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1 Introduction

Determining the price of derivative products in the capital market is an important prob-
lem in the field of financial mathematics. Derivative products are contracts whose profit
value is determined by the underlying asset. One of the derivative products are options.
An option is an agreement between two parties whereby the contract holder has the right
to sell or buy an amount of the underlying asset at a certain price and at a stated time.
The most widely used option pricing method is the Black-Scholes differential equation
since it provides an option price solution for the options of one or more underlying assets.
Options with several underlying assets are termed as multi-asset options. Derivation of
the Black-Scholes differential equation is generally done using the ∆-hedging theory that
can only be done on a complete market by setting the stock portfolio value equal to the
option value. This is called a portfolio replication. The opposite of a complete market
is an incomplete market. In the incomplete market, there are only a few securities or
financial products. Portfolios or wealth processes on the incomplete market can only be
built using primary securities, so there is an impossibility to replicate the payoff with a
portfolio of underlying assets [2]. Pricing of financial products in the incomplete market
is one of the BSDEs applications.

Several previous studies stated that the Black-Scholes differential equation can be
obtained through BSDEs (Backward Stochastic Differential Equations). BSDEs are a
useful method for studying options pricing problems because they have several advan-
tages. BSDEs can be used on the incomplete market. Another advantage of BSDEs
is that there is no need to change the measurement to a neutral risk condition. When
determining the price of options, the return value is adjusted according to the investor’s
risk preferences, while the discount rate differs between the investors. There is an alter-
native method, namely by adjusting all investors’ risk preferences. This risk preference is
marked with a number called the risk premium and then the expected value is calculated
in the new probability measure, which is a neutral risk measure. The BSDE solution
corresponds to the PDE (partial differential equation) solution. This result is given by
an analogy called the Feynman-Kac theorem.

BSDEs application in financial mathematics was first introduced by El Karoui et
al. [2]. This study shows that the Black-Scholes differential equation for one asset can
be obtained using BSDEs [2]. Actually, the process of changing portfolio values (wealth
process) can be represented in the form of BSDEs. This research was conducted on one
asset options. Pricing of single asset options, non-linear in the incomplete market can
also be modeled using BSDEs [2]. In the complete market, option prices are a BSDEs
solution with a linear generator function f . On the other hand, in the incomplete market,
changes in portfolio wealth are given by BSDEs with the non-linear generator function
f [2]. The generalization of the Feynman-Kac theorem has an important function in the
solution of parabolic PDEs including the BSDEs in option pricing.

This research begins by formulating risky asset prices and a risk-free asset. Then we
construct a multi-asset portfolio that contains risky and risk-free assets. The portfolio
is structured in such a way that it satisfies the system of BSDEs (6) and (14). Then the
existence and uniqueness of the solution of the System (6) and (14) are proven. Using the
Feynman-Kac theorem, a multi-asset Black-Scholes differential equation can be obtained.
Simulation and the analysis of multi-asset option price simulation results are also carried
out.
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2 The Feynman-Kac Theorem

In this section, we firstly present a theorem on the existence and uniqueness of the
solution to BSDE (1). Then we give the Feynman-Kac theorem which provides the
relation between BSDE (1) and semilinear PDE (3). These two theorems are essential
for the main result of this study and are given without proof. The complete proofs can
be found in [2, 9]. Let us first consider a BSDE{

−dY (t) = f (t,X(t), Y (t), Z(t)) dt− Z(t) dW (t), t ∈ [0, T ),
YT = ξ,

(1)

or, equivalently,

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ), (2)

where W is an m-dimensional Brownian motion on a probability space (Ω,F , {Ft},P),
the terminal condition ξ : Ω 7→ R is a random variable being FT -measurable, and f is a
generator function from R+×Rn×R×R1×n into R. Here, Xt is an Rn-valued stochastic
process satisfying the differential equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t).

Moreover, the terminal condition ξ and the generator function f are called a pair of
standard parameters if they satisfy the following conditions:

1. ξ ∈ L2
T (R),

2. f(·, ·, 0, 0) ∈ H2
T (R),

3. f is uniformly Lipschitz, i.e., there exists a number M > 0 such that

|f(·, ·, y1, z1)− f(·, ·, y2, z2)| ≤ M(|y1 − y2|+ |z1 − z2|), a.s. for all y1, y2, z1, z2,

where L2
T (Rd) is a space of d-dimensional random variables which are FT -measurable

and square integrable, and H2
T (Rm×n) is a space of Rm×n-valued predictable processes

Y such that
∫ T

0
|Yt|2dt is an integrable random variable.

Theorem 2.1 If (f, ξ) is a pair of standard parameters, then (1) has a unique solu-
tion (Y,Z) in H2

T (R)×H2
T (R1×m).

In the following theorem, we give the Feynman-Kac theorem which explains the re-
lation between BSDE (1) and the semilinear PDE{

−∂V (t,x)
∂t − LV (t, x)− f(t, x, V (t, x), (▽xV (t, x))Tσ(x)) = 0, t ∈ [0, T ), x ∈ Rn,

V (T, x) = ζ(x), x ∈ Rn,

(3)

where L is a generator function given by

LV (t, x) = (▽xV (t, x))Tµ(x) +
1

2
Tr(σT (x)HxV (t, x)σ(x)). (4)

Theorem 2.2 Let V be a solution of (3) and let

Yt = V
(
t,Xt

)
, Zt =

(
▽x V (t,Xt)

)T
σ(Xt), YT ,

then (Yt, Zt) is a solution of BSDE (1) with the terminal condition ξ = V (T,XT ).
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3 The BSDE of Multi-Asset Options

In this section, we will derive the BSDE of multi-asset options. But first, let us introduce
the assumptions we use to derive the BSDE.

Assumption 3.1 The following statements are some assumptions:

(1) we use basket options;

(2) the payoff of basket options is a geometric mean, i.e.,

Payoff = (

n∏
i=1

Sαi
i −K)+, (5)

where Σαi = 1 and αi ≥ 0;

(3) the wealth process can be replicated;

(4) there exists a risk premium.

The equation of multi-asset options has the form of multi-dimensional parabolic par-
tial differential equations. There are several types of multi-asset options that have dif-
ferent payoffs. According to Assumption 3.1 (1), we use basket options that consist of
more than two underlying assets. The basket option pricing formula can be obtained
from the multi-asset Black-Scholes differential equation. The multivariable problem of
pricing basket options can be reduced to one dimension if the payoff of basket options
satisfies Assumption 3.1 (2) (see [5]).

Multi-asset options are formed from several underlying assets consisting of risky assets
and risk-free assets. In this study, stocks and bonds are used as risky and risk-free assets,
respectively. Suppose Si denotes the price of the i-th stock which satisfies the geometric
Brownian motion equation as follows:

dSi

Si
= µi dt+

m∑
j=1

σij dWj , i = 1, 2, ..., n , (6)

where µi is the i-th stock return, σij is the volatility of the i-th stock due to the j-th
Brownian motion and W = [W1,W2, . . . ,Wm]T is an m-dimensional Brownian motion of
a probability space (Ω,F , {Ft},P). The movement price of the bond P at time t satisfies
the equation

P (t) = υ e−
∫ T
t

r(u) du

or {
dP (t) = P (t) r dt, 0 ≤ t < T

P (T ) = υ,
(7)

where r is a risk-free interest rate and T is a due time.

Here, we use a multi-asset portfolio equation to determine the option price. Once
the price of options is obtained, we can construct a multi-asset portfolio of stocks that
has the same value as basket options. This is called a replicating portfolio strategy. In
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particular, the multi-asset portfolio equation Y is made to have the equal value as the
options at time t ∈ [0, T ]. A portfolio with this strategy is also known as a wealth process.

A multi-asset portfolio Y consists of n stock assets and a bond asset. Suppose the
stock asset Si, i = 1, 2, 3, · · · , n, has a proportion of ∆i and a bond P has a proportion
of ∆P . The value of the portfolio at t is defined as

Y (t) =

n∑
i=1

∆i Si + ∆P P. (8)

We assume that the value of (8) satisfies the self-financing strategy, therefore we obtain

dY (t) =

n∑
i=1

∆i dSi +∆P dP. (9)

Substituting (6) and (7) into (9), we get

dY (t) =

(
Y r +

n∑
i=1

∆i Si (µi − r)

)
dt+

n∑
i=1

m∑
j=1

∆i Si σij dWj . (10)

From Assumption 3.1 (3), the portfolio Y can be replicated, hence there exists a risk-free
portfolio Π that has the same value as the portfolio Y and satisfies

dΠ = dV (S1, S2, . . . , Sn, t)−
n∑

i=1

∆i dSi . (11)

Using the multi-dimensional Itô formula, we obtain

dV (S1, S2, . . . , Sn, t) =

(
∂V

∂t
+

1

2
Tr(σ(S)

T
HSV σ(S)) +▽SV (t,S(t))Tµ(S)

)
dt

+ (▽SV (t,S(t))Tσ(S)) dW (t) , (12)

where

1

2
Tr

(
σ(S)

T
HSV σ(S)

)
=

n∑
i=1

m∑
j=1

aijSiSj ,

aij =

m∑
k=1

σik σjk ,

and

▽SV (t,S(t))
T
σ(S)) dWt =

n∑
i=1

m∑
j=1

σijSi
∂V

∂Si
dWj .

Substituting (6) and (12) into (11), we have

dΠ =

(
∂V

∂t
+

1

2

n∑
i=1

m∑
j=1

aij Si Sj
∂2V

∂Si∂Sj
−

n∑
i=1

µi(∆i Si − ∂V

∂Si
)

)
dt

+

n∑
i=1

m∑
j=1

Si σij

(
∆i −

∂V

∂Si

)
dWj .
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Since Π is a risk-free portfolio, we obtain ∆i =
∂V

∂Si
, (i = 1, 2, . . . , n). Substituting it to

(10), we get

−dY (t) = −
(
Y r +

n∑
i=1

∂V

∂Si
Si (µi − r)

)
dt−

n∑
i=1

m∑
j=1

∂V

∂Si
Si σij dWj . (13)

According to Assumption 3.1 (4), there exists a risk premium

λ =


λ1

λ2

...
λm


such that 

σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm

λ =


µ1 − r
µ2 − r

...
µn − r

 .

Furthermore, (13) becomes

−dY (t) =−

(
Y r +

[
∂V

∂S1
S1

∂V

∂S2
S2 . . .

∂V

∂Sn
Sn

]

×


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm

×


λ1

λ2

...
λm


)
dt

−
[
∂V

∂S1
S1

∂V

∂S2
S2 . . .

∂V

∂Sn
Sn

]
×


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm



×


dW1

dW2

...
dWm


and can be written as

−dY (t) = f(t,S(t), Y (t),Z(t)) dt− Z(t) dW(t), (14)

where

f(t,S(t), Y (t),Z(t)) =− Y r − Z(t)λ (15)
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with

Z(t) =

[
∂V

∂S1
S1

∂V

∂S2
S2 . . .

∂V

∂Sn
Sn

]
×


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm

 .

Then, based on the fact that the portfolio Y is constructed such that it has the same
value as the basket option, we have the terminal condition of BSDE (14) given by

YT = (

n∏
i=1

Si(T )
αi −K)+ , (16)

where K ∈ R+.

4 Existence and Uniqueness of Solution to the System (6) and (14)

This section provides a theorem on the existence and uniqueness of solution of the system
(6) and (14). This theorem explains the sufficient condition under which a solution of
the system (6) and (14) exists and is unique.

Theorem 4.1 Let (3) with f(t, x, y, z) = −yr − zλ and

V (T, (x1, x2, · · · , xn)
T ) = (

n∏
i=1

xαi
i −K)+

have solutions in H2
T (R). Then there exists a unique solution of the system (6) and (14)

in H2
T (R). Furthermore, (3) also has a unique solution in H2

T (R).

Proof. Firstly, we will prove that the BSDE

dỸ (t) = f(t,S(t), Ỹ (t),U)dt−U(t)dW (t) (17)

has a unique solution when the terminal condition is given by

U(T ) = (

n∏
i=1

Si(T )
αi −K)+.

The proof is given as follows.

1. In this part, we will prove that ỸT ∈ L2
T (R).

The terminal condition of BSDE (17) is given by ỸT = (
∏n

i=1 Si(T )
αi −K)+. Since

Si(T ) is FT -measurable, we can obtain that so is ỸT . Moreover, we also have

E[Si(T )
2] = Si(0)

2 exp

2µT +

m∑
j=1

σ2
ij T

 < ∞ ,

hence

E[|Ỹ 2
T |] = E


∣∣∣∣∣∣∣
( n∏

i=1

Si(T )
αi −K

)+
2
∣∣∣∣∣∣∣
 < ∞ .
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Therefore, we get

ỸT =

(
n∏

i=1

Si(T )
αi −K

)+

∈ L2
T (R) .

2. In this part, we will prove that f(·, ·, 0, 0) ∈ H2
T (R).

Based on (15), we obtain

E

[∫ T

0

|f(·, ·, 0, 0)|2 dt

]
= 0 < ∞ .

Thus, f(·, ·, 0, 0) is a predictable process and we also have

f(·, ·, 0, 0) ∈ H2
T (R).

3. In this last part, we prove that f is uniformly Lipschitz.
We can observe that for L = max(r, |λ|), we have

f(t,S(t), y1, z1)− f(t,S(t), y1, z1)| ≤ L(|y1 − y2|+ |z1 − z2|) .

Therefore f is a uniform Lipschitz function.

Thus three conditions in Theorem 2.1 are satisfied, so (17) has a unique solution.
Moreover, suppose that V is one of the solutions of (3), which is possible because we as-
sume that (3) has a solution. According to the Feynman-Kac theorem and the uniqueness
of the solution (17), we obtain that the pair (Ỹ ,U) given by

Ỹ (t) = V (t,S(t)) (18)

and

U(t) = (∇xV (t,S(t)))Tσ(S(t)) (19)

is the unique solution of (17). Consequently, by a contradiction argument, we have
Y (t) = V (t,S(t)) is a unique solution of the system (6) and (14). Furthermore, by a
similar argument, we can also conclude that the solution of (3) is unique.

5 Simulations of Multi-Asset Option Prices

In this section, we present the simulation of pricing of the multi-asset option in the basket
option. From Theorem 4.1, we obtain that the solution of the system (6) and (14) is
equivalent to the solution of

∂V
∂t +

1

2

∑n
i=1

∑m
j=1 aij Si Sj

∂2V

∂Si ∂Sj
+
∑n

i=1

∂V

∂Si
r Si − rV = 0 ,

dSi = µiSi dt+
∑m

j=1 σijSi dWj , i = 1, 2, ..., n ,

V (T, (S1, S2, · · · , Sn)
T ) = (

∏n
i=1 x

αi
i −K)+

(20)

if (3) has solutions in H2
T (R). We can see that the last equation above is the multi-asset

Black-Scholes differential equation and the exact solution is given by (see [5])

V (S1, . . . , Sn, t) = e−q̂(T−t) Sα1
1 Sα2

2 . . . Sαn
n N(d̂1)−Ke−r(T−t)N(d̂2), (21)
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where

d̂1 =
ln
(

S
α1
1 S

α2
2 ...Sαn

n

K

)
+ (r − q̂ + σ̂2

2 )(T − t)

σ̂
√
T − t

,

d̂2 =
ln
(

S
α1
1 S

α2
2 ... Sαn

n

K

)
+ (r − q̂ − σ̂2

2 )(T − t)

σ̂
√
T − t

= d̂1 − σ̂
√
T − t,

σ̂2 =

n∑
i=1

aijαiαj ,

q =

n∑
i=1

aii
2
αi +

σ̂2

2
.

Here, we know that (21) is also the solution of the BSDE of multi-asset options (14).
Simulations were carried out to determine the effect of several variables on the option
price. These variables are the strike price, interest rate, maturity date, and stock volatil-
ity. The simulation is carried out on the assets of 2, 5, 10 and 30. In each option price
simulation, the number of the Brownian motion used is equal to the number of stock
assets, the price of each stock is 100 and the proportion of each stock in basket options
has the same value.
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Figure 1: The effect of the strike price on the option price.

We plot the call option price influenced by different strike prices given by (21), see
Figure 1. The call option price decreases when the value of strike price increases. If
the call option is exercised at maturity, then the profit from the call option is the share
price that exceeds the strike, Sαi

i − K. Therefore, the price of the call option is more
expensive, the lower the strike price is. This also relates to the stock prices.

If the stock price is fixed, while the strike price is getting smaller, then the profit will
be getting bigger. Therefore, the call option is more valuable as the stock price increases.
Figure 1 also shows that the more assets in the call option, the higher the price of the
call option.
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Figure 2: The effect of the interest rate on the option price.

Figure 2 shows that a higher interest rate causes a higher price of the call option.
This is caused by the fact that if the interest rate in economy rises, the return expected
by investors on stock assets tends to rise. On the other hand, the current value of funds
received by the option holder is decreasing. The combination of these two causes an
increase in the call option price.
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Figure 3: The effect of the time maturity on the option price.

Based on the simulation results, see Figure 3, it is found that a longer expiration
time caused a higher call option price. The longer the maturity of a call option, the
more opportunities the option holder gets to exercise his rights on that option. Based
on Figure 4, it is found that the higher the volatility, the higher the price of the call
option. Volatility shows a measure of the uncertainty of stock prices in the future. When
volatility increases, stock prices also increase. As a result, the profit derived from the
call option also increases. On the other hand, the loss from the call option is the price
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Figure 4: The effect of the volatility on the option price.

of the premium or the price of the call option paid at the beginning of the transaction.
Therefore, it is found that a higher volatility resulted in a higher call option price.

6 Conclusion

In this work, we obtain a model of the multi-asset portfolio given by the system (6) and
(14). The terminal condition of the BSDE is made equal to the payoff of the multi-asset
option. From the theorems on the existence and uniqueness of the solution of the BSDE
(see Theorem 1 and Theorem 3), we prove that there exists a unique solution of the
system (6) and (14). Utilizing the Feynman-Kac theorem (Theorem 2), we can obtain
the solution of the system (6) and (14), which is consistent with the multi-asset Black-
Scholes differential equation’s solution. In addition, there are also several factors that
affect the price of multi-asset options.
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