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theorems. Furthermore, an example is presented to illustrate one of the main results.
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1 Introduction

Fractional calculus is an important branch in mathematical analysis, currently being
addressed by many researchers in various fields of science and engineering such as physics,
chemistry, biology, economics, control theory, and biophysics, etc. For more details,
see [15, 19, 22, 23, 27]. Recently, considerable attention has been given to the existence
of solutions to the boundary value problems for fractional differential equations. See for
example, the papers of Benchohra et al. [4, 10,11] and references therein.

In 1910, Jackson [16,17], the first researcher to develop q-difference calculus or quan-
tum calculus in a systematic way, introduced the notions of the q-integral and some
classical concepts.

Combining fractional calculus and q-calculus, we obtain fractional q-difference cal-
culus. This generalizes q-calculus by defining the q-derivatives and q-integrals in an
arbitrary order. The fractional q-difference calculus had its origin in the end of the
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sixties with the works of Al-Salam [7] and Agarwal [3]. For an extended book on the
subject, we suggest to the reader the recent book [9]. Since then, there has appeared
much work on the theory of fractional q-difference calculus and fractional q-difference
equations, see [8, 24,25] for example.

Moreover, fractional q-difference equations have wide applications in several fields
such as engineering, economics, chemistry, physics, and so on. So, the boundary value
problems for fractional q-difference equations involving the Caputo fractional q-derivative
have become of importance and the existence of their solutions has been studied by a
great number of researchers, see the references [1, 2, 5, 6, 26].

In this paper, motivated by the works of Benchohra et al. [11] and Benhamida et
al. [12], we wish to discuss the existence of solutions of the boundary value problem for
fractional q-difference equations of the form

(CDα
q y)(t) = f(t, y(t)), for a.e. t ∈ J = [0, T ], 0 < α ≤ 1, (1)

ay(0) + by(T ) = c, (2)

where T > 0, q ∈ (0, 1), CDα
q is the Caputo fractional q-difference derivative of order

0 < α ≤ 1, f : [0, T ]× R → R is a given function and a, b and c are real constants such
that a+ b ̸= 0.

We give three existence results, one based on Banach’s fixed point theorem, another
based on Schaefer’s fixed point theorem and the third based on Leray-Schauder nonlinear
alternative theorem. Finally, we present an example.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be
used in the remainder of this paper.

Let T > 0 and define J := [0, T ]. Consider the Banach space C(J,R) of continuous
functions from J into R, with the norm

∥y∥∞ = sup{|y(t)| : 0 ≤ t ≤ T}.

Let L1(J,R) denote the Banach space of measurable functions y : J → R which are
Lebesgue integrable, with the norm

∥y∥L1 =

∫
J

|y(t)|dt.

Now, we recall some definitions and properties of the fractional q-calculus [13,18].
For a ∈ R and 0 < q < 1, we set

[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)(n) is expressed by

(a− b)(0) = 1, (a− b)(n) =

n−1∏
k=0

(a− bqk), a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aα
∞∏
k=0

(
a− bqk

a− bqk+α

)
, a, b, α ∈ R.

Note that if b = 0, then a(α) = aα.
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Definition 2.1 [18] The q-gamma function is defined by

Γq(α) =
(1− q)(α−1)

(1− q)α−1
, α ∈ R− {0,−1,−2, . . .}.

Notice that the q-gamma function satisfies Γq(α+ 1) = [α]qΓq(α).

Definition 2.2 [18] The q-derivative of order n ∈ N of a function f : J → R, is
defined by (D0

qf)(t) = f(t),

(Dqf)(t) = (D1
qf)(t) =

f(t)− f(qt)

(1− q)t
, t ̸= 0, (Dqf)(0) = lim

t→0
(Dqf)(t),

and
(Dn

q f)(t) = (D1
qD

n−1
q f)(t), t ∈ J, n ∈ {1, 2, . . .}.

Set Jt := {tqn : n ∈ N} ∪ {0}.

Definition 2.3 [18] The q-integral of a function f : Jt → R, is defined by

(Iqf)(t) =

∫ t

0

f(s)dqs =

∞∑
n=0

t(1− q)qnf(tqn),

provided that the series converges.

We note that (DqIqf)(t) = f(t), while if f is continuous at 0, then

(IqDqf)(t) = f(t)− f(0).

Definition 2.4 [3] The Riemann-Liouville fractional q-integral of order α ≥ 0 of a
function f : J → R is defined by (I0q f)(t) = f(t), and

(Iαq f)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s)dqs, t ∈ J.

Note that for α = 1, we have (I1q f)(t) = (Iqf)(t).

Lemma 2.1 [25] For α ≥ 0 and β ∈ (−1,+∞), we have

(Iαq (t− a)(β))(t) =
Γq(β + 1)

Γq(α+ β + 1)
(t− a)(α+β), 0 < a < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(α+ 1)
t(α).

Definition 2.5 [24] The Riemann-Liouville fractional q-derivative of order α ≥ 0 of
a function f : J → R is defined by (D0

qf)(t) = f(t), and

(Dα
q f)(t) = (D[α]

q I [α]−α
q f)(t), t ∈ J,

where [α] is the integer part of α.
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Definition 2.6 [24] The Caputo fractional q-derivative of order α ≥ 0 of a function
f : J → R is defined by (D0

qf)(t) = f(t), and

(CDα
q f)(t) = (I [α]−α

q D[α]
q f)(t), t ∈ J,

where [α] is the integer part of α.

Lemma 2.2 [24] Let α, β ≥ 0 and let f be a function defined on J . Then the
following identities hold:

(i) (Iαq I
β
q f)(t) = (Iα+β

q f)(t),

(ii) (Dα
q I

α
q f)(t) = f(t).

Lemma 2.3 [24] Let α ≥ 0 and let f be a function defined on J . Then the following
equality holds:

(Iαq
CDα

q f)(t) = f(t)−
[α]−1∑
k=0

tk

Γq(k + 1)
(Dk

q f)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q f)(t) = f(t)− f(0).

Next, we offer a variety of fixed point theorems.

Theorem 2.1 (Banach contraction principle) [14]
Let C be a non-empty closed subset of a Banach space X, then any contraction mapping
H of C into itself has a unique fixed point.

Theorem 2.2 (Schaefer) [28] Let X be a Banach space and H : X → X be a
completely continuous operator. If the set

E(H) := {y ∈ X : y = λH(y), for λ ∈ (0, 1)}

is bounded, then H has a fixed point.

Theorem 2.3 (Nonlinear alternative of Leray-Schauder) [14] Let X be a Banach
space and C be a closed, convex subset of X. Let U be an open subset of C with 0 ∈ U
and H : U → C be a continuous and compact operator. Then either

(a) H has fixed points, or

(b) There exist y ∈ ∂U and λ ∈ (0, 1) with y = λH(y).

3 Main Results

Let us start by defining what we mean by a solution of the problem (1)-(2).

Definition 3.1 A function y ∈ C(J,R) is said to be a solution of the problem (1)-
(2) if y satisfies the equation (CDα

q y)(t) = f(t, y(t)) on J , and satisfies the condition
ay(0) + by(T ) = c.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (2) (2024) 111–122 115

For the existence of solutions to the problem (1)-(2), we need the following auxiliary
lemma.

Lemma 3.1 Let h : J → R be continuous, the solution of the boundary value problem

(CDα
q y)(t) = h(t), t ∈ J = [0, T ], 0 < α ≤ 1, (3)

ay(0) + by(T ) = c, (4)

is given by

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs−

b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
h(s)dqs+

c

a+ b
. (5)

Proof. Applying the Riemann-Liouville fractional q-integral of order α to both sides
of equation (3), and by using Lemma 2.3, we have

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs+ c0. (6)

Using the boundary condition of the problem in (4), we obtain

ay(0) + by(T ) = ac0 + b(Iαq h(T ) + c0) = c.

So

c0 =
c

a+ b
− b

a+ b
Iαq h(T ).

Finally, by substitution of c0 into (6), we give

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs−

b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
h(s)dqs+

c

a+ b
.

The proof is completed. 2

In the following subsections we prove the existence and uniqueness results of the
problem (1)-(2) by using a variety of fixed point theorems.

We consider the following hypotheses:

(H1) The function f : [0, T ]× R → R is continuous.

(H2) There exists a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y|, for each t ∈ J and each x, y ∈ R.

(H3) There exists a constant M > 0 such that

|f(t, x)| ≤M, for each t ∈ J and each x ∈ R.

The first result is based on the Banach contraction principle theorem (Theorem 2.1).

Theorem 3.1 Assume that the hypothesis (H2) is satisfied. If(
1 +

|b|
|a+ b|

)
LT (α)

Γq(α+ 1)
< 1, (7)

then the problem (1)-(2) has a unique solution on [0, T ].
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Proof. Transform the problem (1)-(2) into a fixed point problem. Consider the
operator

H : C(J,R) −→ C(J,R)

defined by

(Hy)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, y(s))dqs

− b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
f(s, y(s))dqs+

c

a+ b
. (8)

By Lemma 3.1, the fixed points of H are the solutions of the problem (1)-(2). We shall
prove that H is a contraction mapping on C(J,R).

For x, y ∈ C(J,R) and for each t ∈ J = [0, T ], we have

|(Hx)(t)− (Hy)(t)| =

∣∣∣∣∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, x(s))− f(s, y(s))) dqs

− b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
(f(s, x(s))− f(s, y(s))) dqs

∣∣∣∣∣ .
Therefore, by (H2), we obtain

|(Hx)(t)− (Hy)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, x(s))− f(s, y(s))| dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, x(s))− f(s, y(s))| dqs,

≤ L

∫ t

0

(t− qs)(α−1)

Γq(α)
|x(s)− y(s)| dqs

+
L|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|x(s)− y(s)| dqs.

Hence

∥H(x)−H(y)∥∞ ≤
(
1 +

|b|
|a+ b|

)
LT (α)

Γq(α+ 1)
∥x− y∥∞.

By (7), H is a contraction, and by the Banach contraction principle theorem, we deduce
that H has a unique fixed point, which is the unique solution of the problem (1)-(2). 2
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The second result is based on Schaefer’s fixed point theorem (Theorem 2.2).

Theorem 3.2 Assume that the hypotheses (H1) and (H3) hold. Then the problem
(1)-(2) has at least one solution on [0, T ].

Proof. We shall use Schaefer’s fixed point theorem to prove that H defined by (8)
has a fixed point.
The proof will be given in several steps.

Step 1: H is continuous.
Let {yn}n∈N be a sequence such that yn → y in C(J,R). Then, for each t ∈ J , we

have

|(Hyn)(t)− (Hy)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, yn(s))− f(s, y(s))| dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, yn(s))− f(s, y(s))| dqs.

Hence, for each t ∈ J , we find

∥H(yn)−H(y)∥∞ ≤
(
1 +

|b|
|a+ b|

)
T (α)

Γq(α+ 1)
∥f(., yn(.))− f(., y(.))∥∞.

Since f is continuous, we have

∥H(yn)−H(y)∥∞ → 0 as n→ ∞.

Consequently, H is continuous on C(J,R).
Step 2: H maps bounded sets into bounded sets in C(J,R).
Indeed, it is enough to show that for any r > 0, there exists a positive constant R

such that for each y ∈ Br = {y ∈ C(J,R) : ∥y∥∞ ≤ r}, we have ∥H(y)∥∞ ≤ R.
Let y ∈ Br. Then, for each t ∈ J , we have

|(Hy)(t)| =

∣∣∣∣ ∫ t

0

(t−qs)(α−1)

Γq(α)
f(s, y(s))dqs−

b

a+b

∫ T

0

(T − qs)(α−1)

Γq(α)
f(s, y(s))dqs+

c

a+b

∣∣∣∣.
By (H3), we obtain

|(Hy)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, y(s))|dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, y(s))|dqs+

|c|
|a+ b|

,

≤
(
1 +

|b|
|a+ b|

)
MT (α)

Γq(α+ 1)
+

|c|
|a+ b|

.

Hence

∥H(y)∥∞ ≤
(
1 +

|b|
|a+ b|

)
MT (α)

Γq(α+ 1)
+

|c|
|a+ b|

:= R.

Consequently, H is uniformly bounded on Br.
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Step 3: H maps bounded sets into equicontinuous sets of C(J,R).
Let t1, t2 ∈ J, t1 < t2 and let Br be a bounded set of C(J,R) as in Step 2. Let

y ∈ Br, then

|(Hy)(t2)− (Hy)(t1)| =

∣∣∣∣ ∫ t2

0

(t2 − qs)(α−1)

Γq(α)
f(s, y(s))dqs

−
∫ t1

0

(t1 − qs)(α−1)

Γq(α)
f(s, y(s))dqs

∣∣∣∣,
≤

∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
Γq(α)

|f(s, y(s))|dqs

+

∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
|f(s, y(s))|dqs.

By (H3), we get

|(Hy)(t2)− (Hy)(t1)| ≤ M

Γq(α)

∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
dqs

+
M

Γq(α)

∫ t2

t1

(t2 − qs)(α−1)dqs.

Thus

∥(Hy)(t2)− (Hy)(t1)∥∞ ≤ M

Γq(α+ 1)

(
t
(α)
2 − t

(α)
1

)
.

As t1 → t2, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1, 2 and 3, together with the Arzela-Ascoli theorem, we

can conclude that H is completely continuous.
Step 4: A priori bound.
Now, we prove that the set Ω = {y ∈ C(J,R) : y = λH(y), 0 < λ < 1} is bounded.

Let y ∈ Ω. Thus, for each t ∈ J , we have

y(t) = λ(Hy)(t),

= λ

(∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, y(s))dqs

− b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
f(s, y(s))dqs+

c

a+ b

)
.

Then, by (H3) (as in Step 2), it follows that, for each t ∈ J , we get

∥y(t)∥∞ ≤
(
1 +

|b|
|a+ b|

)
MT (α)

Γq(α+ 1)
+

|c|
|a+ b|

.

Consequently, ∥y(t)∥∞ ≤ R <∞, the set Ω is bounded.
As a consequence of Schaefer’s fixed point theorem, we deduce that H has a fixed

point which is a solution of the problem (1)-(2). 2



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (2) (2024) 111–122 119

The third result is based on the Leray-Schauder nonlinear alternative theorem (The-
orem 2.3).

Theorem 3.3 Assume that (H1) holds and the following hypotheses are satisfied:

(H4) There exist ϕf ∈ L1(J,R+) and ψ : [0,∞) → (0,∞) are continuous and nonde-
creasing such that

|f(t, y)| ≤ ϕf (t)ψ(|y|) for each t ∈ J and each y ∈ R.

(H5) There exists a number ν > 0 such that

ν(
1 + |b|

|a+b|

)
ψ(ν)(Iαq ϕf )(T ) +

|c|
|a+b|

> 1.

Then the problem (1)-(2) has at least one solution on [0, T ].

Proof. We shall use the Leray-Schauder theorem to prove that H defined by (8) has
a fixed point. As shown in Theorem 3.2, we see that the operator H is continuous and
completely continuous.

Let y ∈ C(J,R) such that for each t ∈ [0, T ] , we have y(t) = λ(Hy)(t) for λ ∈ (0, 1).
Then, from (H4) and for every t ∈ J , we give

|y(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, y(s))|dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, y(s))|dqs+

|c|
|a+ b|

,

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
ϕf (s)ψ(|y|)dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
ϕf (s)ψ(|y|)dqs+

|c|
|a+ b|

.

Thus

∥y∥∞ ≤
(
1 +

|b|
|a+ b|

)
ψ(∥y∥∞)(Iαq ϕf )(T ) +

|c|
|a+ b|

.

Hence

∥y∥∞(
1 + |b|

|a+b|

)
ψ(∥y∥∞)(Iαq ϕf )(T ) +

|c|
|a+b|

≤ 1.

Then, by condition (H5), there exists ν such that ∥y∥∞ ̸= ν. Let us set

U = {y ∈ C(J,R) : ∥y∥∞ < ν} .

The operator H : U → C(J,R) is completely continuous. From the choice of U , there
is no y ∈ ∂U such that y = λH(y), for some λ ∈ (0, 1). As a result, by the nonlinear
alternative of Leray-Schauder type, H has a fixed point y ∈ U , which is a solution of the
problem (1)-(2). The proof is completed. 2
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4 Example

Consider the boundary value problem for fractional 1
3 -difference equations

(CD
1
2
1
3

y)(t) =
e−t2y(t)

(6 + t)(1 + y(t))
, t ∈ J = [0, 1], 0 < α ≤ 1, (9)

y(0) + y(1) = 0, (10)

where α = 1
2 , q =

1
3 , a = 1, b = 1, c = 0, T = 1, and

f(t, y) =
e−t2y

(6 + t)(1 + y)
, (t, y) ∈ J × [0,∞).

Let x, y ∈ [0,∞) and t ∈ J . Then we have

|f(t, x)− f(t, y)| =

∣∣∣∣∣ e−t2

(6 + t)

(
x

1 + x
− y

1 + y

)∣∣∣∣∣ ,
≤ e−t2

(6 + t)
|x− y|,

≤ 1

6
|x− y|.

Hence, the condition (H2) holds with L = 1
6 . We shall check that condition (7) is satisfied

with T = 1. Indeed,(
1 +

|b|
|a+ b|

)
LT (α)

Γq(α+ 1)
=

(
1 +

1

2

)
1

6Γq(
3
2 )
,

= 0.2666 < 1,

where Γ 1
3
( 32 ) ≈ 0.9376. Then, by Theorem 3.1, the problem (9)-(10) has a unique solution

on [0, 1].

5 Conclusion

In this paper, we have presented the existence and uniqueness of solutions of the boundary
value problem for fractional q-difference equations. The uniqueness result is obtained by
applying the Banach contraction principle theorem, while the existence results are proved
via Schaefer’s fixed point theorem and the Leray-Schauder nonlinear alternative theorem.
Finally, we illustrated our main results by providing an example.
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