in the following sections.

3.1 Model of the irregular terrain and extraction of its parameters

In general, the walking of a hexapod walking robot (HWR) may not be symmetrical, and
each leg may follow a different trajectory compared to the others. To account for this, we
define the model of the irregular terrain for each leg as a set of contact points belonging
to a 3D curve. As a result, the irregular terrain can be represented by six curves, within
the reachable domain of the robot, derived from the shape of the reference terrain, which
is defined by 

xT ,

yT = fx (xT ) ,

zT = fxy (xT,yT ) ,

(14)

with

– xT : Evolution of the terrain along the X axis with a step length and a number of
nstep;

– fx : A function of xT representing the evolution of the terrain along the Y axis;

– fxy : A function of xT and yT denoting the variation in altitude of different points
of the terrain.

The position of six legs relative to the reference is given by the matrix TR1 as

TR1 =


xT + a yT + (b+ l2) zT

xT − pas/2 yT + (b+ l2) zT
xT − a yT + (b+ l2) zT

xT − a− pas/2 yT − (b+ l2) zT
xT yT − (b+ l2) zT

xT + a− pas/2 yT − (b+ l2) zT



T

. (15)
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Then, we distinguish between these six identical trajectories by introducing the following
coefficients ki,j :

TRk =


k11xT + a k21yT + (b+ l2) k31zT

k12xT + pas/2 k22yT + (b+ l2) k32zT
k13xT − a k23yT + (b+ l2) k33zT

k14xT − a− pas/2 k24yT − (b+ l2) k34zT
k15xT k25yT − (b+ l2) k35zT

k16xT + a− pas/2 k26xT − (b+ l2) k36zT



T

. (16)

Remarkably, TRk can describe any type of irregular terrains that the HWR can track
according to the given values of the coefficients kij :

• kij = 1 for a reference terrain;

• k3j = 0 for flat terrain;

• Remaining case for any uneven terrain.

Figure 17 illustrates 6 independent trajectories corresponding to six legs of the HWR:

Figure 17: 6 curves representing 6 trajectories to follow.

For each terrainj composed of nsteps that the legj must follow, we calculate the
geometric parameters of two contact points PO (xT0j , yT0j , zT0j) of the beginning and
P1 ( xT1j , yT1j , zT1j) of the end of a walking step (see Figure 18) according to

Ψj = − atan 2 ((yT1j − yT0j) , (xT1j − xT0j)) , (17)

lpj =

√
(xT1j − xT0j)

2
+ (yT1j − yT0j)

2
, (18)

Θj = atan 2
((
zT1j − zT0j

)
, lpj

)
, (19)

lsj =

√(
xT1j − xT0j

)2
+ (yT1j − yT0j)

2
+ (zT1j − zT0j)

2
, (20)

Rj =
lsj

2× π
, (21)

Ψj : the rotation angle along OZ;
lpj : the length of the step in the plane XOY ;
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Figure 18: Adaptation of the cyclöıd 5 to the irregular terrain at the origin XY.

Θj : the rotation angle along OY ;
lsj : the length of the step in the space;
Rj : the cycloid’ radius.

3.2 Adaptation of the normal cycloidj to the irregular terrainj

We define a Normal Cycloidj trajectory in the XOZ plane (Figure 19)that the legj must
follow in the swing phase by the following equation:

xNCj = Rj × (t− sin (t)) ,

yNCj = 0,

zNCj = Rj × (1− cos (t)) .

(22)

We adapt the normal cycloid NCj so that it matches its terrainj by the combination of
two rotations and a translation (Figure 20) and it is denoted ACj , thus it is adapted to
the terrainj by the relations

ACj = NCj × rot (Y,Θj)× rot (Z,Ψj) + [xT0j ; yT0j ; zT0j ] , (23)

rot (Z,Ψj) : Rotation matrix around OZ;
rot (Y,Θj) : Rotation matrix around OY.

Figure 19: Adaptation of the cycloid5 to
the irregular terrain5 for one step.

Figure 20: Adaptation of the cycloid to uneven
terrain composed of seven steps.
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3.3 Adaptation of legj to the cycloid of its terrainj

Depending on the desired number of steps, each legj follows the cycloids adapted with a
fixed body (see Figure 21) using the developed IKM.

Figure 21: Adaptation of the legj to the cycloids of its terrainj .

3.4 Synchronization of the movements of six legs in the tripod mode

Each leg of the HWR performs a walking step in two phases: a support phase and a
swing phase (see Figure 22). The most used mode of walking which can ensure speed
and stability is the alternating tripod, it is carried out by the sequencing of six legs, three
by three during a period T: in the first half-period, the legs 135 are in the swing phase
and legs 246 are in the support phase as they alternate in the second half-period for one
and seven walking steps, respectively. Furthermore, for instance, the synchronization is
given between two consecutive legs number five and six (see Figure 23).

Figure 22: Two phases of a legj for
one walking step.

Figure 23: Synchronisation of a walking step
for legs 5 and 6.

3.5 Adaptation of body’s movement to the movements of its six legs

The spatial displacement of the body of the HWR occurs when the legs in contact with
the ground propel it into a given coherent situation (position and orientation). To ensure
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the compatibility between the movement of the legs and that of the body, we propose
for the body:

• movement in the XOY plane in small straight segments as the average resultant
of the movement of six legs along

✓ the X axis: 
xT0 =

6∑
j=1

xT0j

6 ,

xT1 =
6∑
j=1

xT1j

6 ,

xb =
xT1−xT0

2n t+ x00,

(24)

where x00 refers to the initial position of the robot’s body;

✓ the Y axis: 
yT0 =

6∑
j=1

yT0j

6 ,

yT1 =
6∑
j=1

yT1j

6 ,

yb =
yT1−yT0

xT1−xT0
xb + yT0 − (yT1−yT0)

(xT1−xT0)
xT0;

(25)

• the Z axis, a sinusoidal [22,23] movement (see Figure 25) which describes the case
of the real gait of the insect and that at a fixed height (see Figure 24) of its body.

Figure 24: Alternating tripod gait of the
HWR on flat terrain at a fixed height
of the body.

Figure 25: Alternating tripod gait of the HWR
on flat terrain with sinusoidal height of the body.

4 Results and Discussion

In this section, the obtained results are mainly based on three types of terrain progres-
sively ordered by the degree of locomotion’s difficulty:
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• A flat terrain is characterized by its null altitude (Z = 0). It is obviously clear from
( Figure 26), the HWR executes two steps of alternating tripod walking while its
body remains horizontal at a constant height (l1+l3) and it oscillates horizontally
(see Figure 27).

Figure 26: Alternating tri-
pod gait of the HWR on flat
terrain at a fixed height of the
body.

Figure 27: Alternating tri-
pod gait of the HWR on flat
terrain with a sinusoidal height
of the body.

Figure 28: Alternating tri-
pod gait of the HWR on in-
clined terrain with sinusoidal
movement while the body re-
mains parallel to the sloped
terrain.

• On slopped terrain, in this simulation, the HWR executes two steps of alternating
tripod gait on an inclined plan and it oscillates sinusoidally and remains parallel
to terrain (see Figure 28).

• An irregular terrain with a constant and variable height of the body (see Figures
29 and 30 ).

Figure 29: Walking on un-
even ground at a fixed body
height.

Figure 30: Walking on ir-
regular terrain with sinusoidal
height of the body.

Figure 31: Walking on ir-
regular terrain with sinusoidal
height of the body with body’s
orientation.

• General case: We take credit from the redundancy of the HWR’s body, namely
we can activate all its degrees of freedom for the sake of providing the HWR with
any given orientation during the walking process, which results in avoiding the
encountered obstacles, where this orientation is inevitably required as the oriented
posture given in Figure 31.

5 Conclusion

The proposed walking algorithm for the HWR on irregular terrain, based on the key
elements of modeling the robot and its legs, modeling the terrain, adapting the legs to
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the terrain, synchronizing the legs for a tripod gait, and ensuring compatibility with
the body’s movement, shows promising results. The algorithm is demonstrated to be
accurate and reliable in following the shape of irregular terrains, regardless of the terrain
type or leg and body trajectories.

One of the major advantages of this algorithm is its applicability to various types of
legged robots, including jumpers, bipeds, quadrupeds, and hexapods, due to the utiliza-
tion of the HWR’s redundancy and activation of all degrees of freedom of the robot’s
body.

Future perspectives for this research could include testing the algorithm on a real
robot with data from real terrains to validate its performance in real-world conditions.
Additionally, further investigation of the walking stability of the HWR in relation to
terrain irregularities could provide valuable insights for enhancing the algorithm’s per-
formance.

Overall, this research contributes to the advancement of robot control for complex
geometries and irregular terrains, paving the way for improved locomotion capabilities
of legged robots in challenging environments.
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[23] T. Wöhrl, L Reinhardt and R. Blickhan. Propulsion in hexapod locomotion: how do desert
ants traverse slopes. Journal of Experimental Biology 220 (9) (2017) 1618–1625.



Nonlinear Dynamics and Systems Theory, 24 (1) (2024) 28–40

Analysis of Customer Satisfaction Survey on E-Wallets

Using Simple Additive Weighting and TOPSIS

Methods

M.Y. Anshori 1, I. H. Santoso 2, T. Herlambang 3∗,
M. Tafrikan 4, M. Adinugroho 1, K. Oktafianto 5 and A.A. Firdaus 6

1 Department of Management, Universitas Nahdlatul Ulama Surabaya, Indonesia.
2 Department of Accounting Magister, University of Wijaya Kusuma, Surabaya, Indonesia.
3 Department of Information System, Universitas Nahdlatul Ulama Surabaya, Indonesia.

4 Department of Mathematics, University of PGRI Ronggolawe, Indonesia.
5 Department of Mathematics, University of Islam Negeri Walisongo, Indonesia.

6 Department of Engineering, Faculty of Vocational, Universitas Airlangga, Indonesia.

Received: August 3, 2023; Revised: January 19, 2024

Abstract: Understanding customer’s behaviors has an important role in business.
The customer’s behaviors dramatically change in line with technology development.
In this modern era, customers buy goods no longer by cash payment but by elec-
tronic payment. E-wallet (electronic wallet) is a form of Fintech (Finance Technol-
ogy) that utilizes internet and is used as an alternative payment method such as
Funds, Shopeepay, Gopay, Ovo, Sakuku. In this study, the researchers examined
which one had the high rate of the e-wallet customer satisfaction using the SAW and
TOPSIS methods. Both methods were able to make more accurate assessments and
predetermined preference weights. After the method implementation was done, it was
concluded that the customer satisfaction surveys on e-wallet applications by using the
SAW and TOPSIS methods showed the same results, that is, the first highest was
DANA, the second was Shopeepay, the third was Gopay, the fourth was OVO, and
the fith was Sakuku. Based on those results, the SAW and TOPSIS methods were
recommended for use because they have relevant results.
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1 Introduction

Understanding customer’s behaviors has an important role in business. The customer’s
behaviors dramatically change in line with technology development. In the past era, cus-
tomers bought goods using cash payments. In this modern era or nowadays, customers
buy goods no longer by cash payments. The payments are made electronically. The elec-
tronic payment system is an alternative payment system making it easier for consumers
to make payments via the internet network [1].

Digital wallets or e-wallets are used for various things, particularly for money trans-
fers. There are various uses of e-wallets, including e-wallets used to transfer funds between
banks and between accounts, e-wallets used to pay various bills (for example, electric bills,
telephone bills, etc.), e-wallets used to buy pulses or data packages, and those used as a
place to save money known as savings. There are various types of e-wallets available in
the community, that is, Dana, Shopeepay, Gopay, Ovo, and Sakuku.

The use of the Simple Additive Weighting (SAW) method is due to the fact that this
method is able to provide more accurate estimates [2], [3], [4] and forecasts [5], [6], [7]
assessment based on predetermined criteria values and preference weights. Besides, the
Simple Additive Weighting (SAW) method can also determine the best alternative among
several existing alternatives [8], [9], [10]. It does ranking process after determining the
weight for each attribute. This study also used the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) method for its higher accuracy in determining the
results.

2 Literature Review

2.1 The simple additive weighting (SAW)

The SAW (Simple Additive Weighting) method is often called the weighted sum method.
The basic concept of the SAW method is to find a weighted sum of performance ratings
for each alternative on all attributes [11], [12]. The SAW method requires the process
of normalizing the decision matrix (x) to a scale that can be compared with all existing
alternative ratings.

2.2 The SAW method procedure

1. Determine the criteria to be used as a reference in decision making, namely Ci.

2. Determine the suitability rating of each alternative for each criterion.

3. Make a decision matrix formed from a match table, according to the given prefer-
ence weights.

4. The final result is obtained from the ranking process, namely the sum of the mul-
tiplication of the normalized matrix R with the weight vector so that the largest
value is selected as the best alternative (Ai) as a solution.

The formula for doing normalization is as follows:

rij

{ xij

Max xij
if j : atribute of benefit,

Min xij

xij
if j : atribute of cost,

(1)
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where rij is the normalized performance rating of Ai alternative on the Cj atrribute,
i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The preference value for each alternative (Vi) is given
as

Vi =

n∑
j=1

wjrij , (2)

where Vi is the final value of the alternative, wj is the predefined weight, rij is the
normalised matrix. The higher value of Vi indicates that the alternative Ai is preferred.

2.3 Technique for order preference by similarity to ideal solution (TOPSIS)
method

TOPSIS is based on the concept that the best chosen alternative not only has the shortest
distance from the positive ideal solution but also has the longest distance from the
negative ideal solution [13]. This concept is widely used in several MADM models to
solve practical decision problems [13], [14], [15]. This is because the concept is simple
and easy to understand, computation is efficient, and it has the ability to measure the
relative performance of alternative decisions in a simple mathematical form.

2.4 The TOPSIS procedure

1. Make a normalized decision matrix.

2. Make the normalized decision matrix.

3. Determine the positive ideal solution matrix and the negative ideal solution matrix.

4. Determine the distance between the values of each alternative with the positive
ideal solution matrix and the negative ideal solution one.

5. Determine the preference value for each alternative.

TOPSIS requires a performance rating for each alternative Ai on each normalized Cj

criterion, that is,

rij =
xij√∑m
i=1 x

2
ij

, (3)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
The positive ideal solution A+ and the negative ideal solution A− can be determined

based on the normalized weight rating (yij) as follows:

yij = wirij , (4)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

A+ =
(
y+1 , y

+
2 , . . . , y

+
n

)
, (5)

A− =
(
y−1 , y

−
2 , . . . , y

−
n

)
(6)

with

y+j

{
max yij ; if j : atribute of benefit,

min yij ; if j : atribute of cost,
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y−j

{
max yij ; if j : atribute of benefit,

min yij ; if j : atribute of cost.

The distance between the alternative Ai and the positive ideal solution is formulated
as follows:

D+
i =

√√√√ n∑
j=1

(
y+i − yij

)2
; i = 1, 2, . . . ,m. (7)

The distance between the alternative Ai and the negative ideal solution is formulated as
follows:

D−
i =

√√√√ n∑
j=1

(
yij − y−i

)2
; i = 1, 2, . . . ,m. (8)

The preference value of each alternative (Vi) is given as

Vi =
D−

i

D−
i +D+

i

; i = 1, 2, . . . ,m. (9)

The higher value of Vi indicates that Ai is the preferred value.

2.5 E-wallet (digital wallet)

In Indonesia, an online-based payment system using electronic money (e-money) has
been widely used. E-wallet (digital wallet) is a form of Fintech (Finance Technology)
utilizing internet media and used as an alternative payment method such as Shopeepay,
Funds, OVO, GoPsy, Sakuku. The E-wallet structure is as follows:

Figure 1: Source: niagahoster.co.id.

Based on the picture above, each customer has an e-wallet (digital wallet). After that,
in the e-wallet feature, there is a payment system when a customer buys something.
The e-wallet also has a balance storage system feature if the customer wants to save,
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and the e-wallet can also view customer reduced balance data. The customer profile
information is very meaningful for the company in relation to improving customer service
and satisfaction.

3 Research Methodology

In this research, the Fuzzy Multiple Attribute Decision Making (FMADM) method was
used by applying the Simple Additive Weighting (SAW) method and the Technique-for-
Preference-by- Similarity-to-Ideal-Solution (TOPSIS) method.

In the SAW method, criteria and weights are required to do the calculations so as
to obtain the best alternative. Simple Additive Weighting (SAW) is a weighted addition
method. The basic concept of SAW is to find the weighted sum of the performance ratings
for each alternative and criteria. The SAW method requires the process of normalizing
the decision matrix (x) to a scale that can be compared with all existing alternative
ratings. The SAW method recognizes the existence of 2 (two) attributes, that is, the
criteria for benefits and the criteria for costs. The basic difference between these criteria
is in the selection of decision-making criteria.

Meanwhile, the TOPSIS method requires a performance rating for each alternative
Ai on each normalized Cj criterion. TOPSIS is based on the concept that the best chosen
alternative is not only the shortest distance from the positive ideal solution, but also has
the longest distance from the negative ideal solution.

In determining customer satisfaction with the e-wallets under study, criteria and
weights are required to do the calculation so as to obtain alternatives. The following are
the criteria needed for decision making, based on parameters in determining customer
satisfaction with e-wallets.

Criteria Description
C1 Admin charge
C2 Display
C3 Accessibility
C4 Topup Ease
C5 Amount of Ballance Limit
C6 Number of Payment functions

Table 1: Criteria.

Using these criteria, a level of importance of the criteria is determined based on the
weight values that have been determined into fuzzy numbers. Next, the weight of each
criterion is converted into a fuzzy number which is shown in Table 2.

Next, the weight of each criterion is converted into a fuzzy number as shown in Table
3.

4 Results and Discussion

The reference for the development of the decision support system (SPK) is based on re-
searches commonly conducted on the e-wallet selection process. And in this study, each
e-wallet was assessed based on criteria. This study used the Simple Additive Weighting
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Value Rating Scale
1 Very poor
2 Poor
3 Average
4 Good
5 Excellent

Table 2: Rating Scale.

Criteria Description Weight
C1 Admin charge 30% = 0.3
C2 Display 10% = 0.1
C3 Accessibility 10% = 0.1
C4 Topup Ease 25% = 0.25
C5 Amount of Ballance Limit 10% = 0.1
C6 Number of Payment functions 15% = 0.15

Table 3: Weight Criteria .

(SAW) method and the Technique for Preference by Similarity to Ideal Solution (TOP-
SIS) method, having criteria and weights to do calculations so as to obtain the best
alternative.

Case sample:

The e-wallets to be studied were determined by taking those most in demand by the
public and using several criteria such as admin charge, display, accessibility, topup ease,
amount of balance limits, number of payment functions of the e-wallet.

In processing the research data, the researchers determined the completion steps in
accordance with the Simple Additive Weighting (SAW) method, covering four stages,
that is, determining the criteria to be used as a reference, determining the match rating
of each alternative on each criterion, making a decision matrix, and ranking.

The criteria to be used as reference in decision making, that is, Ci, was determined as
described in Chapter 2. There are six variables to be used as reference criteria to assess
the customer satisfaction with the e-wallets by using the SAW method, namely admin
charge, display, accessibility, topup ease, the amount of ballance limit, and the number
of payment functions.

Below is the table listing the initials of the respondents along with the values of the
assessment results received from the Google form. The value data for each respondent is
then converted to a predetermined fuzzy number in Chapter 3, see Table 2.

4.1 Simple additive weighting (SAW) method

4.1.1 Determining match rating

The next step is to determine the match rating of each alternative for each criterion
based on Table 4 contained in Chapter 4, as shown in Table 6.
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E-Wallet No Average Value
C1 C2 C3 C4 C5 C6

Shopeepay 70 3.7142 3.8857 4.0714 3.8714 3.8142 4.0571
Dana 70 3.7142 4.0285 4.0857 4.0571 3.6714 4.0857
Ovo 70 3.4285 3.7142 3.7142 3.7571 3.5285 3.6571

Gopay 70 3.4142 3.7285 3.7714 4 3.5714 3.8857
Sakuku 70 3.3 3.3714 3.3428 3.3857 3.4285 3.3285

Table 4: Average Value.

Criteria Description Weight
C1 Admin charge 30% = 0.3
C2 Display 10% = 0.1
C3 Accessibility 10% = 0.1
C4 Topup Ease 25% = 0.25
C5 Amount of Ballance Limit 10% = 0.1
C6 Number of Payment functions 15% = 0.15

Table 5: Weight Criteria.

Alt Average Value
C1 C2 C3 C4 C5 C6

A1 3.7142 8.8857 4.0714 3.8714 3.8142 4.0571
A2 3.7142 4.0285 4.0285 4.0571 3.6714 4.0857
A3 3.4285 3.7142 3.7142 3.7571 3.5285 3.6571
A4 3.4142 3.7285 3.7714 4 3.5714 3.8857
A5 3.3 3.3714 3.3428 3.3857 3.4285 3.3285

Table 6: Match Rating.

4.1.2 Determining decision matrix

The following step for the formation of the decision matrix (x) made by referring to the
table of the match rating of each alternative on each criterion is as follows:

X =


3.7142 8.8857 4.0714 3.8714 3.8142 4.0571
3.7142 4.0285 4.0285 4.0571 3.6714 4.0857
3.4285 3.7142 3.7142 3.7571 3.5285 3.6571
3.4142 3.7285 3.7714 4 3.5714 3.8857
3.3 3.3714 3.3428 3.3857 3.4285 3.3285

 .

Then, calculate the normalized value of each alternative with formula (1) as follows:

a. Criteria for Admin Charge (C1):

r11 =
3.7142

3.7142
= 1, r21 =

3.7142

3.7142
= 1, r31 =

3.4285

3.7142
= 0.9230,

r41 =
3.4142

3.7142
= 0.9192, r51 =

3.3

3.7142
= 0.8884
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so that the normalized value of the alternative production cost is obtained, then
look for the normalized value of other alternatives.

b. Criteria for Display (C2):

r12 =
3.8857

4.0285
= 0.9645, r22 =

4.0285

4.0285
= 1, r32 =

3.7142

4.0285
= 0.9291,

r42 =
3.7285

4.0285
= 0.9255, r52 =

3.3714

4.0285
= 0.8368

so that the normalized value of the alternative display is obtained, then find out
the normalized value of another alternative.

c. Criteria for Accessibility (C3):

r13 =
4.0714

4.0857
= 0.9965, r23 =

4.0857

4.0857
= 1, r33 =

3.7142

4.0857
= 0.9090,

r43 =
3.7714

4.0857
= 0.9263, r53 =

3.3428

4.0857
= 0.8181

so that the normalized value of the alternative accessibility is obtained, then find
out the normalized value of another alternative.

d. Criteria for Topup Ease (C4):

r14 =
3.8714

4.0571
= 0.9542, r24 =

4.0571

4.0571
= 1, r34 =

3.7571

4.0571
= 0.9260,

r44 =
4

4.0571
= 0.9859, r54 =

3.3857

4.0571
= 0.8345

so that the normalized value of the alternative Topup Ease is obtained, then find
out the normalized value of another alternative.

e. Criteria for the Amount of Balance Limit (C5):

r15 =
3.8142

3.8142
= 1, r25 =

3.6714

3.8142
= 0.9625, r35 =

3.5285

3.8142
= 0.9250,

r45 =
3.5714

3.8142
= 0.9363, r55 =

3.4285

3.8142
= 0.8988

so that the normalized value of the alternative amount of balance limit is obtained,
then find out the normalized value of the other alternative.

f. Criteria for the Number of Payment Functions (C6):

r16 =
4.0571

4.0857
= 0.9930, r26 =

4.0857

4.0857
= 1, r36 =

3.6571

4.0857
= 0.8950,

r46 =
3.8857

4.0857
= 0.9510, r56 =

3.3285

4.0857
= 0.8146

so that the normalized value of the alternative number of payment functions is
obtained.



36 M.Y. ANSHORI, I. H. SANTOSO, T. HERLAMBANG, et al.

Then, the normalization results are made into the normalized matrix, while the normal-
ized matrix R in this study is as follows:

R =


1 0.9645 0.9965 0.9542 1 0.9930
1 1 1 1 0.9625 1

0.9230 0.9219 0.9090 0.9260 0.9250 0.8950
0.9192 0.9255 0.9263 0.9859 0.9363 0.9510
0.8883 0.8368 0.8181 0.8345 0.8988 0.8146

 .

4.1.3 Ranking

The last step is to calculate the final preference value (Vi) obtained from the sum of
the multiplication of the normalized matrix row elements (R) with the preference weight
(W ) while the weights used are as follows:

W = {0.30; 0.1; 0.1; 0.25; 0.1; 0.15}.

For the ranking process, use formula (2). Based on the results of the ranking above, it
can be concluded that the results are ranked by the value of V , from the highest and
smallest values, so that an alternative customer satisfaction survey for the e-wallets is
obtained based on the highest value as shown in the following table:

No. Alternative The Final Result Ranking
1 Shopeepay 0.9836 2
2 Dana 0.9962 1
3 Ovo 0.9183 4
4 Gopay 0.437 3
5 Sakuku 0.8527 5

Table 7: Ranking Results.

4.1.4 Description of research data analysis results

Among V1, V2, V3, V4, and V5, the highest value is V2 so that the alternative chosen
and entitled to become an e-wallet with the highest customer satisfaction is V2 = 0.9962.
Funds with a resulted value of 0.9962 are based on calculations using the Simple Additive
Weighting (SAW) method. It is concluded that Dana is the e-wallet with the highest
customer satisfaction based on predetermined criteria. Then the most satisfied criterion
or service is C4 (Ease of Topup) with a higher average value compared to other criteria
or services.

4.2 Technique of preference by similarity to ideal solution (TOPSIS) method

Processing the research data requires four stages, that is, determining the criteria to
be used as a reference, determining the match rating, making a decision matrix, and
ranking. In addition, there are also several steps for completion in accordance with the
Topsis method procedure consisting of five steps given bellow.

1. Make the normalized decision matrix;
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Average Value
C1 C2 C3 C4 C5 C6

4.0571 3.8142 3.8714 4.0714 3.8857 3.7142
4.0857 3.6714 4.0571 4.0857 4.0285 3.7142
3.6571 3.5285 3.7571 3.7142 3.7142 3.4285
3.8857 3.5714 4 3.7714 3.7285 3.4142
3.3285 3.4285 3.3857 3.3428 3.3714 3.3

Total 17.5771 18.7283 18.9855 19.0713 18.0140 19.0141
Average 3.5142 3.7456 3.7971 3.8142 3.6028 3.8028

Table 8: Ranking Results by Criteria or Services.

2. Make the weighted normalized decision matrix;

3. Determine the positive ideal solution matrix and the negative ideal solution matrix;

4. Determine the distance between the values of each alternative with the positive
ideal solution matrix and the negative ideal solution matrix;

5. Determine the preference value for each alternative;

4.2.1 Determining match rating

In determining the match rating for the TOPSIS method, the same table is used as in
finding out the match rating by the SAW method, that is, Table 6 which is obtained
from Table 4 in Chapter 4.

4.2.2 Determining decision matrix

The next step is to form a decision matrix (x) made from the match rating table of each
alternative on each criterion as follows:

X =


3.7142 3.8857 4.0714 3.8714 3.8142 4.0571
3.7142 4.0285 4.0857 4.0571 3.6714 4.0857
3.4285 3.7142 3.7142 3.7571 3.5285 3.6571
3.4142 3.7285 3.7714 4 3.5714 3.8857
3.3 3.3714 3.3428 3.3857 3.4285 3.3285

 .

Next, calculate the normalized value of each alternative:

|x1| =
√

(3.7142)2 + (3.7142)2 + (3.4285)2 + (3.4142)2 + (3.3)2 = 7.8671,

r11 = 0.4721, r21 = 0.4721, r31 = 0.4358, r41 = 0.4340, r51 = 0.4195,

|x2| =
√
(3.8857)2 + (4.0285)2 + (3.7142)2 + (3.7285)2 + (3.3714)2 = 8.3899,

r12 = 0.4631, r22 = 0.4802, r32 = 0.4427, r42 = 0.4444, r52 = 0.40818,

|x3| =
√
(4.0714)2 + (4.0857)2 + (3.7142)2 + (3.7714)2 + (3.3428)2 = 8.5125,

r13 = 0.4783, r23 = 0.4800, r33 = 0.4363, r43 = 0.4430, r53 = 0.3927,

|x4| =
√

(3.8714)2 + (4.0571)2 + (3.7571)2 + (4.000)2 + (3.3857)2 = 8.5456,
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r14 = 0.4530, r24 = 0.4748, r34 = 0.4377, r44 = 0.4430, r54 = 0.4253,

|x5| =
√
(3.8142)2 + (3.6714)2 + (3.5285)2 + (3.5714)2 + (3.4285)2 = 8.0615,

r15 = 0.4731, r25 = 0.4554, r35 = 0.4377, r45 = 0.4430, r55 = 0.4253,

|x6| =
√
(4.0571)2 + (4.0857)2 + (3.6571)2 + (3.8857)2 + (3.3285)2 = 8.5267,

r16 = 0.4758, r26 = 0.4792, r36 = 0.4289, r46 = 0.4557, r56 = 0.3904.

Then the weighted normalized matrix or normalized matrix R is obtained, that is,

R =


0.4721 0.4631 0.4783 0.4530 0.4731 0.4758
0.4721 0.4802 0.4800 0.4748 0.4554 0.4792
0.4358 0.4427 0.4363 0.4397 0.4377 0.4289
0.4340 0.4444 0.4430 0.4681 0.4430 0.4557
0.4195 0.4018 0.3927 0.3962 0.4253 0.3904

 ,

W = {0.30; 0.10; 0.10; 0.25; 0.10; 0.15},

v11 = 0.1416, v21 = 0.1416, v31 = 0.1307, v41 = 0.1302, v51 = 0.1258,

v12 = 0.0463, v22 = 0.0480, v32 = 0.0443, v42 = 0.0444, v52 = 0.0402,

v13 = 0.0478, v23 = 0.0480, v33 = 0.0436, v43 = 0.0443, v53 = 0.0393,

v14 = 0.1133, v24 = 0.1187, v34 = 0.1099, v44 = 0.1170, v54 = 0.0990,

v15 = 0.0473, v25 = 0.0455, v35 = 0.0438, v45 = 0.0443, v55 = 0.0425,

v16 = 0.0714, v26 = 0.0719, v36 = 0.0643, v46 = 0.0684, v56 = 0.0586.

The matrix Y is

Y =


0.1416 0.0463 0.0478 0.1133 0.0473 0.0714
0.1416 0.0480 0.0480 0.1187 0.0455 0.0719
0.1307 0.0443 0.0436 0.1099 0.0438 0.0643
0.1302 0.0444 0.0443 0.1170 0.0443 0.0684
0.1258 0.0402 0.0393 0.0990 0.0425 0.0586

 .

The positive ideal solution (A+) is calculated based on formula (5). So it is obtained as

A+ = {0.1416; 0.0480; 0.0480; 0.1187; 0.0473; 0.0719}.

The negative ideal solution (A−) is calculated based on formula (6). So it is obtained as

A− = {0, .258; 0.0402; 0.0393; 0.0990; 0.0425; 0.0586}.

The distance between the weighted values of each alternative and the positive ideal
solution can be found using formula (7). So it is obtained as

D+ = {0.0057; 0.0018; 0.0173; 0.0135; 0.0312}.

The distance between the weighted values of each alternative and the negative ideal
solution can be found using formula (8). So it is obtained as

D− = {0.0274; 0.0310; 0.0146; 0.0220; 0.0000}.
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4.2.3 Ranking

The last step is to calculate the final preference value (Vi) obtained from the previously
calculated distance using formula (9).

So the closest ideal alternative solution is obtained as

V1 =
0.0274

0.0274 + 0.0057
= 0, 8272;V2 =

0.0310

0.0310 + 0.0018
= 0.9459,

V3 =
0.0146

0.0146 + 0.0173
= 0.4579;V4 =

0.0220

0.0220 + 0.0425
= 0.6203,

V5 =
0.0000

0.0000 + 0.0312
= 0.0000.

Based on the ranking of the V values of the highest through lowest values, it is obtained
that

V1 = 0.8272;V2 = 0.9459;V3 = 0.4579;V4 = 0.6203;V5 = 0.0000.

So, the best alternative in terms of having the highest value in e-wallet user satisfaction
is V2 = Dana, equal to 0.9459. So it can be concluded that DANA is the e-wallet with
the highest customer satisfaction based on predetermined criteria.

5 Conclusion and Suggestions

5.1 Conclusion

Based on the results of the e-wallet user satisfaction survey research above, it was con-
cluded that the first ranking of e-wallet user satisfaction surveys by the SAW and TOPSIS
methods is DANA, the second is Shopeepay, the third is Gopay, the fourth is OVO, and
the last is Sakuku.

5.2 Suggestions

Based on the research conducted, there were some problems encountered and it needs
improving. In this case, the researchers make the following suggestions:

1. Many people do not use e-wallet, meaning not enough respondents, therefore, it is
necessary that the Google form be distributed more widely to ensure having more
respondents.

2. The number of the e-wallets used in the research is limited, then it is necessary
that more e-wallets be added. In fact, many users use other e-wallets unlisted in
this study.
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1 Introduction

The inhomogeneous nonlinear Schrödinger equation is a natural occurrence in nonlinear
optics when it comes to the propagation of laser beams. A preliminary laser beam can
be sent to create a channel with reduced electron density to achieve stable high-power
propagation in plasma. This ultimately reduces the non-linearity within the channel.
Gill [1] and Tripathi and Liu [2] provide examples of this approach. In this scenario, the
propagation of the beam can be explained by the equation

I∂tu+∆u+K(x)|u|αu = 0,

which represents the inhomogeneous non-linear Schrödinger equation and is a typical
example of a semi-linear control system in a Hilbert space H given by the following
evolution equation: {

y′(t) = Ay(t) + u(t)Ny(t),
y(0) = y0 ∈ H, (1)

where A is an unbounded operator with domain D(A) ⊂ H and generates a strongly
continuous semigroup of contraction (S(t))t≥0 on an infinite-dimensional real Hilbert
spaceH (state space) whose norm and scalar product are denoted, respectively, by ∥.∥ and
⟨., .⟩, N is a nonlinear operator from H into H, which is locally Lipschitz and sequentially
continuous operator such that N(0) = 0, the control function u(.) denotes the scalar
control.
When trying to stabilize a control system, one of the main approaches is to look for a
feedback control that can guarantee that the system is well-posed and that the solution
converges to zero over time. This feedback control is usually represented by u(y(t)) and
must be carefully chosen to achieve the desired stabilization. By formally computing the
time rate of change of the energy d

dt∥y(t)∥
2 and using the fact that the semigroup is of

contraction so that ⟨Ay, y⟩ ≤ 0 for all y ∈ D(A), we get

d

dt
∥y(t)∥2≤ 2u(t) < y(t);Ny(t) >;∀t ∈ [0, T ].

To make the energy nonincreasing, we consider the family of controls:

for r ≥ 0, ur (y(t)) = −⟨y(t), Ny(t)⟩ | ⟨y(t), Ny(t)⟩ |r

∥y(t)∥r
, ∀t ∈ [0, T ]. (2)

By using this control, we can guarantee the dissipation of energy while adhering to the
following inequality:

d

dt
∥y(t)∥2≤ −2

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
;∀t ∈ [0, T ]. (3)

In our control family, there is a particular case when r = 0, and it is called the quadratic
feedback control u0(y(t)) = −⟨y(t), By(t)⟩. Various works have extensively studied this
control to achieve weak or strong stabilizability. In Ball and Slemrod (see [3] and [4],
p. 175), it has been shown that if N = B is a compact linear operator and S(t) is a
semigroup of contractions such that

⟨BS(t)y, S(t)y⟩ = 0∀t ≥ 0 =⇒ y = 0, (4)
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then the feedback u0 (y(t)) weakly stabilizes the system (1).
In Ouzahra (see [5], p. 511 and [6], p. 814), it has been established that if (4) is replaced
by the following: ∫ T

0

|⟨BS(t)y, S(t)y⟩|dt ≥ δ∥y∥2∀y ∈ H

(for some T, δ > 0), then the control u0(y(t)) strongly stabilizes the system (1). More
precisely, the state satisfies the estimate

∥z(t)∥2= O

(
1

t

)
, as t −→ +∞.

In Berrahmoune (see [7]), a strong stabilization result has been obtained using the control

u0(t), and the following estimate ∥y(t)∥= O
(

1√
t

)
has been obtained.

In this paper, we study the strong and exponential stabilizability of the system (1)
using the control (2) for all r ≥ 0. By implementing control (2), we can enhance the
estimate provided by u0 (y(t)) in [3], [4], [5], [6] and [7]. This document is structured in the
following manner. Section 2 demonstrates the existence and uniqueness of the solution in
the semilinear case using control (2) for all t ∈ [−2;+∞[. In Section 3, we explore strong
stabilization and decay estimates, while Section 4 focuses on the exponential stabilization
problem using the selected control ur(y(t)) for all t ∈ [−2;+∞[. In the last section, we
give examples governed by the nonlinear Schroedinger and heat equations to illustrate
our findings.

2 Well-Possedness

With the control (2), system (1) becomes{
y′(t) = Ay(t) + Fr(t, y(t)),
y(0) = y0,

(5)

where

Fr(t, y(t)) = −⟨y(t), Ny(t)⟩|⟨y(t), Ny(t)⟩|r

∥y(t)∥r
Ny(t) if y ̸= 0.

In this section, we will discuss the existence and uniqueness of the solution of the system
(5).

Firstly, we need to demonstrate that the system’s state is decreasing. To do so,
integrate the inequality (3) over the interval [s, t], it follows that

∥y(t)∥2−∥y(s)∥2≤ −2

∫ t

s

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
, ∀t ≥ s ≥ 0,

therefore ∥y(t)∥≤ ∥y0∥ ,∀t ≥ 0.

Theorem 2.1 Let A generate a semigroup of contractions S(t), let N be a locally
Lipschitz and sequentially continuous operator, then for all r ∈ [−2,+∞[ and y0 ∈ H,
the system (5) possesses a unique global mild solution y(t) defined on the infinite interval
[0,+∞[ , which is given by the following variation of constants formula:

y(t) = S(t)y0 −
∫ t

0

Fr(s, y(s))S(t− s)Ny(s)ds.
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Proof. We will consider the system (5) and demonstrate that the map Fr : y 7→
Fr(t, y(t)) is locally Lipschitz from H to H. Let x ∈ H and let R > 0, LN > 0 such that
for all z, y ∈ H such that ∥x− y∥≤ R and ∥x− z∥≤ R, we have ∥Nz−Ny∥≤ LN∥z− y∥.
From the development below, it will be clear that we can suppose that x = 0 and
0 < ∥y∥≤ ∥z∥.

Let us consider two functions: f1(y) =
|⟨y,Ny⟩|r

∥y∥r and f2(y) = ⟨y,Ny⟩Ny. We can then

conclude that

∥Fr(t, y)− Fr(t, z)∥ = ∥f1(y)f2(y)− f1(z)f2(z)∥
≤ LrN∥y∥r∥f2(y)− f2(z)∥+L2

N∥z∥3∥f1(y)− f1(z)∥.

It is easy to increase the value of LrN∥y∥r∥f2(y)− f2(z)∥, in fact,

∥f2(y)− f2(z)∥ = ∥⟨y,Ny⟩Ny − ⟨z,Nz⟩Nz∥
≤ (LN∥y∥+2LN∥z∥)LN∥y∥∥y − z∥
≤ 3L2

N∥y∥2∥y − z∥.

Therefore

LrN∥y∥r∥f2(y)− f2(z)∥≤ 3Lr+2
N ∥y∥r+2∥y − z∥. (6)

There are two cases to increase the value of ∥f1(y) − f1(z)∥. This can be achieved by
utilizing the real function t 7→ tr, which satisfies the following conditions.

If r ⩾ 1, then |∥z∥r−∥y∥r| ≤ r∥z∥r−1|∥z∥−∥y∥|.
If r < 1, then |∥z∥r−∥y∥r| ≤| r | ∥y∥r−1|∥z∥−∥y∥|.

Case 1 : if r ⩾ 1. In this case, we have

∥f1(y)− f1(z)∥≤ r

∣∣∣∣ |⟨z,Nz⟩|∥z∥

∣∣∣∣r−1 ∣∣∣∣ |⟨y,Ny⟩|∥y∥
− |⟨z,Nz⟩|

∥z∥

∣∣∣∣
and since

| ⟨y,Ny⟩
∥y(t)∥

− ⟨z,Nz⟩
∥z(t)∥

| =| ∥z(t)∥⟨y,Ny⟩ − ∥y(t)∥⟨z,Nz⟩
∥y(t)∥∥z(t)∥

|

≤ ∥y∥(LN∥y∥) | ∥z∥−∥y∥| +∥y(t)∥(LN∥z∥+LN∥y∥) ∥z − y∥
∥y(t)∥∥z(t)∥

≤ LN∥y∥2| ∥z∥−∥y∥| +2LN∥y(t)∥2∥z − y∥
∥y(t)∥∥z(t)∥

≤ 3LN∥y∥
∥z∥

∥z − y∥,

we find

∥f1(y)− f1(z)∥ ≤ r

∣∣∣∣ |⟨z,Nz⟩|∥z∥

∣∣∣∣r−1
3LN∥y∥
∥z∥

∥z − y∥

≤ r(LN∥z∥)r−1 3LN∥y∥
∥z∥

∥z − y∥

≤ 3rLrN∥y∥r

∥z∥
∥z − y∥.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (1) (2024) 41–53 45

Therefore
L2
N∥z∥3∥f1(y)− f1(z)∥≤ 3rL2+r

N ∥y∥r+2∥z − y∥. (7)

Based on the inequalities (6) and (7) presented above, we can conclude that

∥Fr(t, y)− Fr(t, z)∥ ≤ 3Lr+2
N (1 + r) ∥y0∥r+2∥y − z∥.

Case 2 : If − 2 ⩽ r ⩽ 1.

We have ∥f1(y)− f1(z)∥ ≤ 3 | r | LrN∥y∥r

∥z∥
∥z − y∥, therefore

L2
N∥z∥3∥f1(y)− f1(z)∥≤ 3 | r | Lr+2

N ∥y∥r+2∥z − y∥. (8)

By utilizing the inequalities (6) and (8), we can come to the conclusion that

∥Fr(t, y)− Fr(t, z)∥≤ 3Lr+2
N (1+ | r |)∥y0∥r+2∥y − z∥.

We have proven that for all r ⩾ −2, Fr(t; y(t)) satisfies a local Lipschitz condition in
y, uniformly in t on bounded intervals. It follows (see [8], p.185 ) that the system (5)
possesses a unique mild solution y(t) defined on a maximal interval [0, tmax[ , which is
given by the following variation of constants formula:

y(t) = S(t)y0 −
∫ t

0

Fr(s, y(s))S(t− s)Ny(s)ds.

To show that tmax = +∞, it is sufficient to prove that for each T > 0, the mild solution
y(t) is bounded by a constant independent of T . To do this, we discuss two cases:

• For y0 ∈ D(A), the solution y(t) is differentiable (see [8], p.189), and since S(t) is
a semigroup of contractions (so that A is dissipative), we can write

d

dt
∥y(t)∥2≤ −2

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
;∀t ∈ [0, T ].

Integrate this last inequality over the interval [s, t], it follows that

∥y(t)∥2−∥y(s)∥2≤ −2

∫ t

s

|⟨y(t), Ny(t)⟩|r+2

∥y(t)∥r
,∀t ≥ s ≥ 0.

Therefore,
∥y(t)∥≤ ∥y0∥ ,∀t ≥ 0.

• If y0 /∈ D(A), we can find a sequence (yn0 )n of elements in D(A) converging to y0
in H since D(A) = H. For all t ∈ [0, T ] and all integer n, we know from the first
case that ∥yn(t)∥ ≤ ∥yn0 ∥. We conclude that ∥y(t)∥≤ ∥y0∥ , ∀t ∈ [0, tmax[ , hence
tmax = +∞.

3 Strong Stabilization and Decay Estimate

Proposition 3.1 Let A generate a semigroup of contractions S(t) and N be locally
Lipschitz. Then, for all r ⩾ 0, the state of the system (4) satisfies the decay estimate as
t→ +∞,∫ T

0

|⟨NS(s)y(t), S(s)y(t)⟩|ds = O

(
∥y(τ)∥

r
r+2

(∫ T
0

|⟨y(s+τ),Ny(s+τ)+c⟩|r+2

∥y(s+τ)∥r ds
) 1

r+2

)
. (9)
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Proof. Using Proposition 3.1, we deduce that the system (9) admits a unique global
mild solution given by the following formula of variation of constants:

y(t) = S(t)y0 −
∫ t

0

⟨y(t), Ny(t)⟩ | ⟨y(t), Ny(t)⟩ |r

∥y(s)∥r
S(t− s)Ny(s)ds,

and due to the fact that S(t) is a semigroup of contractions, for all t ∈ [0, T ],

∥y(t)− S(t)y0∥ ⩽
∫ T

0

|⟨y(s), Ny(s)⟩|r+1

∥y(s)∥r
(∥Ny(s))∥ds

⩽ LN

∫ T

0

|⟨y(s), Ny(s)⟩|r+1

∥y(s)∥r
∥y(s)∥ ds.

We can apply the Hölder inequality

p =
r + 2

r + 1
, q = r + 2

(
1

p
+

1

q
= 1

)
, r ∈]− 1 +∞[

∥y(t)− S(t)y0∥ ⩽ LNT
1

r+2

(∫ T

0

(
|⟨y(s), Ny(s)⟩|r+1

∥y(s)∥r
∥y(s)∥

) r+2
r+1

ds

) r+1
r+2

⩽ LNT
1

r+2

(∫ T

0

|⟨y(s), Ny(s)⟩|r+2

∥y(s)∥r
∥y(s)∥

2
r+1 ds

) r+1
r+2

.

Since r ⩾ 0, we have 2
r+1 > 0 and the fact that ∥y(t)∥≤ ∥y0∥. We get ∥y(t)∥

2
r+1≤ ∥y0∥

2
r+1 .

So

∥y(t)− S(t)y0∥⩽ LNT
1

r+2 ∥y0∥
2

r+2

(∫ T

0

|⟨y(s), Ny(s)+⟩|r+2

∥y(s)∥r
ds

) r+1
r+2

. (9)

From the relation

⟨NS(t)y0, S(t)y0⟩ = ⟨NS(t)y0, S(t)y0 − y(t)⟩+ ⟨NS(t)y0 −Ny(t), y(t)⟩+ ⟨Ny(t), y(t)⟩ ,

when using ∥y(t)∥ ≤ ∥y(0)∥ ,∀t ∈ [0, tmax [ , the fact that S(t) is a semigroup of contrac-
tion, N is locally Lipschitz, and Schwartz’s inequality, it comes

|⟨NS(s)y0, S(s)y0⟩| ≤ 2LN ∥y0∥ ∥y(t))− S(t)y0∥+ | ⟨Ny(s), y(s)⟩ | . (10)

Using (9), we have

|⟨NS(s)y0, S(s)y0⟩| ≤ 2L2
NT

1
r+2 ∥y0∥

r+4
r+2

(∫ T

0

|⟨y(s), Ny(s)⟩|r+2

∥y(s)∥r
ds

) r+1
r+2

+ | ⟨Ny(s), y(s)⟩ | .

(11)
Replacing y0 by y(τ) in (11), we get

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩|

≤ 2L2
NT

1
r+2 ∥y(τ)∥

r+4
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ) + c⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

+|⟨Ny(s+ τ), y(s+ τ)⟩ |.
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Integrate the last inequality over the interval [0, T ]

(12)

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩| ds

≤
∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩

ds+ 2L2
NT

1
r+2+1∥y(τ)∥

r+4
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

.

Due to the fact that ∥y(s+ τ)∥ ≤ ∥y(τ)∥ ∀t ≥ 0, and Hölder’s inequality∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩ ds ≤ T
r+1
r+2 ∥y(τ)∥

r
r+2

(∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩r+2

∥y(s+ τ)∥r
ds

) 1
r+2

,

(12) becomes

(13)

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩| ds

≤ 2L2
NT

1
r+2+1∥y(τ)∥

r+4
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

+T
r+1
r+2 ∥y(τ)∥

r
r+2

(∫ T

0

⟨Ny(s+ τ), y(s+ τ)⟩r+2

∥y(s+ τ)∥r
ds

) 1
r+2

.

We have(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

=

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) 1
r+2+

r
r+2

.

And by Schwartz’s inequality, it comes∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds ≤ TLr+2

N ∥y(τ)∥r+4

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) r+1
r+2

≤ T
r

r+2L
r

r+2

N |y(τ)∥
r2+4r
r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) 1
r+2

.

Finally, using (13), we have∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩|ds

≤ M∥y0∥∥y(τ)∥
r

r+2

(∫ T

0

|⟨y(s+ τ), Ny(s+ τ)⟩|r+2

∥y(s+ τ)∥r
ds

) 1
r+2

, (14)
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where M∥y0∥ = T
r+1
r+2

(
2L2

NTL
r

r+2

N ∥y(τ)∥r+2+1
)
.

Theorem 3.1 Let A generate a C0-semigroup Su(t), and suppose that the following
conditions hold:
1. Su(t) is a contraction semigroup;
2. there exist δ, T > 0 such that∫ T

0

|⟨NSs)y(t), S(s)y(t)⟩| ds ≥ δ ∥y(t)∥2 , ∀y ∈ H. (15)

Then the feedback (2) for all r ⩾ 0, strongly stabilizes the system (1) with the following
decay estimate:

∥y(t)∥= O
(
t−

r+2
4

)
as t→ +∞.

Proof. Let us consider the sequence sk = ∥y(kT )∥2, k ∈ IN .
Integrating the inequality (3) over the interval [kT, (k + 1)T ], we get∫ (k+1)T

KT

d

dt
∥y(t)∥2dt ≤ −2

∫ (k+1)T )

KT

(⟨Ny(t), y(t)⟩)r+2

∥y(t)∥r
dt

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2

∫ (k+1)T )

KT

(⟨Ny(t), y(t)⟩)2+r

∥y(t)∥r
dt.

Using now the estimate (14), we deduce that∫ T

0

|⟨NS(s+ τ)y(τ) + c, S(s+ τ)y(τ)⟩| ds

≤
(
M∥y0∥∥y(τ)∥

r
2+r
)(∫ T+τ

τ

|⟨Ny(s) + c, y(s)⟩|2+r

∥y(s)∥r
ds

) 1
2+r

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2

M∥y0∥∥y(τ)∥
r

2+r

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩| ds

and according to the inequality (15), we have

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2ρ

M∥y0∥
∥y(KT )∥

−r
2+r ∥y(KT )∥2

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2ρ

M∥y0∥
∥y(KT )∥1+

2
2+r .

Letting sk = ∥y(kT )∥2, k ∈ IN, the last inequality can be written as

sk+1 ≤ sk −
2ρ

M∥y0∥
s
1+ 2

2+r

k , ∀k ≥ 0.

Using the fact that t 7→ ∥y(t)∥ is a decreasing function on [0,+∞[, we get

sk+1 ≤ sk −
2ρ

M∥y0∥
s
1+ 2

2+r

k+1 , ∀k ≥ 0.
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sk+1 +
2ρ

M∥y0∥
s
1+ 2

2+r

k+1 ≤ sk, ∀k ≥ 0.

The last inequality can be written as follows: sk+1 + Cs2+αk+1 ≤ sk, ∀k ≥ 0,

where C = 2ρ
M∥y0∥

> 0 and α = −r
r+2 > −1 ∀r ∈ R/(−1,−2).

Now, to obtain the decay rate for the solutions of (1), we recall the following lemma,
see [9].

Lemma 3.1 (Lasiecka and Tataru, 1993) Let (sk)k≥0 be a sequence of positive real

numbers satisfying the relation sk+1 + Cs2+αk+1 ≤ sk, ∀k ≥ 0, where C > 0 and α > −1
are constants. Then there exists a positive constant M2 (depending on α and C) such
that sk ≤ M2

(k+1)
1

α+1
, k ≥ 0.

So, from the lemma (Lasiecka & Tataru, 1993), we have sk ≤ M2

(k+1)
r+2
2

, k ≥ 0.

For k = E
(
t
T

)
,
(
E
(
t
T

)
designed the integer part of t

T

)
, we obtain sk ≤ M3

t , (M3 > 0),

which gives ∥y(t)∥2≤ M3

t
r+2
2

.

Hence, ∥y(t)∥= O
(
t−

r+2
4

)
as t→ +∞.

Remark 3.1 For r = 0, we find the estimate guaranteed by u0(t) in [5] and [6].

4 Exponential Stabilization

Theorem 4.1 Let A generate a C0-semigroup S(t), and suppose that the following
conditions hold:
1. S(t) is a contraction semigroup;
2. there exist δ, T > 0 such that∫ T

0

|⟨NS(s)y(t), S(s)y(t)⟩| ds ≥ δ ∥y(t)∥2+
r

r+2 , ∀y ∈ H. (16)

Then the feedback (2) for all r ⩾ 0, exponentially stabilizes the system (5).

More precisely, there exists β > 0 such that ∥y(t)∥ ≤ e−β ∥y0∥ e−
β
T (t), ∀t > 0.

Proof. From

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2

M∥y0∥∥y(τ)∥
r

2+r

∫ T

0

|⟨NS(s+ τ)y(τ), S(s+ τ)y(τ)⟩|ds

and according to the inequality (16), we have

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2ρ

M∥y0∥
∥y(KT )∥

−r
2+r ∥y(KT )∥2+

r
2+r

∥y((K + 1)T )∥2−∥y(KT )∥2≤ −2δ

M∥y0∥
∥y(KT )∥2. (17)

Letting sk = ∥y(kT )∥2, k ∈ IN, the inequality (17) can be written as

sk+1 − sk ≤ −2δ

M∥y0∥
sk, ∀k ≥ 0,

sk+1 ≤ Csk, ∀k ≥ 0,
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where C =
(
1− 2δ

M∥y0∥

)
< 1, which gives sk ≤ e−k ln 1

C s0, i.e, ∥y(kT )∥2e−k ln 1
C ∥y0∥.

For k = E
(
t
T

)
,
(
E
(
t
T

)
designed the integer part of t

T ), and using the fact that

E
(
t
T

)
T ≤ t and t 7→ ∥y(t)∥ is a decreasing function on [0,+∞[,

we get ∥y(t)∥ ≤ e−
ln( 1

C )
2 ∥y0∥ e−

ln( 1
C )

2T t for all t ≥ 0,

∥y(t)∥ ≤ e−β ∥y0∥ e−
β
T t for all t ≥ 0, where β =

ln( 1
C )
2 > 0.

5 Applications

Example 5.1 Let Ω ⊂ RN , H = L2(Ω). This example will study the nonlinear
Schrödinger equation in Ω ⊂ RN . Let us consider the system defined on an open and
bounded domain Ω with C∞ boundary ∂Ω by the equation

i∂tψ = ∆ψ +K(x)|ψ|αψ, in Ω×]0,∞[, α > 0,

ψ(·, t) = 0, on ∂Ω×]0,∞[,

ψ(·, 0) = φ.

(18)

For α = 2, it is the Gross-Pitaevskii equation describing the evolution of a Bose-Einstein
condensate.

The equation (18) has garnered much interest recently. Bergé conducted a formal
study on the stability condition of soliton solutions in [10]. Towers-Malomed, in [11],
discovered that a specific type of time-dependent nonlinear medium generates fully stable
beams through variational approximation and direct simulations. Merle in [12] and
Raphaël-Szeftel in [13] studied (18) for k1 < K(x) < k2 with k1, k2 > 0. Fibich-Wang
in [14] investigated (18) with K(x) := K(ϵ|x|), where ϵ > 0 is small and K ∈ C4

(
Rd
)
∩

L∞ (Rd).
In this example, we will study the stability of (18) by considering K(x) = ur(ψ(x, t)),

where

ur(ψ(x, t)) = −⟨ψ(x, t), Nψ(x, t)⟩|⟨ψ(x, t), Nψ(x, t)⟩|r

∥ψ(x, t)∥r
; r ⩾ 0.

We are considering the control operator Nψ(x, t) = |ψ(x, t)|αψ(x, t) in order to express
the system (18) in the following form:

i∂ψ(x,t)∂t = Aψ(x, t) + ur(ψ(x, t))Nψ(x, t), in Ω×]0,∞[,

ψ(x, t) = 0, on ∂Ω×]0,∞[,

ψ(x, 0) = φ.

(19)

Here, the state space H = L2(Ω) is endowed with its natural complex inner product.

• The operator A is defined by Aψ(x, t) = −i∆ψ(x, t),∀ψ(x, t) ∈ D(A), where
D(A) = H2(Ω) ∩H1

0 (Ω).
It is well known that the operator A = −i∆ with domain D(A) generates a semi-
group of isometries {T (t)}t∈R ∈ L ((D(A))∗)).

• The operator of control is given by Nψ = |ψ|αψ.
We pose N (ψ(x, t)) = f(t, ψ(x, t)) = ψ(x,t)

|ψ(x,t)|f(t, |ψ(x, t)|) ∀ψ ∈ D(A), ψ ̸= 0.

We deduce that
|ψ1||ψ2|(f(t, ψ1)− f(t, ψ2)|
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= |ψ1|ψ2|[f(t, |ψ1|)− f(t, |ψ2|)] + [ψ1(|ψ2|−|ψ1|+|ψ1|(ψ1 − ψ2))] f(t, |ψ2|)|.

We have f(t, |ψ1|) = |ψ1|α+1, so for every K > 0 and 0 < ψ1, ψ2 ⩽ K, there exists
LK <∞ such that

|f(t, |ψ1|)− f(t, |ψ2|)|≤ LK |ψ1 − ψ2|.

So

|ψ1∥ψ2∥f(t, ψ1)− f(t, ψ2)| ≤ |ψ1∥ψ2∥f(t, |ψ1|)− f(t, |ψ2|)|+2|ψ1||ψ1 − ψ2∥f(t, |ψ2|)|
≤ 3|ψ1∥ψ2|LK |ψ1 − ψ2|,

|f(t, ψ1)− f(t, ψ2)|≤ 3LK |ψ1 − ψ2|,
||ψ1|α ψ1 − |ψ2|αψ2|≤ LK |ψ1 − ψ2 | .

Therefore N is a nonlinear and locally Lipschitz operator such that N(0) = 0,
applying Theorem 2.1, we deduce that the system (18) possesses a unique global
mild solution ψ(x, t)) defined on the infinite interval [0,+∞[ , which is given by the
following variation of constants formula:

ψ(x, t) = T (t)φ+ i

∫ t

0

T (t− s)ur(ψ(x, s))Nψ(x, s)ds, ∀t ≥ 0.

Let us show that the condition of Theorem 3.1 is verified,

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H = ⟨|T (t)ψ(x, t)|αT (t)ψ(x, t), T (t)ψ(x, t)⟩H
= |T (t)ψ(x, t)|α⟨T (t)ψ(x, t), T (t)ψ(x, t)⟩H
= |T (t)ψ(x, t)|α|T (t)ψ(x, t)|2

= |T (t)ψ(x, t)|α+2.

We know that |T (t)ψ(x, t)|= |ψ(x, t)|, therefore,∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩Hdt =
∫ T

0

|ψ(x, t)|α+2dt.

Applying the Holder inequality, we obtain∫ T

0

|ψ(x, t)|2 dt ≤ T
α

α+2

(∫ T

0

|ψ(x, t)|α+2 dt

) 2
α+2

≤ T
α

α+2

(∫ T

0

|ψ(x, t)|α+2 dt

) 2
α+2

√∫ T

0

|ψ(x, t)|2H dt ≤ T
α

2α+4

(∫ T

0

|ψ(x, t)|α+2 dt

) 1
α+2

T
−α
2 ∥ψ(x, t)∥α+2

L2(]0,T [;H) ≤
∫ T

0

|ψ(x, t)|α+2 dt∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H dt ⩾ T
−α
2 ∥ψ(x, t)∥α+2

L2(]0,T [;H). (20)
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• For α = 0, the system (18) becomes
i∂tψ = ∆ψ +K(x)ψ, in Ω×]0,∞[,

ψ(·, t) = 0, on ∂Ω×]0,∞[,

ψ(·, 0) = φ.

(21)

Using (20), we can deduce that for δ = 1 and T > 0, we have the inequality∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H dt ⩾ δ∥ψ(x, t)∥2L2(]0,T [;H).

Based on the verification of condition (15), we can apply Theorem 3.1 to confirm
that the feedback ur(ψ(x, t)) stabilizes system (21) for all r ⩾ 0 with the following
decay estimate. Moreover, we can estimate solution decay using the following
formula:

∥ψ(x, t)∥= O
(
t−

r+2
4

)
as t→ +∞.

• For 0 < α < 1, when we set r = 2α
1−α , we ensure that r > 0 . Solving for α using

the equation α = r
r+2 and for δ = 1√

Tα
, we can then substitute this value into

equation (20) to obtain the modified expression∫ T

0

⟨NT (t)ψ(x, t), T (t)ψ(x, t)⟩H dt ⩾ δ∥ψ(x, t)∥2+
r

r+2 .

Based on the verification of condition (16), we can apply Theorem 4.1 to confirm
that the feedback ur(ψ(x, t)) exponentially stabilizes the system (20) for 0 < α < 1
and r = 2α

1−α .

More precisely, there exists β > 0 such that ∥ψ(x, t)∥ ≤ e−β ∥φ∥ e−
β
T (t), ∀t > 0,

where β =
ln( 1

C )
2 > 0, C =

(
1− 2δ

M|φ|

)
< 1,

M∥φ∥ = T
α+1
2 +1

(
2T (α+ 1)

3+5α
2 + | φ |

α(3+5α)
2 + 2

1−α +1
)
.

6 Conclusion

This paper introduces a new type of control to enhance the stability of a semilinear
system. The suggested control results in strong and exponential stability of the closed-
loop system, particularly the inhomogeneous nonlinear Schrödinger equation. Moreover,
an estimate of the decay can be achieved through approximate observation assumptions
depending on r. Therefore, implementing the new control results in a significantly faster
response time than quadratic control. This research raises questions about applying
the same family of controls to stabilize inhomogeneous semi-linear systems in physics,
including the non-homogeneous case considered in [15].
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Abstract: The paper presents an original general mathematical model of the
glycolysis-gluconeogenesis metabolic processes chain. The scenario of the appear-
ance of auto-periodic and chaotic modes for the system is studied with the help of
the Fourier series of one of the system variables. The invariant measure of the strange
attractor is calculated. The histograms of the invariant measure projections of the
system onto the phase space plane are constructed. Conclusions are made about the
self-organization and adaptation of the system to changes in the cell and the environ-
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1 Introduction

An essential task of natural sciences is a search for the general physical laws of self-
organization in Nature. The gradual development of nonlinear thermodynamics led to
the emergence of a new scientific direction - synergetics. The mechanism of structure
formation in open nonlinear systems became clear thanks to synergetics [1]. The science
of self-organization and evolution of living organisms suggests an answer about the flow
of physical and chemical processes in a cell [2].

One of the general chains of metabolic reactions running in each cell is glycolysis and
its inverse process, gluconeogenesis. Cells receive energy from glucose in the form of ATP
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by way of glycolysis. Cells further synthesize glucose from nonhydrocarbon substrates
using gluconeogenesis.

Glycolysis and gluconeogenesis are two opposite metabolic processes in a cell, where
7 of 10 metabolic reactions are reversible. Three reactions are irreversible and are per-
formed in gluconeogenesis via detouring thermodynamically favorable reactions.

A number of scientists have studied this chain of metabolic reactions. As a result of
experimental studies of glycolysis, the auto oscillations were discovered in [3]. In order
to explain the origin of auto oscillations, several mathematical models were developed.
These models clarified that the oscillations in glycolysis occur as a result of the activation
of phosphofructokinase by its products or due to the allosterism of this enzyme [4,5].

The study in the present work is based on the mathematical model of glycolysis
and gluconeogenesis developed in [6]. The peculiarity of this model is that for the first
time, it analized the influence of the adenine nucleotide cycle and gluconeogenesis on the
phosphofructokinase complex of this allosteric enzyme. It has been claimed that their
effects cause fluctuations in glycolysis.

In works [7, 8], this model was improved. The system of equations of the model
was refined by applying the conservation law to the intermediate reactions products. It
also accounted for the description of the complete closed chain of metabolic processes of
glycolysis-gluconeogenesis encircled by a positive feedback loop. The metabolic processes
of glycolysis-gluconeogenesis with a positive feedback loop are the electron transfer chain
NAD ·H ⇐⇒ NAD+.

The results obtained in papers [7,8] allowed the authors to construct a general math-
ematical model of the chain of metabolic glycolysis-gluconeogenesis reactions as a single
dissipative system of a cell.

Since gluconeogenesis uses mainly the same reversible reactions as glycolysis, the bio-
chemical evolution of the former occurred together with glycolysis. The symbiosis of the
given biochemical processes can be considered as a primary open nonlinear biochemical
system in a state far from the equilibrium. As a result of self-organization of this bio-
chemical system, a stable dissipative system emerged. It was independent of the other
biochemical processes of the primary broth.

The direction of the running reactions in such a system was determined by the energy-
beneficial balance. The organic molecule ATP was formed as a result of glycolysis. It
became a main carrier of the energy consumed in all the other biochemical processes. But
if some biochemical processes needed glucose, then the direction of biochemical reactions
in the given system reversed. This chain of metabolic reactions forced all other metabolic
processes in a cell to self-organize. During the subsequent biochemical evolution, the
given dissipative system was preserved in all types of cells, which indicates their common
prehistory. The analysis of the metabolic process allows us to state that this dissipative
system probably arose in protobionts in the primary broth in the oxygen-free atmosphere
of the Earth 3.5 billion years ago. This primary cell, in which life originated, was named
the LUCA (the last universal common ancestor) [9, 10].

2 Mathematical Model and Method of Investigation

A mathematical model of the metabolic process of glycolysis-gluconeogenesis is con-
structed according to the general schemes of the metabolic reactions presented in Figure
1 and the general schemes of two active and two inactive forms of the allosteric enzyme
phosphofructokinase (Figure 2) [7,8]. The model describes the flow of the metabolic pro-
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cess in straightforward direction, that corresponds to glycolysis, and in opposite direction
during gluconeogenesis.

The mathematical model is a system of 16 nonlinear differential equations. The
equations correspond to the basic sections of the metabolic process. They determine a
sequence of the reactions, and they influence the stability of the process of glycolysis-
gluconeogenesis. Some sections of the metabolic network that are insignificant for the
self-organization are described by the equations in the extended meaning. In Figure 1,
we show the sections of the metabolic network from the 1-st to 16-th. Each of them
corresponds to the number of the differential equation:

dG

dt
=
G0

S

m1

m1 + F
− l8V (G)V (T ), (1)

dF1

dt
= l8V (G)V (T )− l1V (R1)V (F1)V (T ) + l5

1

1 + γA
V (F2)−m3

F1

S
, (2)

dF2

dt
= l1V (R1)V (F1)V (T )− l5

1

1 + γA
V (F2)−m5

F2

S
, (3)

dψ1

dt
=

m5(F2/S)

S1 +m5(F2/S)
− l6V (ψ1)V (D) +m7V (M −N)V (P ), (4)

dψ2

dt
= l6V (ψ1)V (D)−m8

ψ2

S
, (5)

dψ3

dt
=
ψ2

S

m2

m2 + ψ3
− l2V (ψ3)V (D)−m4

ψ3

S
, (6)

dP

dt
= l2V (ψ3)V (D)−m6

P

S
− l7V (N)V (P ), (7)

dL

dt
= l7V (N)V (P )−m9

L

S
, (8)

dT

dt
= l2V (ψ3)V (D)− l1V (R1)V (F1)V (T ) + l3

A

δ +A
V (T )− l4

T 4

β + T 4
+

+ l6V (ψ1)V (D)− l9V (G)V (T ),

(9)

dD

dt
= l1V (R1)V (F1)V (T )− l2V (ψ3)V (D) + 2l3

A

δ +A
V (T )− l6V (ψ1)V (D)+

+ l9V (G)V (T ),

(10)

dA

dt
= l4

T 4

β + T 4
− l3

A

δ +A
V (T ), (11)

dR1

dt
= k1T1V (F 2

1 ) + k3R2V (D2)− k5R1
T

1 + T + αA
− k7R1V (T 2), (12)

dR2

dt
= k5R1

T

1 + T + αA
− k3R2V (D2) + k2T2V (F 2

1 )− k8R2V (T 2), (13)
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dT1
dt

= k7R1V (T 2)− k6T1
T

1 + T + αA
+ k4T2V (D2)− k1T1V (F 2

1 ), (14)

dT2
dt

= k6T1
T

1 + T + αA
− k4T2V (D2)− k2T2V (F 2

1 ) + k8R2V (T 2), (15)

dN

dt
= −l7V (N)V (P ) + l7V (M −N)V (ψ1), (16)

where V (X) = X/(1 +X) is the function that describes the adsorption of an enzyme in
the locally connected region. The variables of the system are made unitless.

The parameters of the system are: l1 = 0.0535, l2 = 0.046, l3 = 0.0017, l4 = 0.01334,
l5 = 0.3, l6 = 0.001, l7 = 0.01, l8 = 0.0535, l9 = 0.001, k1 = 0.07, k2 = 0.01, k3 = 0.0015,
k4 = 0.0005, k5 = 0.05, k6 = 0.005, k7 = 0.03, k8 = 0.005, m1 = 0.3, m2 = 0.15,
m3 = 1.6, m4 = 0.0005, m5 = 0.007, m6 = 10, m7 = 0.0001, m8 = 0.0000171, m9 = 0.5,
G0 = 18.4, L = 0.005, S = 1000, A = 0.6779, M = 0.005, S1 = 150, α = 184.5, β = 250,
δ = 0.3, γ = 79.7.

At the first stage (1), glucose G0 entering a cell is phosphorylized with the help of
the enzyme hexokinase to glucose-6-phosphate. The donor of a phosphoryl group is a
molecule ATP (T ) (1), (9). This reaction is irreversible. The molecules of glucose-6-
phosphate are the allosteric inhibitor of the reaction and cannot leave the cell. If the
concentration of glucose-6-phosphate in a cell increases above the normal level, then hex-
okinase is inhibited by glucose-6-phosphate (1). The speed of glucose-6-phosphate forma-
tion corresponds to the speed of its consumption in the subsequent reactions. Further, an
inverse isomerization of glucose-6-phosphate to fructose-6-phosphate occurs. However, it
does not affect the irreversibility of the process.

Equations (2) and (3) describe the processes of fructose-6-phosphate creation (F1)
and its transformation into fructose-1,6-diphosphate (F2). The last reaction occurs under
the catalytic action of the enzyme phosphofructokinase. This enzyme catalyzes the irre-
versible transfer of a phosphoryl group from ATP (2), (9) onto fructose-6-phosphate with
its transformation into fructose-1,6-diphosphate. The substrate fructose-6-phosphate is
an activator, and ATP is an inhibitor of the given process. In addition to such regula-
tion, the enzyme is also regulated by the adenine-nucleotide cycle ATP −ADP −AMP
(see below). The latter helps to support the optimum stable stationary state.

The equations (2) and (3) also describe the process of gluconeogenesis. The enzyme
fructose-1,6-biphosphatase catalyzes the irreversible reaction F2 −→ F1 (parameter l5)
by creating the positive feedback loop. It affects the stability of the process.

The subsequent splitting of fructose-1,6-biphosphate into glyceraldehyde-3-phosphate
and dioxyacetone-phosphate occurs in a reversible way.

Equation (4) describes the formation of 1,3-diphosphoglycerate (ψ1). The enzyme
glyceraldehyde-3-phosphate is oxidized and joins phosphoric acid using glyceraldehyde-3-
phosphate-dehydrigenase. In this case, the coenzyme NAD+ is an acceptor of hydrogen.
The following enzymatic restoration occurs: NAD+ → NAD ·H (4), (16).

With the help of equation (5), we described a transfer process of a high-energy phos-
phoryl group from the carboxyl group of 1,3-diphosphoglycerate by the enzyme phos-
phoglycerate kinase onto ADP . As a result, ATP (9) and 3-phosphoglycerate ψ2 (5) are
formed.

Equation (6) deals with the formation of 2-phosphoglycerate with the help of the
phosphoglycerate mutase enzyme. Then a molecule of water is eliminated with the
creation of phosphoenolpyruvate ψ3 (6).
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Figure 1: The general scheme of the metabolic process of glycolysis-gluconeogenesis.

The formation of the pyruvate P was considered in (7) under the action of the pyru-
vate kinase enzyme. So, the phosphorylation of the substrate occurs.

Equation (8) describes the formation of lactate L, which is the second product. With
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Figure 2: The general scheme of mutual transformations of two active and two nonactive forms
of the allosteric enzyme phosphofructokinase.

the help of the lactate dehydrogenase enzyme, the enzymatic oxidation happens: NAD ·
H → NAD+. The balance between NAD+ and NAD+ · H is preserved, see equation
(16).

Equations (9)-(11) are related to the kinetics of the changes in the levels of ATP
(9), ADP (10), and AMP (11) according to the metabolic scheme of glycolysis-
gluconeogenesis (see above). In general, the adenine-nucleotide cycle arises between
given reagents with mutual transitions: ATP − ADP − AMP . The adenine-nucleotide
cycle helps to conserve the optimum stationary state of the metabolic process.

Equations (12)-(15) demonstrate the kinetics of levels of the allosteric phosphofruc-
tokinase enzyme (Figure 2).

We assume that the enzyme has two active forms: R1 (12) and R2 (13), and two
nonactive: T1 (14) and T2 (15). In this case, we can observe the mutual transformation
of the forms T1 and R1, as well as T2 and R2. The equations show the general scheme
of regulatory connections. The form R1 (12) was created from the form T1 as a result
of the saturation of the two allosteric centers by molecules F1 and the form R2 with the
participation of two molecules D. Inactivation of the form R1 takes place at the expense
of T and with the formation of R2 (13) and two molecules T (12) with the formation of
the form T1 (14). The invertible inactivation is inhibited by an increase of A according to
a high level of T (parameter α) (12). Equations (13)-(15) were constructed in a similar
way.

Equation (16) represents the kinetics of changes in the nicotinamide adenine din-
ucleotide recovered form NAD · H according to its consumption and recovery of the
oxidized form NAD+ (4). The balance between the recovered and oxidized forms is
preserved in the glycolytic cycle in invariable form. In this case, the integral of motion
is NAD ·H(t) +NAD+(t) =M .

The stability dynamics is investigated using the second Liapunov method [12]. The
chaotic dynamics of mathematical models can be studied using harmonic analysis [13].

In this paper, we used the Fourier series and invariant measure [14] for system inves-
tigation. Let us write down the system (1)-(16) in generalized form

ẋ = F (x), x ∈ Rn, (17)

where F (x) = (f1(x), f2(x), ..., fn(x))
T , the continuous dynamical system φt(x) is defined

by the system of differential equations. Such dynamical system for each τ generates a
cascade of

xk+1 = f(xk) ≡ φτ (xk). (18)
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Definition 2.1 The measure µ is an invariant measure of dynamical system (18) if
for any measurable set A, the following relation fulfills:

µ(A) = µ(f−1(A)).

Theorem 2.1 (the Krylov–Bogolyubov theorem on the existence of invariant mea-
sures) If a compact set A ⊂ P is invariant for the dynamic system φt(x), then there
exists at least one probability measure µ (where µ(P ) = 1) which is invariant for φ [14].

Let us divide some phase space region into small enough subsets Ai. The result
of solution for the system of differential equations (17) will be trajectories xk, where
k = 1, N , N is a big enough number of points. The measure of each set is estimated as

µ(Ai) = Ni/N, (19)

where Ni is the number of points in the subset Ai.

Theorem 2.2 (The Fourier coefficients) The Fourier series representation of f(x)
defined on [0, 2π], when it exists, is given by

f(x) =
a0
2

+

∞∑
n=1

(ancosnx+ bnsinnx) , (20)

with the Fourier coefficients

an =
1

π

∫ 2π

0

f(x)cosnxdx, bn =
1

π

∫ 2π

0

f(x)sinnxdx, n = 0, 1, 2...

3 Result of Studies

The mathematical model is the system of nonlinear differential equations (1)-(16). It
describes the open nonlinear biochemical system of glycolysis-gluconeogenesis. Input
and output flows for the model are glucose and lactate, respectively. The concentrations
of these substances determine the straightforward or inverse directions of the metabolic
process dynamics. Both processes are irreversible and are running in the open nonlinear
system, far from the equilibrium point. The presence of glycolysis and gluconeogenesis
in the system is a cause for autocatalysis in the system. Besides, the whole metabolic
process of glycolysis contains the feedback formed byNAD·H and the adenine-nucleotide
cycle. These factors influence the appearance of instability in the given metabolic system.

Let us investigate the dependence of the dynamics of the metabolic glycolysis-
glucogenesis process on the activity of gluconeogenesis, which is regulated by a small pa-
rameter l5. The authors want to show that the fluctuations of fructose-6-phosphate [1,2]
can be explained by gluconeogenesis, which occurs under the action of enzyme fructose-
1,6-bisphosphatase in the area: fructose-1,6-bisphosphate - fructose-6-phosphate. This is
different from the commonly used explanation by phosphofructokinase enzyme allosteric-
ity.

In [9], the phasoparametric diagrams of the process dynamics dependence on the
parameter l5 were constructed. Bifurcation points for doubling of the period and the
transition to chaos according to Feigenbaum’s scenario were found. When the parameter
l5 decreases, the following stable modes are formed:

2× 21(l5 = 0.268), 2× 22(l5 = 0.264), 2× 24(l5 = 0.262), 2x(l5 = 0.25).
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Figure 3: The distribution of the harmonics of the Fourier spectrum for a metabolic process
in the system of glycolysis-gluconeogenesis in the modes: a - the autoperiodic process 2 ×
21(l5 = 0.268); b – the autoperiodic process 2 × 22(l5 = 0.264); c – the autoperiodic process
2× 24(l5 = 0.262); d - the chaos mode 2x(l5 = 0.25).

Figure 4: The distribution of the harmonics of the Fourier spectrum for the metabolic process
in the system of glycolysis-gluconeogenesis for the parameter l5 = 0.3 in the following modes: a
– the quasistable autoperiodic process 2× 22(G0 = 17.25); b – the chaos mode 2x(G0 = 16.8).

The spectral plots of the decomposition into a trigonometric Fourier series (20) of
the kinetic curve G(t) from equation (1) were constructed for the found self-oscillating

modes. Ĝi, i = 1, n, are the harmonics of the Fourier series and they were obtained using
equation (20). The kinetic curves for each spectrum are presented in the upper right
corner of the corresponding figure. The basis of the decomposition is 1000 harmonics.
The decomposition interval is 2l = 8000, which is equal to the decomposition interval of
the kinetics of the strange attractor (Figure 3d). This allowed us to accurately calculate
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all the harmonics of the possible oscillating modes of the system, including for the strange
attractor.

Doubling of the multiplicity of the periodic regime (see the transition from Figure
3a to Figure 3b and to Figure 3c) leads to the doubling of the number of fundamental
harmonics that characterize the multiplicity of periodicity in the laminar phase trajectory
of the attractor.

In the transition from Figure 3c to Figure 3d, there was no doubling of the cycle. So
there was no increase in the multiplicity of fundamental harmonics. The graph (Figure
3d) shows a significant increase in the turbulence harmonics (compare Figure 3d with
the graphs Figure 3a, b, c). The phase trajectory of the system becomes unstable and
is characterized as a strange attractor. In this mode, the strict synchronicity of the
metabolic processes of the system is violated. The desynchronized chain of glycolysis-
gluconeogenesis reactions continues to execute its function, but not strictly periodically,
which means the adaptation of cell metabolism to the changes in the cell and to the
environment.

Figure 4a and Figure 4b show the distributions of the Fourier spectra of the variable
G(t) kinetics, with the increase of the parameter of gluconeogenesis to l5 = 0.3 and
with the change of the parameter G0, for the following two modes: the quasi-stable
autoperiodic process - 2× 22(G0 = 17.25) (a) and the chaos mode 2x(G0 = 16.8) (b).

Figure 5: The histograms of the projections of the invariant measure of the strange attractor
2x, at l5 = 0.25: t ∈ [106, 106 + 8 · 105]: a - onto the plane (L,N); b - onto the plane (T2, P ); c
- onto the plane (R1, ψ3); d - onto the plane (T2, ψ3)
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In order to more clearly represent the dynamics of the metabolic process of the
glycolysis-gluconeogenesis system, the invariant measure (19) of the strange attractor
2x was calculated for l5 = 0.25: t ∈ [106, 106 + 8 · 105].

The histograms of the projections of the invariant measure onto some planes of the
phase space of the system (Figure 5) were constructed, using the obtained values. For our
results, we took the number of points N = 5010 and the time of solving t ∈ (106, 106 +
8× 105).

The histograms of projections of the invariant measure make it possible to generally
evaluate the projections of the invariant measure of the corresponding variables of the
system and to find its largest value. And this means that the found cell with the maximum
of the projection of the invariant measure is also a place of instability in the variables of
the system, where bifurcations and the chaotic regime of the strange attractor occur. This
makes it possible to determine the sources of instability in the modeled cell biosystem
dynamics.

From the presented diagrams, the largest projection of the invariant measure µ =
0.01875 is obtained in Figure 5a, onto the coordinate plane (L,N). These variable
models describe the change in lactate levels (8) and NAD · H (16). This means that
the instability of these values in the metabolic process of glycolysis-gluconeogenesis most
likely leads to the violation of the stability of the biosystem’s attractor and the emergence
of a strange attractor regime.

So, on the basis of the obtained results, in order to get rid of the chaotic regime and
establish the stability of the attractor of the cell biosystem, we recommend to change the
level NAD ·H (electron carrier) or ψ (kinetic potential of the cell) via the corresponding
biochemical action influencing these values.

We calculated the histograms of the invariant measure for other variables. It is also
possible to determine their influence on the stability of the biosystem’s attractor. In this
case, the biochemical effect on the cell will be different.

4 Conclusion

The constructed mathematical model of glycolysis-gluconeogenesis is one of the main
constructed models of synergy in biology. Using this model, the authors managed to
simulate the structure of protobionts: the LUCA (the last universal common ancestor),
from which the life of the primary cell could get its origin and get sustained. Thanks to
biological evolution, this process has been reproduced in all living cells.

It was found that the cause of the auto-oscillating process in glycolysis is cell gluco-
neogenesis.

The results of the paper are as follows.

- The spectrum of the Fourier harmonic decomposition of the kinetics of system
attractor formation was calculated. It can be used to determine system modes.

- For the first time, the invariant measures and the histograms of the invariant mea-
sures for the chaotic attractors of a dynamic system were calculated using a computer
program for the mathematical model of glycolysis-gluconeogenesis.

- The histograms of the invariant measure of the strange attractor of the cell biosystem
were constructed.

- Recommendations are made on how to biochemically get rid of the chaotic regime
and restore the stability of the cell’s life cycle.
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Abstract: In this paper, we are concerned with the optimization problem by using
the logarithmic penalty method via new upper bound and lower bound functions in
the Karmarkar’s algorithm to find the solution. Then, we establish the direction by
Newton’s method. Also, we propose a new approach based on new upper bound and
lower bound functions to determine the step size. To lend further support to our
theoretical results, a simulation study is carried out to illustrate the good accuracy
of the studied method.
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1 Introduction

The appearance, rapid evolution and success of interior point methods since their revival
by Karmarkar (1984) in the field of linear optimization problems, have prompted re-
searchers around the world to develop a whole arsenal of methods (software) allowing to
properly deal with several classes of problems once considered difficult to solve, including
nonlinear programming, semi-definite programming, etc.

Linear optimization is a general mathematical framework for modelling and solv-
ing some optimization problems and it appears in many areas of applications such as
agriculture, finance, economics, geometric problems and optimal control.

Mathematically, the problem is to optimize a linear function under linear constraints
on the variables.
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Historically, linear programming has been developed by George Bernard Danzig since
1947.

Our work concerns the linear optimization (LO) problem which has become a much
coveted research topic since the revival of interior point methods from new investigations
brought by Karmarkar (1984) and others.

These methods are recognized as formidable competitors of the famous simplex
method. Their major drawback (at about 80% of the computational value) is the calcu-
lation of the projection which dominates the cost of the iteration.

Our work is devoted to an approach inspired by the interior point logarithmic barrier
method, and to avoid the calculation of the projection in Karmarkar’s projective method,
we propose an original procedure for the calculation of the step size based on the idea
of the upper and lower bound functions and we introduce new functions. This study is
supported by interesting numerical tests.

To our knowledge, our new upper and lower bound functions have not been studied in
the linear optimization literature. These approximate functions have the advantage that
they allow computing the step size easily and without consuming much time, contrarily
to the line search method, which is time-consuming and expensive to identify the step
size. For this, our objective is to optimize a linear problem based on prior efforts, and we
propose a straightforward and effective logarithmic barrier method based on new upper
and lower bound functions.

The rest of the paper is built as follows. We first present in Section 2 of our paper, a
linear optimization problem formulation. We introduce in Section 3, a brief description
of the algorithm. In Sections 4 and 5, we establish new upper and lower bound functions
and the algorithm. Two lemmas are proved in Section 6 to show the convergence results.
A simulation study is carried out to show the good behaviour of our approach in Section
7. Finally, a conclusion is summarized in the last section.

2 Posing of the Problem

We consider the following linear optimization problem:

(ka)


min⟨c, x⟩ = 0,

Ax = 0,
x ≥ 0,
x ̸= 0,

which was applied to the Karmarkar algorithm. Here, c ∈ Rn and A is an m× n matrix
of rank m.

In all that follows, the following conventions are adopted: the vector e ∈ Rn is the
vector whose components are all equal to 1, given a vector x ∈ Rn, X is the diagnonal
matrix whose diagonal elements are the components of x (i.e., X = diag{x}).

The following assumptions are made:
1. Ax = 0 and x ≥ 0 ⇒ ⟨c, x⟩ ≥ 0.
2. We know a point x > 0 such that Ax = 0 and ⟨c, x⟩ > 0.
3. We know that the problem (ka) has solutions. We put

C = {x : Ax = 0, x ≥ 0, x ̸= 0}.

If x̄ is a solution of (ka), then kx̄ with k > 0 is also a solution.
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We can thus proceed to a normalization of x and consider, for example, the following
linear problem:

(pk)

 min ctx = 0,
Ax = 0,

⟨e, x⟩ = n, x ≥ 0.

We note that the set of optimal solutions of this problem is a convex polyhedron
contained in the relative boundary of the set of feasible points.

The potential function.
The convergence of the algorithm is based on the following function, called the ”mul-

tiplicative potential function”, defined for all x ∈ C, x > 0, by

f(x) =
⟨c, x⟩n
n∏

i=1

xi

,

which we extend by semi-continuity on C.
One can also consider the function called the ”logarithmic potential function” defined

by

q(x) = ln f(x) = n ln(⟨c, x⟩)−
n∑

i=1

ln(xi).

The function f has the following properties:
1) 0 < f(x) < +∞ if x > 0 and Ax = 0.
2) f(x) = +∞ if x belongs to the relative boundary of C without being a solution of

(ka).
3) f(x) = 0 if x is a solution of (ka) or if x = 0.
4) f(kx) = f(x) for all x ∈ C and all k > 0.
Thus, problem (ka) consists of finding the optimal solutions to the problem

(km)

 min f (x) = 0,
Ax = 0,

x ≥ 0, x ̸= 0.

3 Description of the Algorithm

Starting from the point x ∈ C which is known, the Karmarkar algorithm is a descent
method which generates, due to the barrier character of the objective function f, a
sequence of points all contained in the relative interior of C, hence the name of the
method of interior points. We will describe the transition from the initial iterate x to
the next iterate x̃.

It is assumed that the iterate x̃ verifies x̃ > 0 and Ax̃ = 0.

3.1 Normalisation

We normalize x by the relation

x =

√
n

⟨x, x⟩
x

so that ⟨x, x⟩ = n.
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3.2 Direction of descent

It is easy to see that we have
f (x̃)

f (x)
= g (z)

with

z = X−1x̃, g (z) =
⟨b, z⟩n
n∏

i=1

zi

and b =
1

⟨c, x⟩
Xc.

The conditions Ax̃ = 0, x̃ ≥ 0 and x̃ ̸= 0 transpose to

AXz = 0, z ≥ 0 and z ̸= 0.

Let B = AX. Problem (km) is equivalent to the problem

(kmz)


min g (z) = 0,

Bz = 0,
z ≥ 0,
z ̸= 0.

e is a feasible solution of this problem and we have g(e) = ⟨b, e⟩ = 1.
Since we have g(kz) = g(z) for all z ≥ 0 and all k > 0, we will work on the following

normalized problem:

(kz)


min g (z) = 0,

Bz = 0,
⟨e, z⟩ = n,
z ≥ 0.

It is easy to see that the matrix (At, x) is of rank m+1, so is the matrix (Bt, e) . The
Newtonian descent direction at point e for the problem (kz) is obtained by solving the
quadratic problem

(PQ)

 min 1
2

〈
∇2g (e) d, d

〉
+ ⟨∇g (e) , d⟩ ,

Bd = 0,
⟨e, d⟩ = 0.

To do this, let us introduce the matrix

P = I −
(
Bt, e

) [(
Bt, e

)t (
Bt, e

)]−1 (
Bt, e

)t
,

which corresponds to the projection on the linear subspace:

E = {d : Bd = 0, ⟨e, d⟩ = 0} .

We have

P 2 = P = P t, PBt = 0 and Pe = 0.

It is easy to see that we have

P∇g (e) = Pb and P∇2g(e)P = I + n (n− 1)PbbtP,
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the quadratic problem is equivalent to{
min 1

2

〈
∇2g (e) d, d

〉
+ ⟨∇g (e) , d⟩ ,

Pd = d,

whose optimal solution is collinear with

d = −Pb = −P∇g (e) .

The direction d thus coincides with the direction given by the projected gradient. We
are now interested in some properties of d.

First of all, we have

⟨d, e⟩ = −⟨Pb, e⟩ = −⟨b, Pe⟩ = 0,

we then observe that on the one hand, we have{
z : ⟨e, z⟩ = n

∥z − e∥2 ≤ n
n−1

}
⊂
{

z : ⟨e, z⟩ = n
z ≥ 0

}
⊂
{

z : ⟨e, z⟩ = n

∥z − e∥2 ≤ n (n− 1)

}
.

and on the other hand, 
min ⟨b, z − e⟩ = −1,

Bz = 0,
⟨e, z⟩ = n,
z ≥ 0,

and since P (e− z̄) = e− z̄,

⟨b, z − e⟩ = ⟨Pb, z − e⟩ ,

we get

∥Pb∥
√

n

n− 1
≤ 1 ≤ ∥Pb∥

√
n (n− 1).

So, in summary,

⟨d, b⟩ = −∥d∥2 = −∥Pb∥2 , ⟨d, e⟩ = 0 and
1

n (n− 1)
≤ ∥d∥2 ≤ n− 1

n
.

In the following, we denote by d̄ and σ the mean and standard deviations of
(d1, d2, ..., dn) . We have

d̄ =
1

n

n∑
i=1

di = 0 and
1

n2 (n− 1)
≤ σ2 =

∥d∥2

n
− d̄2 ≤ n− 1

n2
. (1)

4 Calculation of the Step Size

The calculation of the step size consists in obtaining a value t > 0 such that we have
e+ td > 0 and which gives a significant decrease of µ0(t) = g(e+ td) or, equivalently, of
ω0(t) = ln(g(e+ td)).

Since the equation ω′
0(t) = 0 cannot be solved explicitly in a large class of optimization

problems, it is normal to think of iterative methods of solution, one can also apply to ω0



70 F. LEULMI AND A. LEULMI

an Armijo-Golstein-Price type method. In both cases, this requires several evaluations
of the function ω0 and its derivative and is therefore expensive. Our approach consists
in minimizing an upper bound ωMAJ and lower bound ωMIN of the function ω0 whose
minimum can be obtained explicitly. Recall that we have

ω0 (t) = n ln
(
1− t ∥d∥2

)
−

n∑
i=1

ln (1 + tdi) ,

it is clear that ω0(0) = 0.
We need the following theorem to find the upper bound and lower bound functions

of ω(t).

Theorem 4.1 [1] Suppose that xi > 0 for all i = 1, 2, . . . , n, then

n ln
(
x̄− σx

√
n− 1

)
≤ A ≤

n∑
i=1

ln (xi) ≤ B ≤ n ln (x̄) ,

with

A = (n− 1) ln

(
x̄+

σx√
n− 1

)
+ ln

(
x̄− σx

√
n− 1

)
and

B = ln
(
x̄+ σx

√
n− 1

)
+ (n− 1) ln

(
x̄− σx√

n− 1

)
,

such that x̄ and σx are, respectively, the mean and standard deviations of a statistical
series {x1, x2, ..., xn} of n real numbers. These quantities are defined as follows:

x̄ =
1

n

n∑
i=1

xi and σ2
x =

1

n

n∑
i=1

x2
i − x̄2 =

1

n

n∑
i=1

(xi − x̄2).

In the following, we take xi = 1 + tdi, i = 1, ...,m, we have x̄ = 1 + td and σx = tσd.

4.1 Upper bound functions

4.1.1 First upper bound function

From the previous theorem, we have

A ≤
n∑

i=1

ln(xi),

then

n∑
i=1

ln(1 + tdi) ≥ (n− 1) ln

(
x̄+

σx√
n− 1

)
+ ln(x̄− σx

√
n− 1),

n∑
i=1

ln (1 + tdi) ≥ (n− 1) ln

(
1 +

σt√
n− 1

)
+ ln

(
1− σt

√
n− 1

)
,
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multiplying by (−1), we find

−
n∑

i=1

ln(1 + tdi) ≤ −(n− 1) ln

(
1 +

σt√
n− 1

)
− ln(1− σt

√
n− 1),

and therefore

ω0 (t) ≤ ωMAJ (t) = n ln
(
1− ntσ2

)
− (n− 1) ln

(
1 +

σt√
n− 1

)
− ln

(
1− σt

√
n− 1

)
.

From this, we can deduce that the function ωMAJ reaches its minimum at the point

t̄MAJ =
n
√
n− 1√

n− 1 + n (n− 2)σ
.

4.1.2 Second upper bound function

Let us consider a function that contains only a logarithm and is simpler than the function
ωMAJ . Then, we consider the following function:

ωMAJ1(t) = −2n ∥d∥2 t− ln
(
1− σt

√
n− 1

)
.

Lemma 4.1 ωMAJ1(t) is strictly convex for all t ≥ 0; and we have

ω0(t) ≤ ωMAJ1(t) ≤ +∞.

Proof. We have

ω0 (t) = n ln
(
1− t ∥d∥2

)
−

n∑
i=1

ln (1 + tdi) .

We pose
g(t) = ωMAJ1(t)− ω0(t),

we have g(0) = 0 and

g′′(t) =
σ2(n− 1)

(1− σt
√
n− 1)2

+
n ∥d∥2

(1− t ∥d∥2)2
+

n∑
i=1

d2i
(1 + td2i )

2
≥ 0

for all t ≥ 0. This gives g(t) ≥ 0,∀t ≥ 0.
Then

ω0(t) ≤ ωMAJ1(t).

From this, we can deduce that the function ωMAJ1 reaches its minimum at the point

t̃ =
1

σ
√
n− 1

− 1

2n2σ2
.

The new iterate is
x̃ = X (e+ t̄d) = x+ t̄Xd.

By construction, we have x̃ > 0 and Ax̃ = 0.
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4.1.3 The decrease

Replacing t̃ with its value gives

ωMAJ1(t̃) = −2n2σ2t̃− ln(1− σt̃
√
n− 1)

= 1− 2n2σ√
n− 1

− ln

(
1− 2n2σ −

√
n− 1

2n2σ

)
= 1− 2n2σ√

n− 1
− ln

(√
n− 1

2n2σ

)
.

The quantity ωMAJ1(t̃)− ωMAJ1(0) = ωMAJ1(t̃) depends on σ.

Since we have

1

n
√
n− 1

≤ σ ≤
√
n− 1

n
,

we obtain

1 ≤ σn
√
n− 1 ≤ n− 1.

It is useful to put u = nσ
√
n− 1, then we get 1 ≤ u ≤ n− 1 and

ωMAJ1(t̃) = 1− 2n2σ√
n− 1

− ln

(√
n− 1

2n2σ

)
= 1− 2nu

n− 1
− ln

(
n− 1

2nu

)
= 1− 2nu

n− 1
− ln(n− 1) + ln(2nu)

= ξ(u).

The function ξ is concave (a sum of two concave functions) and therefore

ωMAJ1(t̃) = ξ(u) < ξ(1) + (u− 1)ξ′(1).

This leads to

ωMAJ1(t̃) = ξ(u) < ln

(
2ne

(n− 1)e
2n

n−1

)
− (u− 1)

(
2n

n− 1
− 1

)
.

We deduce that in the worst case (where u = 1), we have

ωMAJ1(t̃) = ξ(u) < ln

(
2ne

(n− 1)e
2n

n−1

)
≤ 0,

then we obtain

f(x̃) ≤

(
2ne

(n− 1)e
2n

n−1

)
f(x0).
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4.2 Lower bound function

4.2.1 First lower bound function

From the previous theorem, we have

n∑
i=1

ln(xi) ≤ B,

then

n∑
i=1

ln(1 + tdi) ≤ (n− 1) ln

(
x̄− σx√

n− 1

)
+ ln(x̄+ σx

√
n− 1),

n∑
i=1

ln(1 + tdi) ≤ (n− 1) ln

(
1− σt√

n− 1

)
+ ln(1 + σt

√
n− 1).

Multiplying by (−1), we find

−
n∑

i=1

ln(1 + tdi) ≥ −(n− 1) ln(1− σt√
n− 1

)− ln(1 + σt
√
n− 1),

and therefore

ω0(t) ≥ ωMIN (t) = n ln(1− nσ2t)− (n− 1) ln

(
1− σt√

n− 1

)
− ln(1 + σt

√
n− 1).

From this we can deduce that the function ωMIN reaches its minimum at the point

t̄MIN =
n
√
n− 1√

n− 1− n (n− 2)σ
.

4.2.2 Second lower bound function

We can consider a function that contains only a logarithm and is simpler than the
function ωMIN . Then let us consider the following function:

ωMIN1(t) = −2n ∥d∥2 t− (n− 1) ln

(
1− σt√

n− 1

)
.

Lemma 4.2 ωMIN1(t) is strictly convex for all t ≥ 0; and we have

−∞ ≤ ωMIN1(t) ≤ ωMIN (t).

Proof. We have

ωMIN (t) = n ln(1− nσ2t)− (n− 1) ln

(
1− σt√

n− 1

)
− ln(1 + σt

√
n− 1).

We put

g(t) = ωMIN1(t)− ωMIN (t).
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We obtain g(0) = 0 and

g′′(t) = − σ2(n− 1)

(1 + σt
√
n− 1)2

≤ 0

for all t ≥ 0. This gives g(t) ≤ 0,∀t ≥ 0, then

ωMIN (t) ≥ ωMIN1(t).

We deduce that the function ωMIN1 reaches its minimum at the point

t̃ =
2n2σ

√
n− 1− (n− 1)

2n2σ2
.

4.2.3 The decrease

Replacing t̃ with its value gives

ωMIN1(t̃) = −2n2σ2t̃− (n− 1) ln

(
1− σ√

n− 1
t̃

)
= (n− 1)− 2n2σ

√
n− 1− (n− 1) ln

(
n− 1

2n2σ
√
n− 1

)
.

The quantity ωMIN1(t̃)− ωMIN1(0) = ωMIN1(t̃) depends on σ.
Since we have

1

n
√
n− 1

≤ σ ≤
√
n− 1

n
,

we get
1 ≤ σn

√
n− 1 ≤ n− 1,

it is useful to set u = nσ
√
n− 1, then we obtain 1 ≤ u ≤ n− 1 and

ωMIN1(t̃) = (n− 1)− 2n2σ
√
n− 1− (n− 1) ln

(
n− 1

2n2σ
√
n− 1

)
= (n− 1)− 2nu− (n− 1) ln

(
n− 1

2nu

)
= ξ(u).

The function ξ is concave (a sum of two concave functions) and therefore

ωMIN1(t̃) = ξ(u) < ξ(1) + (u− 1)ξ′(1).

We can deduce

ωMIN1(t̃) = ξ(u) < ln

((
2ne

n− 1

)n−1

× 1

e2n

)
− (u− 1) (n+ 1) .

We deduce that in the worst case (where u = 1), we have

ωMIN1(t̃) = ξ(u) < ln

((
2ne

n− 1

)n−1

× 1

e2n

)
≤ 0,

so, we obtain

f(x̃) ≤

((
2ne

n− 1

)n−1

× 1

e2n

)
f(x0).
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5 The Algorithm

Karmarkar’s algorithm via the upper bound and lower bound functions.
Initialization: We start from x > 0 such that Ax = 0, ϵ is a given precision.
Result: x∗.
Iteration:
While ctx > ϵ do:
1- Normalization:

x =

√
n

⟨x, x⟩
x.

2- Descent direction: We take b and B as follows:

b =
1

⟨c, x⟩
Xc, B = AX.

We determine d projection of b onto the linear subspace:

{d : Bkd = 0, ⟨e, d⟩ = 0} .

Finally, the descent direction is:

δ = Xd.

3- The step size: We calculate:

σ =
∥d∥√
n
.

Case 1: upper bound function:

t̄MAJ =
2n2σ −

√
n− 1

2n2σ
√
n− 1

.

Case 2: lower bound function:

t̄MIN =
2n2σ

√
n− 1− (n− 1)

2n2σ2
.

4- The new iterate: is x̃ = x+ tδ.
5- Taking k = k + 1 and returning to (1) .
End While.
x∗ = x̃.
End Algorithm.

6 The Convergence

Upper bound function.

Lemma 6.1 At the kth iteration, we have

f (xk) <

(
2ne

(n− 1)e
2n

n−1

)k

f (x0) .

Therefore f (xk) converges linearly to 0. We deduce that any membership value of the
sequence {xk} is an optimal solution of problem (ka).
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Lower bound function.

Lemma 6.2 At the kth iteration, we have

f (xk) <

((
2ne

n− 1

)n−1

× 1

e2n

)k

f (x0) .

Therefore f (xk) converges linearly to 0. We deduce that any membership value of the
sequence {xk} is an optimal solution of problem (ka).

7 Numerical Tests

To evaluate our algorithm’s efficiency based on our upper and lower bound functions,
we conducted comparative numerical tests between our two new approximate functions
(the upper bound function (TUF)and the lower bound function (TLF) and Wolfe’s line
search method (LSW)). The algorithm is described in our work using Matlab10 software.
The examples tested are taken from the literature, see for example [4, 5].

We have taken ϵ between (10−4 et 10−6). We denote by
TUF: The upper bound function technique.
TLF: The technique of the lower bound function.
LSW: Wolfe’s line search method.
iter: The number of iterations required to obtain an optimal solution.
time (s): The calculation time in seconds.

7.1 Examples

Example 1:

A =

[
0 1 2
0 3 0

]
, b =

[
2
1

]
and c =

[
2 1 0

]t
.

The optimal value is z∗ = 1
3 .

The exact optimal solution is x∗ =
[
0 1

3
5
6

]t
.

Comparative table:

Method iter time (s)
TUF1 03 0:0:0:1
TLF1 04 0:0:0:19
LSW 11 0:0:01:31

Example 2:

A =

[
2 3 1 2
3 0 −2 1

]
, b =

[
2
0

]
and c =

[
4 1 2 0

]t
.

The optimal value is z∗ = 0.67.

The exact optimal solution is x∗ =
[
0 0.67 0 0

]t
.

Comparative table:
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Method iter time (s)
TUF1 06 0:0:0:1
TLF1 09 0:0:0:26
LSW 13 0:0:10:01

Example 3:

A =

 2 3 1 0 3
1 2 5 0 1
5 −1 2 3 0

 , b =

 1
2
3

 and c =
[
1 2 3 5 4

]t
.

The optimal value is z∗ = 22
9 .

The exact optimal solution is x∗ =
[

1
3 0 1

3
2
9 0

]t
.

Comparative table:

Method iter time (s)
TUF 09 0:0:0:01
TLF 11 0:0:0:02
LSW 32 0:0:11:09

Example 4:

A =

 2 1 0 −1 0 0
0 0 1 0 1 −1
1 1 1 1 1 1

 , b =

 0
0
1

 and c =
[
3 −1 1 0 0 0

]t
.

The optimal value is z∗ = −0.5.

The exact optimal solution is x∗ =
[
0 0.5 0 0.5 0 0

]t
.

Comparative table:

Method iter time (s)
TUF1 10 0:0:0:01
TLF1 13 0:0:0:01
LSW 33 0:0:12:08

Example 5:

A =


1 0 −4 3 1 1 1 0 0 0 0 0
5 3 1 0 −1 3 0 1 0 0 0 0
4 5 −3 3 −4 1 0 0 1 0 0 0
0 −1 0 2 1 −5 0 0 0 1 0 0

−2 1 1 1 2 2 0 0 0 0 1 0
2 −3 2 −1 4 5 0 0 0 0 0 1

 , b =


1
4
4
5
7
5


and c =

[
−4 −5 −1 −3 5 −8 0 0 0 0 0 0

]t
.

The optimal value is z∗ = −17.

The exact optimal solution is x∗ =
[
0 0 2.5 3.5 0 0.5 0 0 0.5 0.5 0 1

]t
.

Comparative table:
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Method iter time (s)
TUF1 09 0:0:0:01
TLF1 07 0:0:0:01
LSW 20 0:0:17:12

Example 6: The matrix A is

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 3 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 4 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 3 -1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 1


The vectors c and b are

c =

[
2 −1 −3 5 −2 0 4 1 2 −1 1 −1 0 2

0 0 0 0 0 0 0 0 0 0 0

]t
,

b =
[
8 4 6 2 5 1 2 6 3 9 4

]t
.

The optimal value is z∗ = −13.25.
The exact optimal solution is

x∗ =

[
0 1 2 0 0.5 1.33 0 0 0 1.5 0 3.48 0
0 7 0 0 0 1 2.33 2 0.18 4.5 0 0.15

]t
.

Comparative table:

Method iter time (s)
TUF1 05 0:0:0:01
TLF1 06 0:0:0:01
LSW 22 0:0:57:09

Example 7: (with a variable size)
We consider the following linear problem of variable size:

ζ = min[cTx : x ≥ 0, Ax = b],

where A is the m× 2m matrix defined by

A[i, j] =

{
1 if i = j or j = i+m,
0 if not.

c[i] = −1, c[i+m] = 0 and b[i] = 2, ∀i = 1, ...m,

where the vectors c ∈ R2m and b ∈ R2m.
The optimal value is z∗ = −2m. The exact optimal solution is

x∗
i =

{
2 if i = 1, ...,m,
0 if i = m+ 1, ..., n.

Comparative table:
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size Method iter time (s)

TUF 4 0:0:0:01
5× 10 TLF 6 0:0:0:01

LSW 90 0:02:40:12

TUF 9 0:0:0:09
25× 50 TLF 14 0:0:0:15

LSW 89 0:02:00:07

TUF 8 0:0:0:26
50× 100 TLF 10 0:0:0:33

LSW 89 0:02:33:40

Comments: The numerical tests carried out show that our approach of upper bound
and lower bound functions that we have proposed leads to a very significant reduction
in the cost of calculation and an improvement in the result. The number of iterations
and the computing time are considerably reduced in the upper bound and lower bound
functions in comparison with the line search method.

8 Conclusion

Despite the mathematical development in the field of linear programming, many problems
remain to be developed.

For this, in this study, we used a logarithmic barrier method for solving this problem.
We proposed a new upper and lower bound functions to compute the displacement step,
and we showed that our new technique is efficient in reducing the computational cost
in Karmarkar’s projective algorithm. This method has made it possible to significantly
reduce the number of iterations and the time of their calculation. Numerical simulations
confirm the efficiency of our approach.

Our future exciting work is to further improve the computational time of the logarith-
mic barrier algorithm by proposing more efficient upper and lower bound functions. But
extensions would be envisaged to the nonlinear, not necessarily to the linear programming
problem.
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Abstract: In this work, we consider a dynamical unilateral contact problem with
Coulomb’s friction and thermo-electroelastic effects. We focus here on the dynamical
effects such as frictional heating and thermal softening at the contact interface. The
thermo-electro-elastic constitutive law is assumed to be linear and the foundation
is thermally and electrically conductive. We derive a variational formulation of the
problem and establish the existence of a weak solution. The proof is based on a suit-
able combination of the penalty method, standard arguments of variational equations
and fixed point theorem.
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heating; variational analysis.
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1 Introduction

A piezoelectric material is a substance that generates electrical charges when mechani-
cal pressure is applied and mechanically deforms when an electric field is applied. As a
result, the piezoelectric material performs the function of a transducer, converting elec-
trical energy into mechanical energy and vice versa. These so-called smart materials,
among other things, are used as switches in radio-logic, electric-acoustic, and measuring
devices. Piezoelectric materials have been extensively studied, and one natural extension
of these coupled electro-mechanical models is to include temperature as an additional
state variable to account for thermal effects as well as piezoelectric effects.
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General mathematical models on piezoelectricity were studied in [3,9,13]. Results on
static frictional contact problems for piezoelectric materials under the assumption that
the foundation is insulated can be found in [5, 11, 16], and these results were extended
in [7, 8, 12] in the case of an electrically conductive foundation. In the quasi-static case,
we refer to [6,10] and references therein. Moreover, the theory of thermo-piezoelectricity
was first proposed by [14], the physical laws and the governing equations for thermo-
piezoelectric materials have been explored in [7,14,15,17] and for some recent results on
the thermo-piezoelectric contact problem, we refer to [1, 4].

Here, we seek to apply the static/quasi-static instances of our previous studies to a
dynamical contact problem with temperature-dependent friction. Heat is produced as a
result of the body and foundation sliding against one another through friction. This fact
serves as the inspiration for our expansion of the dynamic thermo-electroelastic contact
issue, which takes into consideration the effects of thermal softening and frictional heating
at the contact surface.

The remainder of the paper is organized as follows. The model of the dynamical
frictional contact process between a thermo-electro-viscoelastic body and a conductive
deformable foundation is described in Section 2. Section 3 introduces some notations,
lists the data assumptions, and derives the variational formulation of the model. The
main existence and uniqueness result of the model’s weak solution is stated in Theorem
4.1. This theorem is proved in several steps in Section 4, the proof is based on the
arguments of compactness, time discretization, and the Banach fixed point theorem.

2 Preliminaries

In this section, we recall some useful definitions and lemmas which will be used in the
sequel. Let X be a reflexive Banach space and ⟨·, ·⟩ denote the duality of X and X∗, we
have the following interesting results (see e.g., [2]).

Definition 2.1 A single-valued operator A : X → X∗ is pseudomonotone if

1. A is a bounded, i.e., it maps the bounded sets in X into the bounded sets in X∗,

2. for every sequence {xn} ⊂ X converging weakly to x of X such that
lim sup

n∞
⟨Axn, xn −x⟩ ≤ 0, we have ⟨Ax, x− y⟩ ≤ lim inf

n∞
⟨Axn, xn − y⟩ for all y ∈ X.

Definition 2.2 A multi-valued operator T : X → 2X
∗
is pseudo-monotone if

1. for every v ∈ V, the set Tv ⊂ X∗ is nonempty, closed and convex,

2. the operator T is upper semi-continuous from each finite-dimensional subspace of
X to X∗ endowed with weak topology,

3. for any sequences {un} ⊂ X and {u∗n} ⊂ X∗ such that un → u weakly in X,
u∗n ∈ Tun for all n, and lim sup

n∞
⟨u∗n, un − u⟩ ≤ 0, we have that for every v ∈ X,

there exists u∗(v) ∈ Tu such that ⟨u∗(v), u− v⟩ ≤ lim inf
n∞

⟨u∗n, un − v⟩.

Let (F, ∥ · ∥F ) ⊂ (G, ∥ · ∥G) be the reflexive Banach spaces such that ∥ · ∥F ≥ ∥ · ∥G
and F = G, thus, we may write F ⊂ G ≡ G′ ⊂ F ′. Suppose that B is a linear, bounded,
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positive and symmetric operator from G to G′. Let F = L2([a, b], F ), G = L2([a, b], G)
and define X = {w ∈ F : (Bw)′ ∈ F′} which is a reflexive Banach space for the norm

∥w∥X = ∥w∥F + ∥(Bw)′∥F ′ .

Moreover, let A(t, ·) be an operator from F to F ′, and denote by A : F → F′ its natural
extension, given by Aw(t) = A(t, w(t)). Assume that

A : X → X′ is pseudo-monotone,

A : F → F′ is a bounded operator,
(1)

and for some λ ∈ R, one has

lim
∥w∥F+∞

λ ⟨Bw,w⟩G′×G + ⟨Aw,w⟩F′×F

∥w∥F
= ∞. (2)

Then the following existence theorem holds, see [18, Theorem 3.1].

Theorem 2.1 Let A and B be defined above. Then, for each w0 ∈ G and ℓ ∈ F′,
there exists a w ∈ X such that{

(Bw)′ +Aw = ℓ in F′,

Bw(0) = Bw0 in G′.

3 Problem Statement and Variational Formulation

We consider an elastic body in the reference configuration Ω ⊂ Rd with the dimension
d = 2, 3. We are interested in the displacement field u(x; t), the electrical potential
φ(x, t) and the temperature θ(x; t) for (x; t) ∈ Ω× (0;T ), where (0;T ) is the given time
interval. For the sake of simplicity, we will omit the dependence of various functions on
the spatial variable x ∈ Ω̄. Hence, the local momentum of balance for stress, electric
displacement and heat conduction are given as follows:

ü−Div σ = f0 in Ω× (0, T ),

divD = ϕ0 in Ω× (0, T ),

θ̇ + div q = −M ε(u̇)− P E(φ) + q0 in Ω× (0, T ).

Here, the quantities f0, ϕ0 and q0 describe the given body forces, volume electric charge
and heat source term, acting on Ω. In the case of linear thermo-visco-piezoelectricity,
the stress tensor is given by

σ = A ε(u̇) + F ε(u)− E∗E(φ)−M θ in Ω× (0, T ),

where A is the linear viscosity operator, F = (fijkl) is the linear elasticity operator, ε(u)
is the linearized strain tensor, E(φ) = −∇φ is the electric field, E = (eijk) is the third-
order piezoelectric tensor and E∗ = (ekij) is its transpose, M = (mij) is the thermal
expansion tensor. Moreover, the electric displacement and the heat flux are defined by

D = E ε(u) + β E(φ) + P∗ θ in Ω× (0, T ),

q = −K∇θ in Ω× (0, T ),
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where β = (βij) is the electric permittivity tensor, P = (pi) and K = (kij) are the
thermal expansion and thermal conductivity tensors.

Recall that Sd is the space of second order symmetric tensors on Rd. The canonical
inner products and associated norms on Rd and Sd are given by

∀u, v ∈ Rd, u · v = ui vi ; ∀σ, τ ∈ Sd, σ · τ = σij τij ,

∀u, v ∈ Rd, ∥v∥ = (v · v) 1
2 ; ∀σ, τ ∈ Sd, ∥τ∥ = (τ · τ) 1

2 .

If ν is the outward unit normal vector on the boundary Γ = ∂Ω, then the normal and
tangential components of the displacement vector v and the stress field σ on Γ are

vν = v · ν , vτ = v − vν ν and σν = σ ν · ν , στ = σ ν − σν ν.

In order to formulate the boundary conditions and the initial boundary values, we divide
the boundary Γ into three disjoint open subsets ΓD, ΓN and ΓC such that ΓD∪ΓN∪ΓC =
Γ. We also assume that ΓD ∪ΓN is partitioned into two disjoint open parts Γa and Γb of
nonzero measure such that ΓD ∪ΓN = Γa ∪Γb. We assume that the body is clamped on
ΓD×(0, T ), the surface traction of density fN acts on ΓN ×(0, T ), the electrical potential
vanishes on Γa × (0, T ), the surface electric charge of density ϕb acts on Γb × (0, T ) and
the temperature is assumed to be zero on ΓD ∪ ΓN × (0, T ). Therefore, we have

u = 0 on ΓD × (0, T ),

σ ν = fN on ΓN × (0, T ),

φ = 0 on Γa × (0, T ),

D · ν = ϕb on Γb × (0, T ),

θ = 0 on ΓD ∪ ΓN × (0, T ).

On the contact surface ΓC , the body is supposed to be in unilateral contact with a rigid
foundation by Coulomb’s friction law

σν(u, φ, θ) ≤ 0 , (uν − g) ≤ 0 , σν(u, φ, θ) (uν − g) = 0 on ΓC × (0, T ),
∥στ∥ ≤ µ(θ) |Rσν |
∥στ∥ < µ(θ) |Rσν | =⇒ [u̇]τ = 0

∥στ∥ = µ(θ) |Rσν | =⇒ ∃λ ∈ R, στ = −λ2 u̇τ ,
on ΓC × (0, T ),

where for the temperature dependent coefficient of friction µ(θ) ≥ 0, we use

µ(θ) = µ0
[θ − θd]

2

[θd − θf ]2
,

where µ0 is the static coefficient of friction at the given reference temperature θf and θd
is a damage temperature on the interface. Temperature θd is related to the temperature
at which frictional stress is no longer due to the solid shearing effects, but is generated by
the viscous shear of a molten film on the contact interface. It can be taken as the lowest
melting temperature of the body and the foundation in contact. Since θ < θd, we have
µ′(θd) ≤ 0 and lim

θd
µ(θ) = 0. Therefore this equation shows a thermal softening effect.

Moreover, the thermal and electrical flow conditions on the contact zone are given by

|D · ν| ≤ k , |D · ν| = k
φ

|φ|
if φ ̸= 0 on ΓC × (0, T ).
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This condition represents the electric condition on the contact surface and we assume
them by analogy with Tresca’s friction law, where k is a given positive function, the
electric conductivity coefficient

q · ν = kc(uν − g)ϕL(θ − θF ) on ΓC × (0, T ),

describes the heat balance on the contact interface, where ϕL is the truncation function,
kc represents the thermal conductance function that is supposed such that

ϕL(s) =


−L if s < −L
s if − L ≤ s ≤ L

L if s > L

, kc(r) =


kc(r) = 0 if r < 0,

kc(r) > 0 if r ≥ 0,

where L > 0 is a sufficiently large constant. Finally, we denote by u0, v0, φ0 and
θ0 the initial displacement, initial velocity, initial potential and initial temperature,
respectively. We collect the above relations to obtain the following mathematical model.

Problem (P ) : Find a displacement u : Ω × [0, T ] → Rd, an electric potential φ :
Ω× [0, T ] → R and a temperature θ : Ω× [0, T ] → R such that

σ = A ε(u̇) + F ε(u)− E∗E(φ)−M θ in Ω× (0, T ), (3)

D = E ε(u) + β E(φ) + P θ in Ω× (0, T ), (4)

q = −K∇θ in Ω× (0, T ), (5)

ü−Div σ = f0 in Ω× (0, T ), (6)

divD = ϕ0 in Ω× (0, T ), (7)

θ̇ + div q = −M∗ ε(u̇)−N E(φ) + q0 in Ω× (0, T ), (8)

u = 0 on ΓD × (0, T ), (9)

σν = f2 on ΓN × (0, T ), (10)

σν(u, φ, θ) ≤ 0 , (uν − g) ≤ 0 , σν(u, φ, θ) (uν − g) = 0 on ΓC × (0, T ), (11)
∥στ∥ ≤ µ(θ) |Rσν |

∥στ∥ < µ(θ) |Rσν | =⇒ [u̇]τ = 0

∥στ∥ = µ(θ) |Rσν | =⇒ ∃λ ∈ R, στ = −λ2 [u̇]τ

on ΓC × (0, T ), (12)

φ = 0 on Γa × (0, T ), (13)

D · ν = q2 on Γb × (0, T ), (14)

|D · ν| ≤ k , |D · ν| = k
φ

|φ|
if φ ̸= 0 on ΓC × (0, T ), (15)

θ = 0 on ΓD ∪ ΓN × (0, T ), (16)

q · ν = kc(uν − g)ϕL(θ − θF ) on ΓC × (0, T ), (17)

u(·, 0) = u0 , u̇(·, 0) = v0 , θ(·, 0) = θ0 in Ω. (18)

To derive the weak formulation of Problem P , we introduce the following spaces:

H = L2(Ω)d , H = {τ = (τij) , τij = τji ∈ L2(Ω)},
H1 = H1(Ω)d , H1 = {σ ∈ H , Div σ ∈ H},
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which are the real Hilbert spaces for the associated Euclidean norms to the inner products

(u, v)H =

∫
Ω

uivi dx , (u, v)H1
= (u, v)H + (ε(u), ε(v))H,

(σ, τ)H =

∫
Ω

σijτij dx , (σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H.

Keeping in mind (9), (13) and (16), we define the following variational subspaces:

V = {v ∈ H1 , v = 0 on ΓD},
W = {ψ ∈ H1(Ω) , ψ = 0 on Γa},
Q = {η ∈ H1(Ω), η = 0 on ΓD ∪ ΓN}.

Over spaces V , Q and W , we use the following inner products and norms given by

(u, v)V = (ε(u), ε(v))H , ∥u∥V = (u, u)
1/2
V , ∀u, v ∈ V, (19)

(φ,ψ)W = (∇φ,∇ψ)H , ∥φ∥W = (φ,φ)
1/2
W , ∀φ, ψ ∈W, (20)

(θ, η)Q = (∇θ,∇η)H , ∥θ∥Q = (θ, θ)
1/2
Q , ∀ θ, η ∈ Q. (21)

Since V is a closed subspace of the Hilbert spaceH1, andmeas(Γ1) > 0, Korn’s inequality
holds, then there exists a constant ck > 0 depending only on Ω and Γ1 such that

∥ε(v)∥H ≥ ck ∥v∥H1 , ∀ v ∈ V. (22)

Then the norms ∥ · ∥H1
and ∥ · ∥V are equivalent on V and therefore (V, ∥ · ∥V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem, there exists a constant c0 > 0
depending only on Ω, ΓC and ΓD such that

∥v∥L2(Γ)d ≤ c0 ∥v∥V , ∀ v ∈ V. (23)

Since meas(Γa) > 0, the Friedrichs-Poincaré inequality holds and thus

∥∇ψ∥H ≥ cF ∥ψ∥H1(Ω), ∀ψ ∈W, (24)

where cF > 0 is a constant which depends only on Ω and Γa. It follows from (20) and
(24) that ∥ · ∥W and ∥ · ∥H1(Ω) are equivalent norms on W and then (W, ∥ · ∥W ) is a real
Hilbert space. The Sobolev trace theorem implies that there exists c1 > 0 depending on
Ω, Γa and ΓC such that

∥ξ∥L2(ΓC) ≤ c1 ∥ξ∥W , ∀ ξ ∈W. (25)

In an analogous way, we can get that ∥ · ∥Q and ∥ · ∥H1(Ω) are equivalent norms on Q and
then (Q, ∥ · ∥Q) is a real Hilbert space. Using the Sobolev trace theorem, we obtain that
there exists a constant c2 > 0 depending only on Ω, ΓD, ΓN and ΓC such that

∥η∥L2(Γ) ≤ c2 ∥η∥Q, ∀ η ∈ Q. (26)

For a real Banach space (X, ∥ · ∥X), we denote by X
′
the dual space of X and by

⟨·, ·⟩X′×X the duality pairing between X
′
and X. We consider the following standard

Bochner-Lebesgue function spaces:

H = L2([0, T ], H) , V = L2([0, T ], V ) , W = L2([0, T ],W ) , Q = L2([0, T ], Q). (27)
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The notations ∥.∥H, ∥.∥V, ∥.∥W and ∥.∥Q stand for the norms of H, V, Q and W, respec-
tively. We also denote by ⟨., .⟩ the duality pairing between V ′ and V or W ′ and W or Q′

and Q , as the meaning is evident from the context.
To solve the mechanical problem (3)-(18), we need the following assumptions.

A1: (a) The elasticity and the viscosity tensors F, A : Ω × Sd → Sd, the electric
permittivity and the thermal conductivity tensors β, K : Ω×Rd → Rd satisfy

Fijkl = Fklij = Fjikl ∈ L∞(Ω) , βij = βji ∈ L∞(Ω),

Aijkl = Ajikl = Alkij ∈ L∞(Ω) , Kij = Kji ∈ L∞(Ω),

(b) There exist positive constants mF , mA, mβ and mK such that

Fijkl(x) ξijξkl ≥ mF ∥ξ∥2 , Aijkl(x) ξijξkl ≥ mA ∥ξ∥2, ∀ ξ = (ξij) ∈ Sd,
βij(x) ζiζj ≥ mβ ∥ζ∥2 , Kij(x) ζiζj ≥ mK ∥ζ∥2, ∀ ζ = (ζi) ∈ Rd.

Under the previous assumptions, the following constants are well-defined:

MF = sup
ijkl

∥Fijkl∥L∞(Ω) , Mβ = sup
ij

∥βij∥L∞(Ω),

MA = sup
ijkl

∥Aijkl∥L∞(Ω) , MK = sup
ij

∥Kij∥L∞(Ω).

A2 : The piezoelectric tensor E : Ω× Sd → Rd, the pyroelectric tensor P : Ω×R → Rd,
the thermal expansion tensor M : Ω × R → Rd and the tensors N : Ω × Rd → R
satisfy the following properties:

Eijk = Eikj ∈ L∞(Ω) , Mij = Mji ∈ L∞(Ω) , Pi ∈ L∞(Ω) , Ni ∈ L∞(Ω).

Under the previous assumptions, the following constants are well-defined:

ME = sup
ijk

∥Eijk∥L∞(Ω) , MM = sup
ij

∥Mij∥L∞(Ω),

MP = sup
i

∥Pi∥L∞(Ω) , MN = sup
i

∥Ni∥L∞(Ω).

A3 : The friction coefficient µ : ΓC × R → R+ satisfies

(a) ∃µ∗ > 0 such that |µ(x, u)| ≤ µ∗, ∀u ∈ R, a.e. x ∈ ΓC ,

(b) ∃Lµ > 0 such that, for all u, v ∈ R, one has

|µ(x, u)− µ(x, v)| ≤ Lµ|u− v|, a.e. x ∈ ΓC ,

(c) x 7→ µ(x, u) is measurable on ΓC for all u ∈ R.

A4 : The function kc : ΓC × R → R+ satisfies

(a) ∃Mkc
> 0 such that |kc(x, u)| ≤Mkc

, ∀u ∈ R, a.e. x ∈ ΓC ,

(b) ∃Lkc
> 0 such that, for all u, v ∈ R, one has

|kc(x, u)− kc(x, v)| ≤ Lkc
|u− v|, a.e. x ∈ ΓC ,
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(c) 7→ kc(x, u) is measurable on ΓC for all u ∈ R.

A5 : The truncation function φL : ΓC × R → R satisfies

(a) (φL(s1)− φL(s2)) (s1 − s2) ≥ 0 for all s1, s2 ∈ R a.e. x ∈ ΓC ,

(b) ∃Lφ > 0 such that, for all s1, s2 ∈ R, one has

|φL(x, s1)− φL(x, s2)| ≤ Lφ |s1 − s2| a.e. x ∈ ΓC ,

(c) ∃Mφ > 0 such that |φL(x, s)| ≤Mφ, ∀ s ∈ R a.e. x ∈ ΓC

(d) x 7→ φL(x, s) is measurable on ΓC for all s ∈ R.

A6: The function R : H− 1
2 (ΓC) → L∞(ΓC) is bounded and Lipschitz continuous, i.e.,

(a) ∃LR > 0 such that for all s1, s2 ∈ H− 1
2 (ΓC), we have

∥Rs1 −Rs2∥L∞(ΓC) ≤ LR ∥s1 − s2∥
H

1
2 (ΓC)

,

(b) ∃MR > 0 such that for all s ∈ H− 1
2 (ΓC), we have ∥Rs∥L∞(ΓC) ≤MR.

A7: The given forces, charge densities and heat sources satisfy the below regularity

(a) f0 ∈ L2([0, T ], L2(Ω)d) , f2 ∈ L2([0, T ];L2(ΓN )d) , g ∈ L2(ΓC),

(b) ϕ0 ∈ L2([0, T ];L2(Ω)) , q2 ∈ L2([0, T ];L2(Γb)) , φf ∈ L2([0, T ], L2(ΓC)).

A8: The initial data satisfy u0 ∈ V , v0 ∈ V , φ0 ∈W and θ0 ∈ Q.

We move now to deriving the weak formulation of the problem (3)-(18). To this end, we
assume that (u, σ, φ, θ) are smooth functions which solve (3)-(18), by invoking standard
Green’s formula, we obtain the following weak formulation of Problem (P ).

Problem (PV ) : Find a displacement u ∈ V, an electric potential φ ∈ W, and a
temperature θ ∈ Q such that

⟨ü, v − u̇⟩H + ⟨Aε(u̇), ε(v − u̇)⟩H + ⟨Fε(u), ε(v − u̇)⟩H

− ⟨E∗E(φ), ε(v − u̇)⟩H − ⟨Mθ, ε(v − u̇)⟩H +

∫
ΓC

µ(θ)|Rσν | · (|vτ | − |u̇τ |) da

≥ ⟨f0, v − u̇⟩H + ⟨fN , v − u̇⟩L2(ΓN ) , ∀ v ∈ V,

(28)

⟨β∇φ,∇φ−∇ψ⟩H − ⟨Eε(u),∇φ−∇ψ⟩H − ⟨Pθ,∇φ−∇ψ⟩H

+

∫
ΓC

k · (|φ| − |ψ|) da ≥ ⟨ϕ0, φ− ψ⟩H + ⟨q2, φ− ψ⟩L2(ΓN ) , ∀ψ ∈ W,
(29)

⟨θ̇, θ − η⟩H + ⟨K∇θ,∇θ −∇η⟩H + ⟨Nφ,∇θ −∇η⟩H − ⟨M∗ε(u̇),∇θ −∇η⟩H

+

∫
ΓC

kc(uν − g)φL(θ − θf ) · (η − θ) da = ⟨q0, η − θ⟩H , ∀η ∈ Q.
(30)
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4 Existence and Uniqueness Result

In this section, we will prove the existence and uniqueness of the solution of the previous
contact problem, by using the penalty method and intermediate problem. We first rewrite
the variational formulation in abstract form. For this purpose, we consider the operators
A, F ∈ L(V,V∗), B ∈ L(W,W∗), K ∈ L(Q,Q∗), E1 ∈ L(W,V∗), M1 ∈ L(Q,V∗),
M2 ∈ L(V,Q∗), N ∈ L(W,Q∗), E2 ∈ L(V,W∗) and P ∈ L(Q,W∗) defined as follows:

⟨Au, v⟩ = (A ε(u), ε(v))H , ⟨Fu, v⟩ = (Fε(u), ε(v))H , ⟨E1φ, v⟩ = (E∗∇φ, ε(v))H ,

⟨M1θ, v⟩ = (Mθ, ε(v))H , ⟨Bφ, ξ⟩ = (β∇φ,∇ξ)H , ⟨E2u, ξ⟩ = (Eε(u),∇ξ)H ,

⟨Pθ, ξ⟩ = (Pθ,∇ξ)H , ⟨Kθ, η⟩ = (K∇θ,∇η)H , ⟨M2u, η⟩ = (M∗ε(u), η)H ,

⟨Nφ, η⟩ = (N∇φ, η)H .

(31)

We next introduce the friction functional j1 : Q × H−1/2 × V → R, the thermal and
electrical transfer functional j2 :W → R and hc : V ×Q→ Q′, respectively defined by

j1(θ, s, v) =

∫ T

0

∫
ΓC

µ(θ) |Rs| · |vτ | da dt, ∀v ∈ V, (32)

j2(φ) =

∫ T

0

∫
ΓC

k |φ| da dt, ∀η ∈W, (33)

⟨hc(u, θ), η⟩ =
∫
ΓC

kc(uν − g)φL(θ − θf ) · η da, ∀η ∈ Q. (34)

By Riesz’s representation theorem, there exist f ∈ V′, qe ∈ W′ and Θ ∈ Q′ such that

⟨f, v⟩V′×V =

∫ T

0

∫
Ω

f0(t) · v dx dt+
∫ T

0

∫
ΓN

f2(t) · v da dt, ∀ v ∈ V, (35)

⟨qe, ξ⟩W′×W =

∫ T

0

∫
Ω

ϕ0(t) · ξ dx dt−
∫ T

0

∫
Γb

q2(t) · ξ da dt, ∀ ξ ∈W, (36)

⟨Θ, η⟩Q′×Q =

∫ T

0

∫
Ω

q0(t) · η dx dt, ∀ η ∈ Q. (37)

Then, Problem (PV) can be formulated in the following abstract form.

Problem (PV1): Find u ∈ V, φ ∈ W, and θ ∈ Q such that

ü ∈ V∗, u̇ ∈ V , θ̇ ∈ Q, (38)

f ∈ ü+Au̇+ Fu+ E1φ−M1θ + ∂3j1(θ, σν , u̇) in V∗, (39)

qe ∈ Bφ− E2u− Pθ + ∂j2(φ) in W∗, (40)

θ̇ +Kθ +Nφ−M2u̇+ hc(u, θ) = Θ in Q∗, (41)

u(·, 0) = u0 , u̇(·, 0) = v0 , θ(·, 0) = θ0 in Ω, (42)

where ∂3j1(θ, s, v) denotes the partial sub-differential with respect to v of j1(θ, s, v), and
∂j2(φ) for the partial sub-differential with respect to φ of j2(φ).

We are now able to state the following existence and uniqueness result.
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Theorem 4.1 Suppose assumptions (A1)-(A8) hold. Then Problem (PV1) has at
least one solution (u, φ, θ) ∈ V×W×Q.

Proof. The proof is based on the arguments from the theory of multi-valued pseudo-
monotone operators and the fixed point theorem. It consists of two steps. First, let
ζ = (ζ1, ζ2) ∈ L2(0, T ;L2(Γ3)× V ) be a given function, we consider the mappings

j1ζ (v) :=

∫ T

0

∫
ΓC

ζ1(t) |vτ | da dt, ∀v ∈ V, (43)

⟨hc(θζ), η⟩ :=
∫
ΓC

ζ2(s)φL(θζ − θf ) · η da, ∀η ∈ Q. (44)

Then, for any given ξ ∈ L2(0, T ;L2(ΓC)× V ), we consider the intermediate problem.

Problem (PV1
ζ): Find uζ ∈ V, φζ ∈ W and θζ ∈ Q such that

üζ ∈ V′ , u̇ζ ∈ V , θ̇ζ ∈ Q′, (45)

f ∈ üζ +A u̇ζ + Fuζ + E1φζ −M1θζ + ∂j1ζ (u̇ζ) in V′, (46)

qe ∈ Bφζ − E2uζ − Pθζ + ∂j2(φζ) in W′, (47)

θ̇ζ +Kθζ +Nφζ −M2u̇ζ + hc(θζ) = Θ in Q′, (48)

uζ(·, 0) = u0, u̇ζ(·, 0) = v0, θζ(·, 0) = θ0 in Ω. (49)

Lemma 4.1 Assume (A1)-(A2), (A4)-(A5) and (A7)-(A8) hold. Then, for any given
ζ = (ζ1, ζ2) ∈ L2(0, T ;L2(ΓC)×V ), Problem (PV1

ζ) admits a unique solution (uζ , φζ , θζ).

Proof. The proof of Lemma 4.1 will be carried out by considering a sequence of
regularized approximations to problem (PVζ), and the solution of this problem is the
limit of the regularized problem. To this end, let {ψh}h>0 be a sequence of positive
convex functions of C1(Rd) which approximate the inner product | · |Rd , and satisfy for
any h > 0, the following conditions:

|∇ψh(s)| ≤ 2 , 0 ≤ ⟨∇ψh(s), s⟩ ,
∣∣∇ψh(s)− |s|

∣∣ ≤ s, ∀ s ∈ Rd. (50)

We next consider the operator Jh
ζ : V → V defined as follows:

(Jh
ζ(t)v, w)V :=

∫
ΓC

ζ1(t)∇ψh(vτ ) · wτ da, ∀ v ∈ V. (51)

We then approximate the functional j2 by a family of regularized functions Jh
2 : V → R,

depending on h > 0, given for all v ∈ V , by

Jh
2 (φ) =

∫
ΓC

√
|φ|2 + h da. (52)

The functional Jh
2 is Gateaux-differentiable and its derivative Jh

2 is defined as follows:

⟨Jh
2 φ, ξ⟩ =

∫
Γ3

φ ξ√
|φ|2 + h

da, ∀ v ∈ V. (53)
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Let Re : V → V ′ be a Riesz isomorphism, i.e., u 7→ ℓu, where ℓu(v) = ⟨u, x⟩. Next, for
each h > 0, we consider the following regularized problem.

Problem (PV1h
ζ ): Find ωh

ζ ∈ V, uhζ ∈ V, φh
ζ ∈ W and θhζ ∈ Q such that

ω̇h
ζ ∈ V′, θ̇hζ ∈ Q′, (54)

ω̇h
ζ +Aωh

ζ + Fuhζ + E1φ
h
ζ −M1θ

h
ζ + Jh

ζ ω
h
ζ = f in V′, (55)

Bφh
ζ − E2u

h
ζ − Pθhζ + Jh

2 φ
h
ζ = qe in W′, (56)

θ̇hζ +Kθhζ +Nφh
ζ −M2ω

h
ζ + hc(θ

h
ζ ) = Θ in Q′, (57)

Reu̇
h
ζ −Reω

h
ζ = 0 in V′, (58)

uhζ (·, 0) = u0 , ωh
ζ (·, 0) = v0 , θhζ (·, 0) = θ0 in Ω. (59)

Lemma 4.2 For every h > 0 and ζ ∈ L2(0, T ;L2(ΓC)× V ), Problem (PV1h
ζ ) has a

unique solution (wh
ζ , u

h
ζ , φ

h
ζ , θ

h
ζ ). Moreover, under the assumptions of Theorem 4.1, the

solution (wh
ζ , u

h
ζ , φ

h
ζ , θ

h
ζ ) of Problem (PV1h

ζ ) has the following estimation:

∥ωh
ζ (t)∥2L2(Ω)d + ∥uhζ (t)∥2V +

∫ t

0

∥ωh
ζ (s)∥2V ds+ ∥θhζ (t)∥2L2(Ω)

+

∫ t

0

∥θhζ (s)∥2Qds+ ∥φh
ζ (t)∥2W ds ≤ c, ∀ t ∈ (0, T ),

(60)

for a positive constant c which is independent of h.

Proof. To prove Lemma 4.2, we use Theorem 2.1 with F := V ×W × V × Q and
G = L2(Ω)d ×W × V × L2(Ω). We also define the following two operators defined by

B : G→ G′, BX = B


ω
φ
u
θ

 =


ω
0
θ

Re u

 , (61)

A(t, ·) : F → F ′, A(t,X) =


Aω + F u+ E1 φ−M1θ + Jhω

Bφ+ Jh
2 φ− E2 u− P θ

Kθ + hζ(θ)−Mω +Nφ

−Re ω

 . (62)

We also choose the two elements X0 ∈ G and L ∈ F given by

X0 =


v0
φ0

u0
θ0

 and L =


f
qe
Θ
0

 . (63)
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By using (61) and (63), we get that Problem (PV1h
ζ ) is equivalent to the problem below.

Find Xh
ζ = (ωh

ζ , φ
h
ζ , θ

h
ζ , u

h
ζ )

′
such that

BẊh
ζ (t) +AXh

ζ (t) = L in F
′
,

BXh
ζ (0) = BX0 in G

′
.

(64)

We will show that the operators A and B satisfy conditions of Theorem 2.1. Indeed,
from the assumptions stated in Theorem 4.1, we can easily prove that the operator
B : G → G

′
is linear, bounded, positive and symmetric and the operator A(t, ·) verifies

the conditions (1) and (2). Thus, due to Theorem 2.1, we get that problem (64) has a
unique solution Xh

ζ = (wh
ζ , φ

h
ζ , u

h
ζ , θ

h
ζ ). Consequently, Problem (PV1h

ζ ) admits a unique

solution (wh
ζ , φ

h
ζ , u

h
ζ , θ

h
ζ ) ∈ V×W×V×Q. Next, in order to verify the estimate (60), we

multiply (55) by wh
ζ to obtain

⟨ẇh
ζ , w

h
ζ ⟩+ ⟨Awh

ζ + Fuhζ + Jh
ζ w

h
ζ , w

h
ζ ⟩ − ⟨M1θ

h
ζ , w

h
ζ ⟩ = ⟨f, wh

ζ ⟩. (65)

Recalling (A1), (A2) and (65), by employing several times Cauchy’s inequality

ab ≤ ϵa2 +
1

4ϵ
b2, ∀a, b ∈ R, ϵ > 0, (66)

we find

∥wh
ζ (t)∥2L2(Ω)d + ∥uhζ (t)∥2V +

∫ t

0

∥wh
ζ (s)∥2V ds

≤ c
(
∥u0∥2V + ∥v0∥2 +

∫ t

0

(∥ζ1(s)∥2L2(ΓC) + ∥f(s)∥2L2(Ω)) ds

+

∫ t

0

∥θhζ (s)∥2Qds+
∫ t

0

∥φh
ζ (s)∥2W ds

)
, ∀t ∈ (0, T ).

(67)

Next, we let the potential equation (56) act on φh
ζ to get

⟨Bφh
ζ , w

h
ζ ⟩ − ⟨E2u

h
ζ , φ

h
ζ ⟩ − ⟨M2w

h
ζ , φ

h
ζ ⟩+ ⟨Jh

2 φ
h
ζ , φ

h
ζ ⟩ = ⟨Θ, φh

ζ ⟩.

Then, from assumptions (A1), (A2) and (53), we deduce after some manipulations that

∥φh
ζ (t)∥2W ≤ c

(
∥uhζ (t)∥2V + ∥θhζ (t)∥2L2(Ω) + ∥qe(t)∥2W

)
, ∀ t ∈ (0, T ). (68)

Next, let the energy equation (57) act on θhζ . Then we have

⟨θ̇hζ , θhζ ⟩+ ⟨Kθhζ +Nφh
ζ −M2w

h
ζ , θ

h
ζ ⟩+ ⟨hc(θhζ ), θhζ ⟩ = ⟨Θ, θhζ ⟩.

It follows from hypotheses (A1), (A2), (A4), (A5) and the monotonicity of φL that

∥θhζ (t)∥2L2(Ω) +

∫ t

0

∥θhζ (s)∥2Qds

≤ c
(
∥θ0∥2Q +

∫ t

0

∥φh
ζ (s)∥2W ds+

∫ t

0

∥wh
ζ (s)∥2V ds

+

∫ t

0

∥Θ(s)∥2
Q′ds+

∫ t

0

∥ζ2(s)∥2V ds
)
.

(69)
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Inserting the estimation (67) and (68) into (69), we find

∥θhζ (t)∥2L2(Ω) +

∫ t

0

∥θhζ (s)∥2Qds

≤ c
(
∥θ0∥2L2(Ω) + ∥u0∥2V + ∥v0∥2L2(Ω)d +

∫ t

0

∥Θ(s)∥2
Q′ds+

∫ t

0

∥qe(s)∥2W ds

+

∫ t

0

∥f(s)∥2L2(Ω)ds+

∫ t

0

∥ζ1(s)∥2L2(ΓC)ds+

∫ t

0

∥ζ2(s)∥2V ds
)
.

Thus,

∥θhζ (t)∥2L2(Ω) +

∫ t

0

∥θhζ (s)∥2Qds ≤ c. (70)

Integrate (68) over (0, t), where t ∈ [0, T ], and combine the result with (67) to obtain

∥wh
ζ (t)∥2L2(Ω)2 + ∥uhζ (t)∥2V +

∫ t

0

∥wh
ζ (s)∥2V ds+

∫ t

0

∥φh
ζ (s)∥2W ds

≤ c
(
∥u0∥2V + ∥v0∥2L2(Ω)d +

∫ t

0

∥qe(s)∥2W ds+

∫ t

0

∥ζ1(s)∥2L2(ΓC)ds

+

∫ t

0

∥f(s)∥2L2(Ω)ds+

∫ t

0

∥uhζ (s)∥2V ds
)
.

Then, Grönwall’s inequality and the inequality (70) lead to

∥uhζ (t)∥V ≤ c. (71)

Hence,

∥φh
ζ (t)∥W ≤ c. (72)

Moreover, the estimations (70), (71) and (72) complete the proof of Lemma 4.2. 2

Now, we have the ingredient which allows us to prove the existence and uniqueness
of the solution of Problem (PVζ). Indeed, due to Lemma 4.2, we have for a given set
of initial conditions {wh

0 , u
h
0 , θ

h
0}h>0 that the family of solutions {wh

ζ , φ
h
ζ , u

h
ζ , θ

h
ζ }h>0 is

bounded in V × W × V × Q. Then, from the latter result and Problem (PV h
ζ ), we get

that {ẇh
ζ , Reu̇

h
ζ , θ̇

h
ζ } is also bounded in V′ ×V′ ×Q′

. Then there exists a subsequence of
parameters {hk} such that hk → 0 as k → ∞ so that

uhk

ζ ⇀ u∗ζ weakly in V, (73)

ωhk

ζ ⇀ ω∗
ζ weakly in V, (74)

φhk

ζ ⇀ φ∗
ζ weakly in W, (75)

θhk

ζ ⇀ θ∗ζ weakly in Q, (76)

θ̇hk

ζ ⇀ θ̇∗ζ weakly in Q′, (77)

ω̇hk

ζ ⇀ ω̇∗
ζ weakly in V′, (78)

Reu̇
hk

ζ ⇀ Reu̇
∗
ζ weakly in V′. (79)
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We are going now to prove that the triplet (w∗
ζ , φ

∗
ζ , u

∗
ζ , θ

∗
ζ ) verifies (53)-(59). Indeed, by

passing to the limit as k → ∞ in the relations Jhk

ζ , Jhk
2 and hc(θ

hk

ζ ), we obtain

lim
k→∞

⟨Jhk

ζ ωhk

ζ , v − ω∗
ζ ⟩ = lim

k→∞

∫ T

0

∫
ΓC

ζ1(t)∇ψh(ωhk

ζτ ).(vτ − ω∗
ζτ ) da dt

≤ lim
k→∞

∫ T

0

∫
ΓC

|ζ1(t)|(ψh(vτ − ω∗
ζτ + ωhk

ζτ )− ψh(ω∗
ζτ )) da dt

≤ lim
k→∞

∫ T

0

∫
ΓC

|ζ1(t)|(|vτ |)− |ω∗
ζτ |)) da dt,

(80)

lim
k→∞

⟨Jhk
2 φhk

ζ , ξ − φ∗
ζ⟩ = lim

k→∞

∫
ΓC

φhk

ζ (ξ − φ∗
ζ)√

|φhk

ζ |2 + h
da

≤ lim
k→∞

∫
ΓC

|φhk

ζ | |ξ|√
|φhk

ζ |2 + h
−

φhk

ζ φ∗
ζ√

|φhk

ζ |2 + h
da ≤ j2(ξ)− j2(φ

∗
ζ),

(81)

and

lim
k→∞

⟨hc(θhk

ζ ), η⟩ = ⟨hc(u∗ζ , θ∗ζ ), η⟩. (82)

Next, due to assumptions (A1)-(A6), and conditions (73)-(79) and (80)-(82), the weak
limit (u∗ζ , φ

∗
ζ , θ

∗
ζ ) of the subsequence (u

hk

ζ , φhk

ζ , θhk

ζ ) is a solution to Problem (PV1
ζ). Fur-

thermore, to prove the uniqueness of the solution of Problem (PVζ), let (u1, φ1, θ1) ∈
V × W × Q and (u2, φ2, θ2) ∈ V × W × Q be two solutions corresponding to the same
data ζ. We substitute uζ in (46) by u1 and u2, respectively, we obtain

f ∈ ü1 +A u̇1 + Fu1 + E1φ1 −M1θ1 + ∂j1ζ (u̇1) in V′,

f ∈ ü2 +A u̇2 + Fu2 + E1φ2 −M1θ2 + ∂j1ζ (u̇2) in V′.

Let the resulting expressions act on u̇2 − u̇1 and u̇1 − u̇2, respectively, we find

⟨f, u̇2 − u̇1⟩ = ⟨ü1, u̇2 − u̇1⟩+ ⟨Au̇1, u̇2 − u̇1⟩+ ⟨Fu1, u̇2 − u̇1⟩
+ ⟨E1φ1, u̇2 − u̇1⟩ − ⟨M1θ1, u̇2 − u̇1⟩
+ ⟨Z(u̇1), u̇2 − u̇1⟩ with Z(u̇1) ∈ ∂j1ζ (u̇1) in V′,

(83)

⟨f, u̇1 − u̇2⟩ = ⟨ü2, u̇1 − u̇2⟩+ ⟨Au̇2, u̇1 − u̇2⟩+ ⟨Fu2, u̇1 − u̇2⟩
+ ⟨E1φ2, u̇1 − u̇2⟩ − ⟨M1θ2, u̇1 − u̇2⟩
+ ⟨Z(u̇2), u̇1 − u̇2⟩ with Z(u̇2) ∈ ∂j1ζ (u̇2) in V′.

(84)

On the other hand, it comes from the convexity of the functional j1ζ that

⟨Z(u̇1), u̇2 − u̇1⟩ ≤ j1ζ (u̇2)− j1ζ (u̇1) and ⟨Z(u̇2), u̇1 − u̇2⟩ ≤ j1ζ (u̇1)− j1ζ (u̇2).

Therefore, the sum of two previous relations leads to

⟨Z(u̇2)−Z(u̇1), u̇1 − u̇2⟩ ≤ 0. (85)
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Keeping in mind (85), by adding two inequalities (83) and (84), we find

⟨ü2 − ü1, u̇1 − u̇2⟩+ ⟨Au̇2 −Au̇1, u̇1 − u̇2⟩
+ ⟨Fu2 − Fu1, u̇1 − u̇2⟩+ ⟨E1φ2 − E1φ1, u̇1 − u̇2⟩
− ⟨M1θ2 −M1θ1, u̇1 − u̇2⟩ = −⟨Z(u̇2)−Z(u̇1), u̇1 − u̇2⟩ ≥ 0.

Now, by integrating the previous inequality over (0, t), we deduce∫ t

0

⟨ü1 − ü2, u̇1 − u̇2⟩ds+
∫ t

0

⟨Au̇1 −Au̇2, u̇1 − u̇2⟩ds+
∫ t

0

⟨Fu1 − Fu2, u̇1 − u̇2⟩ds

≤
∫ t

0

⟨E1φ1 − E2φ2, u̇1 − u̇2⟩ds+
∫ t

0

⟨M1θ1 −M1θ2, u̇1 − u̇2⟩ds.

Then, using the same assumptions as in Lemma 4.1, we can obtain

∥u̇1(t)− u̇2(t)∥2L2(Ω)d +

∫ t

0

∥u̇1(s)− u̇2(s)∥2V ds+ ∥u1(t)− u2(t)∥2V

≤ c
( ∫ t

0

∥φ1(s)− φ2(s)∥2W ds+

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds
)
.

(86)

Following the same tricks as above, we can also find∫ t

0

∥φ1(s)−φ2(s)∥2W ds ≤ c
( ∫ t

0

∥u1(s)−u2(s)∥2V ds+
∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω)ds
)
. (87)

Next, we replace θ1 and θ2 in the relation (48), respectively, we get

θ̇1 +Kθ1 +Nφ1 −M2u̇1 + hc(θ1) = Θ in Q′,

θ̇2 +Kθ2 +Nφ2 −M2u̇2 + hc(θ2) = Θ in Q′.

Then, by acting the obtained results on θ1 − θ2 and by subtracting them, we find

⟨θ̇1 − θ̇2, θ1 − θ2⟩+ ⟨K(θ1 − θ2), θ1 − θ2⟩
+ ⟨N(φ1 − φ2), θ1 − θ2⟩ − ⟨M2(u̇1 − u̇2), θ1 − θ2⟩ = hc(θ2)− hc(θ1).

We next integrate over (0, t), then the first integrals are estimated by∫ t

0

⟨θ̇1(s)− θ̇2(s), θ1(s)− θ2(s)⟩ ds =
1

2

∫ t

0

d ∥θ1(s)− θ2(s)∥2L2(Ω)

ds
ds

=
1

2
∥θ1(s)− θ2(s)∥2L2(Ω) −

1

2
∥θ1(0)− θ2(0)∥2L2(Ω).

For more details on the relation above, see [18, Theorem 1(2)]. The other integrals are
estimated by using Cauchy’s inequality, the properties of the operators K, N and M2,
and of the functional hc. Combining all estimates of these integrals, we obtain

∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2Q ds

≤ c
( ∫ t

0

∥φ1(s)− φ2(s)∥2W ds+

∫ t

0

∥u̇1(s)− u̇2(s)∥2V ds
)
.

(88)
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Then, we deduce that

∥θ1(t)− θ2(t)∥2L2(Ω) + ∥u1(t)− u2(t)∥2V

≤ c
( ∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds+

∫ t

0

∥u1(s)− u2(s)∥2V ds
)
.

(89)

Now Gronwall’s inequality implies that θ1 = θ2 and u1 = u2, and consequently, φ1 = φ2,
which completes the proof of Lemma 4.1. 2

Now, we introduce L : L2(0, T ;L2(ΓC)× V ) → L2(0, T ;L2(ΓC)× V ) defined by

L(ζ) := (µ(θζ) |Rσν(uζ , φζ , θζ)| ; kc(uζ,ν − g)) (90)

for all ζ = (ζ1, ζ2) ∈ L2(0, T ;L2(ΓC) × V ) and where (uζ , φζ , θζ) is the unique solution
of Problem (PVζ) corresponding to ζ. We also consider the space Y defined as follows:

Y =
{
ζ ∈ L2([0, T ], L2(ΓC)×V ) : ∥ζ∥L2([0,T ],L2(ΓC)×V ) ≤ T

√
meas(ΓC)(MµMR+Mkc

)
}
.

Then, we provide the following result that states that L has a fixed point on Y .

Lemma 4.3 The operator L has a unique fixed point ζ∗ ∈ Y .

Proof. Let ζ = (ζ1, ζ2), λ = (λ1, λ2) ∈ L2(0, T ;L2(ΓC) × V ), and let us denote by
(uζ , φζ , θζ) and (uλ, φλ, θλ) the solution of Problem (PV1

ζ) corresponding to ζ and λ,
respectively. By using the definition (90) of the operator L, we obtain

∥L(ζ)(t)− L(λ)(t)∥2L2(ΓC)×V

= ∥µ(θζ) |Rσν(uζ , φζ , θζ)| − µ(θλ) |Rσν(uλ, φλ, θλ)|∥2L2(ΓC)

+ ∥kc(uζν − g)− kc(uλν − g)∥2V .

(91)

First, it comes from hypothesis (A4)(b) that

∥kc(uζν − g)− kc(uλν − g)∥2V ≤ L2
kc
c21∥uζ − uλ∥2V . (92)

Also, by using the hypotheses (A3) and (A6), we deduce∥∥µ(θζ) |Rσν(uζ , φζ , θζ)| − µ(θλ) |Rσν(uλ, φλ, θλ)|
∥∥2
L2(Γ3)

≤M2
µL

2
R∥σν(uζ , φζ , θζ)− σν(uλ, φλ, θλ)∥2

H− 1
2 (ΓC)

+M2
RL

2
µ∥θζ − θλ∥2L2(Γ3)

.

Moreover, we know that there exists a constant cF > 0 such that∥∥σν(uζ , φζ , θζ)− σν(uλ, φλ, θλ)
∥∥
H− 1

2 (ΓC)

= sup
v∈H1/2(ΓC)

⟨σν(uζ , φζ , θζ)− σν(uλ, φλ, θλ), vν⟩L2(0,T ;H)×H−1/2(ΓC)

∥vν∥H−1/2(ΓC)

≤ cF (∥u̇ζ − u̇λ∥V + ∥uζ − uλ∥V + ∥φζ − φλ∥W + ∥θζ − θλ∥Q) .

Thus, by combining two previous inequalities, we get∥∥µ(θζ) |Rσν(uζ , φζ , θζ)| − µ(θλ) |Rσν(uλ, φλ, θλ)|
∥∥2
L2(Γ3)

≤ c∗ (M2
µL

2
R +M2

RL
2
µ)

(
∥u̇ζ − u̇λ∥2V + ∥θζ − θλ∥2Q

)
+ c

(
∥φζ − φλ∥2W + ∥θζ − θλ∥2L2(Ω) + ∥uζ − uλ∥2V

)
.

(93)
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Using relations (39), (51), and assumptions (A1), (A7), we get

∥u̇ζ(t)− u̇λ(t)∥2L2(Ω)d + ∥uζ(t)− uλ(t)∥2V +

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds

≤ c
( ∫ t

0

∥ζ1(s)− λ1(s)∥2L2(ΓC)ds+

∫ t

0

∥uζ(s)− uλ(s)∥V ds

+

∫ t

0

∥φζ(s)− φλ(s)∥2W ds
)
, ∀ t ∈ [0, T ].

(94)

From relation (40) and assumptions (A1)-(A2), we find

∥φζ(t)− φλ(t)∥2W ≤ c
(
∥uζ − uλ∥2V + ∥θζ(t)− θλ(t)∥2Q

)
, ∀ t ∈ [0, T ]. (95)

Moreover, keeping in mind (41), assumptions (A1), (A2), (A4) and (A5), we obtain

∥θζ(t)− θλ(t)∥2Q +

∫ t

0

∥θζ(s)− θλ(s)∥2Q ds

≤ c
( ∫ t

0

∥φζ(s)− φλ(s)∥2W ds+

∫ t

0

∥ζ2(s)− λ2(s)∥2V ds

+

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds
)
, ∀ t ∈ (0, T ).

(96)

We combine now the inequalities (94)-(96) to get that for all t ∈ [0, T ], we have

∥θζ(t)− θλ(t)∥2Q + ∥u̇ζ(t)− u̇λ(t)∥2V + ∥uζ(t)− uλ(t)∥2V + ∥φζ(t)− φλ(t)∥2W

+

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds+
∫ t

0

∥θζ(s)− λ(s)∥2Q ds

≤ c
( ∫ t

0

∥ζ2(s)− λ2(s)∥2V ds+
∫ t

0

∥ζ1(s)− λ1(s)∥2L2(ΓC) ds

+

∫ t

0

∥u̇ζ(s)− u̇λ(s)∥2V ds+
∫ t

0

∥θζ(s)− θλ(s)∥2Q ds+
∫ t

0

∥φζ(s)− φλ(s)∥2W ds
)
.

Moreover, by employing Gronwall’s inequality, we deduce

∥θζ(t)− θλ(t)∥2Q + ∥u̇ζ(t)− u̇λ(t)∥2V + ∥uζ(t)− uλ(t)∥2V + ∥φζ(t)− φλ(t)∥2W

+

∫ t

0

∥u̇λ(s)− u̇λ(s)∥2V +

∫ t

0

∥θζ(s)− θλ(s)∥2Q ds

≤ c
( ∫ t

0

∥ζ2(s)− λ2(s)∥2V ds+
∫ t

0

∥ζ1(s)− λ1(s)∥2L2(ΓC) ds
)
, ∀ t ∈ (0, T ).

(97)

We integrate (91) over [0, t] for a given t ∈ (0, T ), then use (92), (93) and (97) to get

∥L(ζ)(t)− L(λ)(t)∥2L2([0,T ],L2(ΓC)×V ) ≤ c ∥ζ(s)− λ(s)∥2L2([0,T ],L2(ΓC)×V ). (98)

Thus, the operator L is Lipschitz continuous on L2([0, T ], L2(ΓC)× V ). In addition, we
can easily show that the operator Λ is continuous from Y into itself. We have also Y
is a nonempty, convex closed subset of the reflexive space L2([0, T ], L2(ΓC) × V ), then



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (1) (2024) 80–98 97

Y is weakly compact. Finally, it follows from Schauder’s fixed point theorem that the
operator L admits a unique fixed point ζ∗ ∈ Y , and finally, Lemma 4.3 holds. 2

To finish the proof of Theorem 4.1, let ζ∗ ∈ Y be a fixed point L defined by (90), it is
straightforward to show that the solution (uζ∗ , φζ∗ , θζ∗) of Problem (PVζ) corresponding
to ζ∗, is also a solution of Problem (PV ) (called the weak solution of Problem (P )).
Moreover, the uniqueness of the solution to Problem (PV ) can be provided from the
uniqueness of the solution to Problem (PVζ), which ends the proof of Theorem 4.1. 2

5 Conclusion

The main contribution here is the proof of the unique solvability of a new dynamic
thermo-electro-elastic contact model, i.e., Problem (P ), which takes into account the
effects of thermal softening and frictional heating at the contact surface. So, an existence
and uniqueness result has been obtained when MµLR +MRLµ is sufficiently small. We
note here that estimating the allowed size of coefficient MµLR +MRLµ remains an open
and very interesting question.
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Abstract: The current study focuses on the regional stabilization of time delay
infinite dimensional bilinear systems evolving in a spatial domain Ω. It consists in
studying the asymptotic behavior of such a system in a subregion ω of Ω. Then we
demonstrate regional weak stabilization under weak observability conditions, while
regional strong stabilization can be achieved under the exact observability condition.
Illustrative examples and simulations are included to affirm the accuracy of the the-
oretical results.
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1 Introduction

There has been a growing interest in the study of infinite dimensional bilinear systems,
which are a type of nonlinear systems that exhibit nonlinearity as a result of the interac-
tion between the state and control. These systems are widely used in various industrial
and natural processes, including heat transfer through conduction-convection, neutron
kinetics in nuclear reactors, and dynamic heat exchanger with a controlled flow [3], among
others. Bilinear systems are also often used as simple approximations for nonlinear sys-
tems [6]. In some cases, time delay may also be present in the system variables, either
due to intrinsic delays or due to delays in the reaction of the control. This makes it
important to consider time delay when designing these systems to accurately reflect real
processes. Bilinear systems with time delay can be found in the fields such as viscoelas-
ticity, mechanics, nuclear reactions, heat flow, and neural networks, etc [9].
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The stabilization of an infinite dimensional bilinear system with time delay has been
a topic of discussion in numerous research studies: in [7], the researchers delved into the
stabilization of a category of time-delayed bilinear systems within a Hilbert space. Their
approach was rooted in the decreasing energy property of the system under examina-
tion. By employing a set of continuous controls, the researchers analyzed both weak and
strong stabilization, and established a polynomial decay rate estimate for the stabilized
state. They also tackled exponential stabilization through bounded feedback control and
provided a clear decay rate estimate for the stabilized state.

The regional stabilization of an infinite dimensional bilinear system evolving over a
spatial domain Ω ⊂ Rn (n ≥ 1) and ω being a subregion of Ω refers to the ability to sta-
bilize the system only in the region ω or where the focus is solely on the state’s behavior
within ω. This concept is crucial because stabilizing the system in a subregion is more
cost-effective than stabilizing it over the entire domain. Additionally, there are systems
that cannot be stabilized over the entire domain of evolution, but stabilization can be
achieved in specific subdomains within it (see [11]). This notion has been developed
in many works: in [13], the researchers studied the regional stabilization of an infinite
dimensional bilinear system that evolves in a spatial domain Ω with an unbounded con-
trol operator. Likewise, in [12], the researchers introduced controls that guarantee weak,
strong, and exponential regional stabilization for a particular class of bilinear systems,
as well as a control that regionally weakly stabilizes these systems with a minimal per-
formance cost. In [14], the authors investigated the regional exponential stabilization of
an infinite dimensional bilinear systems using bounded controls.
In [4], the authors presented preliminary results on the well-posedness of time-delayed
bilinear systems in a real Hilbert space. They used a decomposition technique to demon-
strate strong stabilization.

In this study, we delve into the subject of regional stabilization for infinite dimensional
bilinear systems with time delay. Then we present sufficient conditions ensuring the
regional weak and strong stabilization of such systems. The approach is a combination
of energy decay, weak and exact observability conditions, and properties of semigroups.
Furthermore, we provide application examples and simulations to support the obtained
theoretical results.

More precisely, we consider a system defined by{
ẏ(t) = Ay(t) + u(t)By(t− r), t ≥ 0,

y0 = φ ∈ C,
(1)

where A is the infinitesimal generator of a linear C0-semigroup S(t) on L2(Ω), B :
L2(Ω) −→ L2(Ω) is a linear bounded control operator and u ∈ L2([0,+∞[: R) is
the scalar-valued control. The delay is indicated by the positive constant r, and
C is a Banach space of continuous functions ψ : [−r, 0] → L2(Ω) with the norm
||ψ||C = sup−r≤θ≤0 ||ψ(θ)||.
The history function yt : [−r;∞) −→ L2(Ω) is given by yt(θ) = y(t+θ) for all θ ∈ [−r, 0].
Let us consider a non-empty open subregion ω of Ω, with a positive Lebesgue measure.
Define the restriction operator to ω by

χω : L2(Ω) −→ L2(ω)

y 7−→ y|ω,
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and χ∗
ω : L2(ω) −→ L2(Ω) is the adjoint operator of χω given by

χ∗
ωy(x) =

{
y(x) if x ∈ ω,

0 else x ∈ Ω\ω.

Let us recall that system (1) is said to be regionally weakly stabilizable if there exists a
feedback control u such that for any initial condition φ ∈ C, the corresponding solution
y(t) of system (1) is global and verifies ∀ϕ ∈ L2(ω),

〈
χωy(t), ϕ

〉
L2(ω)

−→ 0 as t −→ ∞,

and regionally strongly stabilizable if there exists a feedback control u such that for any
initial condition φ ∈ C, the corresponding solution y(t) of system (1) is global and verifies
||χωy(t)||L2(ω) −→ 0 as t −→ ∞.

The paper is structured as follows. Section 2 focuses on the regional weak stabilization
of (1). Section 3 is dedicated to the regional strong stabilization of (1). Multiple examples
are given in Section 4 as applications. The final Sections 5 and 6 present illustrative
simulations and conclusions.

2 Regional Weak Stabilization

This section gives sufficient conditions for the regional weak stabilization of (1).

Theorem 2.1 Assume that A generates a semigroup (S(t))t≥0 of contractions on
L2(Ω), and B is a compact operator. If the conditions

1.
〈
χ∗
ωχωAϕ, ϕ

〉
≤ 0,∀ϕ ∈ D(A),

2.
〈
χ∗
ωχωBy(t− r), y(t)

〉〈
By(t− r), y(t)

〉
≥ 0, ∀y ∈ L2(Ω),

3.
〈
χ∗
ωχωBS(t− r)y(t), S(t)y(t)

〉
= 0, ∀t ≥ r =⇒ χωy(t) = 0

hold, then the control
u(t) = −

〈
χ∗
ωχωBy(t− r), y(t)

〉
(2)

regionally weakly stabilizes the system (1).

Proof. Since φ ∈ C, the function t 7−→∥ χωy(t) ∥2L2(ω) is continuously differentiable

(see [10]). Then

1

2

d

dt
||χωy(t)||2L2(ω) =

〈
χ∗
ωχωAy(t), y(t)

〉
+ u(t)

〈
χ∗
ωχωBy(t− r), y(t)

〉
.

Thanks to condition (1) of Theorem 2.1, it follows that

1

2

d

dt
||χωy(t)||2L2(ω) ≤ u(t)

〈
χ∗
ωχωBy(t− r), y(t)

〉
. (3)

In order to make the function
1

2

d

dt
||χωy(t)||2L2(ω) nonincreasing, we take the control

u(t) = −
〈
χ∗
ωχωBy(t− r), y(t)

〉
. (4)

The resulting closed-loop system becomes{
ẏ(t) = Ay(t) + f(yt), t ≥ 0,

y0 = φ ∈ C,
(5)
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where f(ψ) = −
〈
χ∗
ωχωBψ(−r), ψ(0)

〉
Bψ(−r), ∀ψ ∈ C. The function f is locally Lips-

chitz, indeed, for all ψ1, ψ2 ∈ C, with ||ψ1||C ≤ R and ||ψ2||C ≤ R, we have

||f(ψ1)− f(ψ2)|| ≤M ||ψ1 − ψ2||C ,

where M = ||χω||2L2(ω)||B||2(||ψ1||2C + ||ψ1||C ||ψ2||C + ||ψ2||2C). Then the system (5) pos-

sesses a unique mild solution y ∈ C([−r, tmax[;H) expressed asy(t) = S(t)φ(0) +

∫ t

0

S(t− s)f(ys)ds, t ∈ [0, tmax[,

y0 = φ ∈ C.
(6)

Since A generates a semigroup of contractions, we have

d

dt
||y(t)||2 ≤ −2

〈
χ∗
ωχωBy(t− r), y(t)

〉〈
By(t− r), y(t)

〉
. (7)

By integrating the inequality (7), for all t ≥ 0, we get

||y(t)||2 − ||y(0)||2 ≤ −2

∫ t

0

〈
χ∗
ωχωBy(s− r), y(s)

〉〈
By(s− r), y(s)

〉
ds.

Using condition (2) of Theorem 2.1, we obtain

||y(t)|| ≤ ||φ||C , t ≥ −r. (8)

Therefore, the system (1) possesses a unique global solution y ∈ C([−r,∞);H) (see
Theorem 2.6 in [10]).

By using (3) together with the control (2), we get

d

dt
||χωy(t)||2L2(ω) ≤ −2|

〈
χ∗
ωχωBy(t− r), y(t)

〉
|2. (9)

By integrating the inequality (9) over the interval [0, t], we get

||χωy(t)||2L2(ω) − ||χωy(0)||2L2(ω) ≤ −2

∫ t

0

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2 ds. (10)

From (6), we have

y(t)− S(t)φ(0) = −
∫ t

0

S(t− s)
〈
χ∗
ωχωBy(s− r), y(s)

〉
By(s− r)ds. (11)

For T > r fixed, using (8), (11), Schwartz’s inequality and the fact ||S(t)|| ≤ 1, ∀t ≥ 0,
we get

||y(t)− S(t)φ(0)|| ≤ ||B||||φ||C

(
(T − r)

∫ T

r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

) 1
2

, ∀t ∈ [r, T ].

(12)
For all φ ∈ C and t ≥ 0, we have

|
〈
χ∗
ωχωBS(t−r)φ(0), S(t)φ(0)

〉
| ≤ |

〈
χ∗
ωχωBS(t− r)φ(0)− χ∗

ωχωBy(t− r), S(t)φ(0)
〉
|

+|
〈
χ∗
ωχωBy(t− r), y(t)− S(t)φ(0)

〉
|

+|
〈
χ∗
ωχωBy(t− r), y(t)

〉
|.

(13)
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By using (13), and taking into account that both B and χω are bounded operators, we
obtain

|
〈
χ∗
ωχωBS(t− r)φ(0), S(t)φ(0)

〉
| ≤ ||χω||2L2(ω)||B|| ||y(t− r)− S(t− r)φ(0)|| ||φ||C

+||χω||2L2(ω)||B|| ||y(t)− S(t)φ(0)|| ||φ||C
+|
〈
χ∗
ωχωBy(t− r), y(t)

〉
|.

(14)
From (11), (12), and Schwartz’s inequality, we have

||y(t− r)− S(t− r)φ(0)|| ≤

||B||||φ||C (T − r)
1
2

(∫ T

r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

) 1
2

, ∀t ∈ [r, T ].
(15)

Replacing φ(0) by y(t) in (12) and (14), we get

|
〈
χ∗
ωχωBS(t− r)y(t), S(t)y(t)

〉
| ≤ N(T − r)

1
2

(∫ T

r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2 ds

) 1
2

+|
〈
χ∗
ωχωBy(t− r), y(t)

〉
|,

(16)
where N = 2||χω||2L2(ω)||B||2||φ||2

C
.

By integrating this relation over the interval [r, T ] and applying Schwartz’s inequality,
we get ∫ T

r

|
〈
χ∗
ωχωBS(s− r)y(s), S(s)y(s)

〉
|ds ≤

(N + 1)(T − r)
1
2

(∫ t+T

t+r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

) 1
2

.

(17)

Thus, as t −→ +∞,(∫ T

r

|
〈
χ∗
ωχωBS(s− r)y(s), S(s)y(s)

〉
|ds

)2

= O

(∫ t+T

t+r

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2ds

)
.

(18)
Let us consider the nonlinear semi-group Γ(t)φ(0) := y(t) and let (tn)n≥0 be a sequence
of real numbers such that tn −→ +∞ as n −→ +∞.

From (8), Γ(t)φ(0) is bounded in L2(Ω), and since L2(Ω) is reflexive, there exists a
subsequence (tϕ(n)) of (tn) such that Γ(tϕ(n))φ(0)⇀ ψ as n −→ +∞.

Since B is compact and χω continuous, we have

lim
n 7−→+∞

〈
χ∗
ωχωBS(t− r)Γ(tϕ(n))φ(0),S(t)Γ(tϕ(n))φ(0)

〉
=
〈
χ∗
ωχωBS(t− r)ψ, S(t)ψ

〉
.

For all n ≥ 0, we set

Λn(tϕ(n)) :=

∫ tϕ(n)+T

tϕ(n)+r

|
〈
χ∗
ωχωBΓ(s− r)φ(0),Γ(s)φ(0)

〉
|2ds.

Using (10), we obtain∫ t

0

|
〈
χ∗
ωχωBy(s− r), y(s)

〉
|2 ds ≤ 1

2
||χωy(0)||2Y ,
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which gives

∫ t

0

|
〈
χ∗
ωχωBy(s − r), y(s)

〉
|2 ds < +∞. Then ∀t ≥ 0, Λn(t) −→ 0 as

n −→ +∞.
By replacing y(t) by Γ(t)φ(0) and y(t− r) by Γ(t− r)φ(0) in (17), we have∫ T

r

|
〈
χ∗
ωχωBS(s− r)Γ(s)φ(0), S(s)Γ(s)φ(0)

〉
|ds ≤ (N + 1)(T − r)

1
2

√
Λn(t).

Since Λn(tϕ(n)) −→ 0 as n −→ +∞, we get

lim
n 7−→+∞

∫ T

r

|
〈
χ∗
ωχωBS(s− r)Γ(tϕ(n))φ(0), S(s)Γ(tϕ(n))φ(0)

〉
|ds = 0.

Then, using the dominated convergence theorem, we have∫ T

r

|
〈
χ∗
ωχωBS(s− r)ψ,S(s)ψ

〉
|ds = 0.

It follows that 〈
χ∗
ωχωBS(s− r)ψ, S(s)ψ

〉
= 0, ∀s ∈ [0, t].

Using condition (3) of Theorem 2.1, we deduce that

χωΓ(tϕ(n))φ(0)⇀ 0 as n −→ +∞. (19)

On the other hand, it is clear that (19) holds for each subsequence (tϕ(n)) of (tn), and
χωΓ(tϕ(n))φ(0) weakly converges in L2(Ω). This implies that ∀ψ ∈ L2(Ω), we have〈
χωΓ(tn)φ(0), ψ

〉
−→ 0 as n −→ +∞ and hence χωΓ(t)φ(0)⇀ 0 as t −→ +∞.

3 Regional Strong Stabilization

The following results provide conditions for the regional strong stabilization of the system
(1).

Theorem 3.1 Assume that A generates a semiproup (S(t))t≥0 of contractions on
L2(Ω) and B is a bounded linear operator. If the conditions (1) and (2) of Theorem 2.1
hold, and there exist T , δ > 0 such that the inequality∫ T

r

|
〈
χ∗
ωχωBS(s− r)ψ, S(s)ψ

〉
|ds ≥ δ(r)||χωψ||2L2(ω), ∀ψ ∈ L2(Ω), (20)

holds, then the control defined in (2) regionally strongly stabilizes the system (1).

Proof. Let T ≥ r be such that (20) is satisfied. Using (10) allows

||χωy(kT )||2L2(ω)−||χωy((k+1)T )||2L2(ω) ≥ 2

∫ T (k+1)

kT

|
〈
χ∗
ωχωBy(s−r), y(s)

〉
|2ds, k ≥ 0.

From (18) and (20), we have

||χωy(kT )||2L2(ω) − ||χωy((k + 1)T )||2L2(ω) ≥ α||χωy(kT )||4L2(ω), (21)
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where α =
2δ(r)2

(N + 1)2(T − r)
. Taking pk = ||χωy(kT )||2L2(ω), the inequality (21) can be

expressed as follows:
βp2k + pk+1 ≤ pk, ∀k ≥ 0.

As pk+1 ≤ pk, we get βp2k+1 + pk+1 ≤ pk, ∀k ≥ 0.

Using Lemma 5.2 from [1], we have pk ≤ M

k + 1
for all k ≥ 0. As ||χωy(t)||L2(ω)

decreases, we conclude the estimate

||χωy(t)||L2(ω) = O

(
1√
t

)
as t −→ +∞,

which proves the regional strong stabilization of the system (1).

4 Applications

This section presents illustrative examples with respect to regional stabilization.

Example 4.1 Let us consider the system defined on Ω =]0,+∞) by
∂y(t, x)

∂t
= −∂y(t, x)

∂x
+ u(t)By(t− 1, x), x ∈ Ω, t ≥ 0,

y(t, x) = t sin(πx), x ∈ Ω, t ∈ [−1, 0],
(22)

where u ∈ L2([0,+∞[: R), By(.) =
∫
ω

y(x)dx1ω(.) for ω ⊂ Ω.

Let Ay = −∂y
∂x

, with the domain D(A) = {y ∈ H1(Ω)| y(0) = 0, y(x) −→ 0 as x −→
+∞}, the operator A generates a semigroup of contractions

S(t)y =

{
y(x− t) if x ≥ t

0 if x < t.

Let ω =]0, 1[ be a subregion of Ω. For all y ∈ D(A), we have

〈
χ∗
ωχωAy, y

〉
= −

∫ 1

0

y
′
(x)y(x)dx = −y

2(1)

2
≤ 0.

Then condition (1) of Theorem 2.1 is verified. The condition (2) of Theorem 2.1 is
satisfied since

〈
χ∗
ωχωBy(t− 1), y(t)

〉〈
By(t− 1), y(t)

〉
=

∫ 1

0

By(t− 1)y(t)dx

∫
Ω

By(t− 1)y(t)dx

=

∫ 1

0

(
By(t− 1)y(t)

)2
dx ≥ 0.

The operator B is compact and verifies

〈
χ∗
ωχωBS(t− 1)y, S(t)y

〉
=

(∫ 1−t

0

y(x)dx

)2

.
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Therefore 〈
χ∗
ωχωBS(t− 1)y, S(t)y

〉
= 0, ∀t ≥ 0 =⇒ χωy = 0.

Then the condition (3) of Theorem 2.1 holds.

We deduce that the control

u(t) = −
∫ 1

0

y(t− 1, x)y(t, x)dx

regionally weakly stabilizes the system (22).

Example 4.2 On Ω =]0, 1[, let us consider the following system:
∂y(t, x)

∂t
= −i∆y(t, x) + u(t)y(t− 2, x), x ∈ Ω, t ≥ 0,

y(t, 0) = y(t, 1) = 0, x ∈ ∂Ω, t ≥ 0,

y(t, x) = tx(1− x), x ∈ Ω, t ∈ [−2; 0] ,

(23)

where u ∈ L2([0,+∞[: R) and B = I.

Let ω be a subregion of Ω that verifies the geometric control condition (GCC) (see [2]).
The operator A = −i∆ (i ∈ C) with the domain D(A) = H2(Ω) ∩ H1

0 (Ω) generates a
semigroup of isometry on L2(Ω).

We have Re(
〈
χ∗
ωχωAy, y

〉
) = 0, ∀y ∈ D((A)). Then the condition (1) of Theorem

2.1 is satisfied. Since the operator B is the identity, the condition (2) of Theorem 2.1 is
satisfied. Indeed,

〈
χ∗
ωχωBy(t− 2), y(t)

〉〈
By(t− 2), y(t)

〉
=

∫
ω

y(t− 2)y(t)dx

∫
Ω

y(t− 2)y(t)dx

=

∫
ω

∫
Ω

(
y(t− 2)y(t)

)2
dx ≥ 0.

For all ψ ∈ L2(Ω), we obtain
〈
χ∗
ωχωBS(t− 2)ψ, S(t)ψ

〉
=
〈
S(t− 2)ψ, S(t)ψ

〉
L2(ω)

.

Integrating this inequality, we get∫ T

2

〈
χ∗
ωχωBS(t− 2)ψ, S(t)ψ

〉
dt ≥

∫ T

2

〈
S(t− 2)ψ, S(t)ψ

〉
L2(ω)

dt.

Since the subregion ω verifies GCC, there exist α, T > 0 such that the inequality∫ T

r

〈
χ∗
ωχωBS(t− 2)ψ, S(t)ψ

〉
dt ≥ α||ψ||2 ≥ α||χωψ||2L2(ω)

holds (see [2]). We deduce that the control

u(t) = −
∫
ω

y(t− 2, x)y(t, x)dx

regionally strongly stabilizes the system (23).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (1) (2024) 99–110 107

5 Algorithm and Simulations

The algorithm for the computation of the stabilizing control is as follows.

Algorithm 5.1 Step 1: Initial data.
The information required includes the evolution domain Ω, a time discretization (ti),
initial state y0, delay r, initial control u0, and desired precision ε.
Step 2 : Calculating the Control.
Using formula (2), calculate the control to get u(ti).
Step 3 : Finding the State.
Solve system (24) using the explicit finite difference method to obtain the state y(ti+1).
Step 4 : Checking the Accuracy.
Proceed to Step 2 again by incrementing i if ∥ y(ti) ∥> ε.

For simulation purposes, we examine the transport equation, which is defined on
Ω =]0,+∞) by

∂y(x, t)

∂t
= −0.01

∂y(x, t)

∂x
+ u(t)By(x, t− r), x ∈ Ω, t ≥ 0,

y(x, t) = t sin(πx), x ∈ Ω, t ∈ [−r, 0],
(24)

where u ∈ L2([0,+∞[: R), By(.) =
∫
ω

y(x)dx1ω(.) for ω ⊂ Ω.

Consider the subregion ω =]0, 4[. The control

u(t) = −
∫
ω

y(x, t− r)y(x, t)dx (25)

regionally weakly stabilizes (24) on ω.
We take the delay r = 1, and applying the above algorithm with ε = 10−4, we have

the following figures.
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Figure 1: Stabilization on ω.
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Figure 2: The control function.

Figure 1 shows the stabilization of the state on ω with the error equal to 0.1725∗10−4.
Figure 2 shows the decay of the system energy.

For r = 2, we get Figure 4 which shows that system (24) is still stabilized on the
subregion ω.
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Figure 3: The energy decay.
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Figure 4: Stabilization on ω.
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Figure 5: The control function.
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Figure 6: The energy decay.

Remark 5.1 The control (25) only stabilizes the state within the subregion ω. Yet,
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if condition (2) outlined in Theorem 2.1 is satisfied, the state remains bounded even in
the residual region Ω\ω.

Now we consider system (24) with r = 10. Applying the previous algorithm with
control (25), we obtain Figures 7, 9 which show the instability of system (24) over the
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Figure 7: Instability on ω.
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Figure 8: The control function.
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Figure 9: The energy growth.

subregion ω.

Remark 5.2 The stabilization on ω is obtained for low delay, and when the delay
increases, the system (24) becomes unstable on ω.

6 Conclusion

This study examines the regional stabilization of an infinite dimensional delayed bilinear
system. It offers sufficient conditions for weak and strong stabilization. The approach is
a combination of energy decay, weak and exact observability conditions, and properties of
semigroups. Furthermore, we provide examples and illustrations to support the obtained
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theoretical results. At the same time, there are still some unanswered questions such as
the application of these results to delayed semilinear systems, these issues are currently
under investigation and will be dealt with in a future paper.
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