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Abstract: In this research, we present a novel numerical approach to tackle
an incommensurate system of fractional differential equations of 2a-order, where
a = (a1,a2,a3, - ,a,) with 0 < a; <1, Vi =1,2,3,--- ,n. Our proposed method
involves reducing the system to a-fractional differential equations using a newly de-
rived result, followed by the implementation of the Modified Fractional Euler Method
(MFEM), a recent numerical technique. We demonstrate the efficacy of our approach
through an illustrative example, providing validation for our proposed methodology.
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1 Introduction

In recent years, Fractional Differential Equations (FDEs) have been extensively studied
and applied due to their ability to capture the dynamics of systems with long-range
interactions, anomalous diffusion, and viscoelasticity. The fractional derivatives allow
for the inclusion of memory and hereditary properties, making them suitable for model-
ing phenomena that exhibit memory retention and relaxation effects. While significant
progress has been made in solving FDEs, there remains a challenging class of problems
known as incommensurate higher-order FDEs. These equations involve fractional deriva-
tives of different orders that are not rational multiples of each other. As a result, they
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lack a common denominator, leading to difficulties in analytical solutions and numerical
treatments.

In this paper, we focus on addressing incommensurate higher-order FDEs, which are
characterized by having fractional derivatives of different orders. Such systems present
unique challenges in numerical solutions due to their complex nature [1H4]. Our ob-
jective is to develop an efficient and accurate numerical method to handle this class of
FDEs. The proposed numerical approach is based on two main steps. First, we derive
a result that enables us to transform the incommensurate system into a set of a-FDEs,
where @ = (a1, a9, a3, -+, ay). This transformation simplifies the problem and prepares
it for numerical treatment. The parameters «; are limited to the range 0 < a; < 1,
for ¢ = 1,2,3,--- ,n, encompassing various degrees of fractional order, allowing for a
comprehensive analysis of the system’s behavior. Next, we employ the Modified Frac-
tional Euler Method (MFEM), a recently developed numerical technique tailored to solve
FDEs efficiently and accurately. The MFEM incorporates adaptive step-size control and
higher-order approximation schemes, making it well-suited for addressing the complexi-
ties of incommensurate higher-order fractional systems.

To demonstrate the effectiveness of our numerical approach, we present two illustra-
tive examples. The results obtained by our proposed method are compared with existing
analytical solutions, showcasing the accuracy and reliability of our approach. The rest
of the paper is organized as follows. Section 2 provides a brief overview of the relevant
background and related works. Section 3 outlines the theoretical framework and the
proposed numerical approach in detail. In Section 4, we present two numerical examples
with some comparisons, and in Section 5, we conclude the whole paper.

2 Preliminaries

In this section, we recall some preliminaries and basic results related to fractional calculus.
For more about FDEs and fractional calculus, see [5].

Definition 2.1 Let « be a real nonnegative number. Then the Riemann-Liouville
fractional-order integrator J¢ is defined by

Jof(a) = ﬁ /x(sc C e Lf(B)dt a < <b. (1)

Definition 2.2 Let @ € RT and m = [a] such that m — 1 < o < m. Then the
Caputo fractional-order differentiator of order « is given by

DO f(x) = % / x(w —tymme M, x> a. (2)

I'(m-«

Theorem 2.1 [6] (Generalized Taylor’s Theorem). Suppose that D*® f(x) € C(0,b]
fork=0,1,--- n+1, where 0 < a < 1. Then the function f can be expanded about
T =xg as

Jried w(n-{-l)a

pres (n+1)a
ml)* f(CUO) + WD* + f(§)7 (3)

M=

fx) =

K2

I
=)

with 0 < & < x, Va € (0,b).
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Now, by using the first three terms of the generalized Taylor theorem and for £ € (a, b),
t; € [a,b], in which the interval is divided as a =tg <t; =tg+h<to=tg+2h <--- <
t, = to +nh = b with h = Z’_T“ for i =1,2,--- ,n, we can expand y(t) about t = t; to
develop a new further modification for the Fractional Euler Method (FEM), called the
MFEM. This formula has the form [7,[]

y(tiv1) = y(t:) + %f (ti + W:l)a y(ti) + %f@u y(tz)))
2 (4)
h i 2a
el &

where £ € (a,b).

3 Numerical Approach

In this section, we propose a novel result that can reduce the higher incommensurate
fractional system of 2a-order into an a-fractional system, where o = (a1, g, iz, -+, @)
with 0 < a; < 1, Vi = 1,2,3,--- ,n. Then, we describe how one can deal with the
produced system.

Lemma 3.1 Any FDE of order na,n € Z* and o € (0,1], with functions possessing
values in R, can be converted into a system of FDEs of order o with values in R™.

Proof. To prove this result, we should first take the scalar case that takes place
whenever d = 1 and then we will consider the remaining case that occurs when o > 1.
For this reason, we should note that the general form of the FDE of order n« in its scalar
case can be given by

D ey(t) = G(t,y(t), Dy(t), D**y(t), -, D"~ Dy(t)), ()

where G is a continuous function defined on the subset I x R x R x --- x R so that it
takes values in R for a given interval I. Now, define the function

qj(t?/l]()a/vl)..' 7U7L—1) = (U17U27“' ’G(t)UO7U17“' 71}”—1)) (6)

as a continuous function defined on I x R x R x --- x R as G, but it takes the values in
R™. In this regard, we consider the following equation:

DOY(t) = (£, Y (1)), for t € 1. (7)

Now, we want to show that = : I — R is a solution of equation (@ if and only if the

function
X :I— R,

t — (x(t), D%x(t), D**x(t),--- , D" Dog(t)),

is a solution of equation @ To this end, we assume that x is a solution to equation @
such that X is as defined above. Then we have

(8)

D~x(t) Dex(t)
D2%%z(t) D?ez(t)
DOX(t) = z - : )
D(nfl)ax(t) D(nfl)ax(t)

D™ x(t) G(t,z(t), D*x(t), D**x(t), - - , D= Dog(t))
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o DOX(t) = W(t, X(8). (10)

Herein, the converse of the above discussion is similar. Now, for the case of a > 1, one
can reread the above proof again, and substitute each occurrence of R by R? to get the
result.

Corollary 3.1 Lemma can hold for a = (a1, a9, -+ ,ay), where 0 < a; < 1, for
alli=1,2,--- ,n.

For the purpose of addressing FDEs of 2a-order, where o = (a1, 9, -+, ;) such
that 0 < a; <1, for alli=1,2,---  n, we consider this system has the following form:

Dy (t) = g1 (t, Y (1), D**Y (¢)),
D*2yy(t) = go(t, Y (t), D**Y (1)),
D**ys(t) = g3(t, Y (), D**Y (1)), (11)

Dy, (t) = ga(t, Y (8), D**Y (2))
with the initial conditions
yi(0) = a;, D%y;(0) = b; (12)
such that a; and b; are constants for all i = 1,2,--- ,n, where

Y(t) = (yl(t>7y2(t),y3(t)7 T ayn(t»

and
DzaY(t) _ (D2a1y1 (t), D2a2 Yo (t), D2a3y3 (t)7 . ’D2a" Un (t)) )

In order to obtain an approximate solution to system , we reduce it with the use
of Lemma [3.1] into a-FDEs. In particular, we suppose that

v1(t) = DM (),
va(t) = D*?ys(t),
vs(t) = D*ys(t), (13)

vp(n) = Dy, (1).
Actually, the above assumption would convert system to the following form:
Dy (t) = vi(t) = ha(t, X(1)),

Dy (t) = g1 (¢, X(2)),

D*ys(t) = va(t) = ha(t, X(2)),

D*vy(t) = ga(t, X(2)),

D*3ys(t) = vs(t) = ha(t,X(t)), (14)
D*u3(t) = gs(t, X(1)),
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with the initial conditions
yi(0) = a;, ©v;(0)=0b;, Vi=1,2,---,n, (15)

where X(t) = (yl (t)a U1 (t)a Y2 (t)7 V2 (t)a Ys (t)v U3(t)7 s Yn (t)7 Un (t)) Now, to solve system
7 we use the MFEM. This method divides the solutions interval [a,b] as a =ty < t; =
to+h<ty=ty+2h<---<t, =ty +nh=0>, in which t; = a + ih are called the mesh
points for i = 1,2,--- ,n, and h = =2 is the step size of the algorithm. Accordingly,
based on the MFEM, we obtain the following states:

hea hoa he
tiv1) = y1(t;) + =—————ha [ t; + —=——, X(t; (£, X (t
yultir) y1(1)+r(a1+1) 1<’+2r(o<1+1)’ )+ Fo Mt )>
he
ti = t X— t'L tl7X
v1(tig1) = vi(t:) + a1+1 ( a1+1) ( )+I‘(a NS )
he
ti — t h tl X t t“X 9
y2( +1) y2( ) 012+1 2( T o e ) a2+1) ( )+F(012+1 )>
he
t; = t; t; X t; tzvX
valtivn) = vats) + a2+192< TNt D) a2+) ()+F(a2+lg2 >
hes
tiv1) = ys(t;) + —————hs| t; Xt 3(ti, X(t:)) |,
ys(tiv1) = ys(ts) + a3+1 3< RIS AT a3+1) ( )+F(a3+1 ¢ ))
hes
t,L = ti tl X. ti t“X
( +1) U3( ) a3+1g?’( T ot 1) a3+1) ( )+F(CY +193 )
h&n hon h&n
n ti = UYn tl 7hn ti 7,X trL 7]7‘71 ti7X tl ’
On(tis1) = v (t.)+L t.+L X(t-)+L (s, X(t;))
n\ti+1) — Unl\lg F(an+1)gn 7 2F(O[n+1)7 7 F(Oén+1)gn [x) )

(16)
for all i = 1,2,--- ,n. As a matter of fact, formulas represent an approximate
solution of system (14]) and therefore (yi1(¢),y2(¢),ys(t), - ,yn(t) is then the desired
solution of system ((11)).

4 TIllustrative Examples

In this part, we illustrate our proposed approach by considering two incommensurate
systems of FDEs, each of them is of 2a-order, where o = (o, 8) with 0 < o, 8 < 1.

Example 4.1 Consider the following system:

Dz (t) + %(xl(t) —x2(t)) =1,
1 an)
D¥aq(t) + i(xg(t) —x1(t) =2

with the initial conditions
SUl(O) = 13Dax1(0) = Oa
1 18
25(0) = 5,D%Q(O) =0. (18)
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To solve system (|17] with the use of Lemma we assume uq(t) = D*zq(t) and
us(t) = DPxo(t). ThlS would convert system (|17} ) to be as follows:

D2y () = wi (1),
D%uy(t) = %( 1(t) — z2(t)), 19
DPay(t) = ua(t), 1)
DPus(t) = 2= 3 (a() — (1)
with the initial conditions
1’1(0) = 1,’LL1(O) = O7
(20)
22(0) = 5,u2(0) =0
For simplicity, one might suppose
J1(t, X()) = ua(2),
(1,X(0) =1~ (1) — w2(0),
(21)
fa(t, X(t)) = ua(t),
Filt,X(0) = 2 = S(wa(t) — (1),
where X (t) = (z1(t), u1(t), z2(t), ua(t)). This would make system (19)-(20) to be as
D1 (t) = f1(t, X (1)),
D%uy(t) = fo(t, X (1)),
DPaalt) = (0. X(1), .
DPus(t) = fa(t, X(t))

with the initial conditions

z1(0) = 1,u1(0) =0,
£2(0) = 3, 12(0) = 0. (23)

To solve system — by the MFEM, we are applying the solution’s formula ([16) to
obtain

w1(ti1) = x1(ts) + F(O?Jrl)fl (ti + 21“(2—#1)’)((“) + F(Oil_’_l)fl(thx(ti)))v

he he he
ur(tiv1) = ui(t;) + mﬁ <ti + mvx(m + I‘(a+1)f2(ti’x<ti))>’

hb Ko hP (24)
o (tiy1) = x2(t;) + mﬁ (ti + m,x(ti) + mfs(ﬁi, X(ti))),

B B B
ug(tiy1) = ua(t;) + I‘(ﬁh—i—l)f4 <ti + H‘(g—#l)’x(ti) + I‘(ﬁ}l—i—l)f4(ti’ X(%)))

for all i = 1,2,--- ,n. In fact, the first and third equations of system represent the
numerical solution of system . In order to see the validity of our scheme, we make
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some comparisons between our approximate solutions

he he he
tig) =a1(t) + ————fi (i ———— X)) + ——— f1(t;, X (t;
ltis1) = 0106 + e (1 gy X0+ e 0 X(0) ) )
P P X P X (25)
liv1) = x2(ts) + w3\ bi + o X(G) + w2 f3(ti, X(
saltins) = 02(t) + s (6 gy XU+ ol X))
and the following exact solution that could be obtained when o« = 8 = 1:
x1(t) = ZtZ + %cos(t) - Z,
(26)
xao(t) = §752 - §cos(t) +§
? 4 4 4

for system —. In particular, Figure depicts a graphical comparison between the
numerical solution and the exact solution (26]). In addition, we plot in Figures
and |3| the numerical solution of system 1D in accordance with commensurate
and incommensurate fractional-order values, respectively.

2 Approxil vs. exact i for a=1and g=1

° ‘Approxima(e x,(t)
Exact x‘(l)
Approximate x2(|)
Exact x,(t)

(%, (0.%,(0)

Figure 1: Approximate vs. exact solution of (z1(t),z2(t)) for a =1 and 8 =1.

100Appl i vs. exact soluti for ional-order values
T T T
X,(t) when a=1

X,(t) when =1
801 x,(t) a=0.75

x2(|) when $=0.75
X,(t) @=0.50

X,(t) when §=0.50
%,(t) @=0.25

x2(|) when $=0.25

60 [

40 r

(%, (0.%,(0)

20

Figure 2: Approximate vs. exact solutions of (z1(¢),z2(t)) for commensurate fractional-order
values.
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gﬁppl d Vvs. exact i for il ate i der values
T T T 7

T
x‘(l) when a=0.95
%,(t) when 5=0.85
70 H X,(t) a=0.75
x2(|) when (=0.65
%,(t) a=0.55
%,(t) when §=0.45
X,(t) a=0.35
X,(t) when $=0.25

80 [

L L L L L L
0 0.5 1 15 2 25 3 3.5

Figure 3: Approximate solutions of (z1(t),z2(t)) for incommensurate fractional-order values.

Example 4.2 Consider the following system:

with the initial conditions
Z‘l(O) = l,DO‘xl(O) = O7

22(0) = 1, DP25(0) = 0.

(27)

(28)

To solve system (27)-(28) with the use of Lemma we assume ug(t) = D%z (¢) and

uz(t) = DPxy(t). This would convert system l) to be as follows:

Da.Tl(t) = U1 (t),
Do‘ul (t) = 3331(t) + 35132(t) — U1 (t),
DﬂSEQ(t) = U2 t),
DPuy(t) = 31 (t) + 3wa(t) — ua(t)

with the initial conditions

Si(t, X (1)) = ua(t),

f2(t,X(t)) = 3z1(t) + 3za(t) — ur(t),

f3(tv X(t)) = ua(t),

fa(t,X(t)) = 3x1(t) + 3wa(t) — ua(t),

where X (t) = (z1(t), u1(t), z2(t), u2(t)). This would make system (29)-(30) to be as

Dz (t) = f1(t, X (1)),
D%uq(t) = fa(t, X (1)),
DPas(t) = f3(t. X(t)),
DPus(t) = falt, X (1))

(30)

(31)
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with the initial conditions
m1(0) = 1,U1(O) = Oa

31‘2(0) = 1,’LL2(O) =0.

To solve system — by the MFEM, we are applying the solution’s formula ([16) to
obtain

(33)

(e}

h* h®

mfl <ti + m7X(Q) + F(Oz—l—l)fl(ti’x(ti))>7

2 (tigr) = 21(t;) +

uy (tip1) = u(t;) + mfz <ti + 2I‘(Z+1)’X(ti) + I‘(oil—i—l)fQ(ti’X(ti))>’

hB LA hP (34)
z2(tiy1) = 22(t;) + m]‘é (ti + mvx(ti) + mﬁ(ﬁia X(ti)))v

hB hP hB
ug(tiy1) = ua(t;) + mﬂ; (ti + mvx(ti) + mﬁ(ti, X(tz)))

for all i = 1,2,--- ,n. In fact, the first and third equations of system represent the
numerical solution of system . In order to see the validity of our scheme, we make
some comparisons between our approximate solutions

w1 (tiv1) = 21 () + mfl (ti + max(ti) + mfl(ti, X(tz)))
h? h? h? (35)
tiv1) = 2a(ti) + ————fa [t + = X (t) + = fa(t;, X(t;
saltien) = aalt) + s o (1 g X0 + o faltn X(0))
and the following exact solution that could be obtained when o« = 8 = 1:
21(t) = c1e® 4 coe ™ + c3 + cye? (36)

3t t

xo(t) = cre?t 4+ coe™3 — g — che”

for system —, where ¢; = é, Cco = —% and c3 = ¢4 = 0. In particular, Figures
and |5 depict graphical comparisons between the numerical solutions given in and
the exact solution (36]). In addition, we plot in Figures |§| and |7| the numerical solution
of system 1) in accordance with commensurate fractional-order values, and
similarly, we plot in Figures [8| and |§| the numerical solution of the same system
according to some incommensurate fractional-order values.

Approxi Vvs. exact i of x,(t) for a=1 and =1
T T T

T 9
o Approximate x,(t) 5

=1

= Exact x(t) =3

100

80

60

o)

40 -

201

3.5

Figure 4: Approximate vs. exact solutions of z1(t) for « =1 and 8 = 1.
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pproxi vs. exact i of x,(t) for a=1 and =1
T T T

(0

3.5

Figure 5: Approximate vs. exact solutions of z2(t) for « =1 and 8 = 1.

pp! vs. exact ions of x,(t) for rate fracti der values
100 T T T T
a=1
a=0.75
L =050
80 a=0.25
60 - g
=
-
a0t 1
20 g
° . .
0 05 1 15 2 25

Figure 6: Approximate vs. exact solutions of x1(t) for commensurate fractional-order values.

Approxii vs. exact i of x,(t) for irate fracti der values
100 T T T
— =1
—— p=0.75
$=0.50
801 —p=025| ]
60 - b
=
x
40r 1
20 T
0 ! . .
0 0.5 1 15 2 25 3

Figure 7: Approximate vs. exact solutions of z2(t) for commensurate fractional-order values.
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Approxi vs. exact i of x,(t) for i i -order values
100 T T T T T T T T

80

60

X,

40 -

20

Figure 8: Approximate vs. exact solutions of 1 (¢) for incommensurate fractional-order values.

Approxi vs. exact i of x,(t) for i fractional-order values
100 T T T T T

T
—— p=0.85

80

60

%50

40

201

Figure 9: Approximate vs. exact solutions of z2(¢) for incommensurate fractional-order values.

5 Conclusion

In conclusion, this research introduces a novel and effective numerical approach for ad-
dressing the challenges posed by incommensurate systems of fractional differential equa-
tions of 2a-order, where a = (a1, 2,03, ,a,) with 0 < a; < 1, Vi = 1,2,3,--- | n.
Our proposed method offers a systematic solution by transforming the incommensu-
rate system into a set of a-fractional differential equations using a newly derived result.
Subsequently, we successfully apply the Modified Fractional Euler Method (MFEM), a
recently developed numerical technique, to efficiently solve the transformed equations.
Through an illustrative example, we demonstrate the practical efficacy and reliability of
our numerical approach.
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