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Abstract: In this paper, a new 4D autonomous hyperchaotic system with an infinite
number of equilibrium points is introduced and analyzed. This hyperchaotic system
is constructed by introducing an additional dimension with a linear state feedback
controller to the third equation in the Lorenz system. The dynamical properties of
the new hyperchaotic system are discussed by means of dissipation, symmetry, Lya-
punov exponents, bifurcation diagrams, equilibrium points and coexisting attractors.
Finally, the synchronization of the novel hyperchaotic system is discussed.
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1 Introduction

A hyperchaotic system is a type of the dynamical system that exhibits chaotic behavior
with at least two positive Lyapunov exponents, and the minimal dimension of the phase
space that embeds the hyperchaotic attractor should be at least four. In 1963, Lorenz
proposed a three-dimensional system with two scrolls, which is recognized as the first
chaotic model reported in literature [10], it has been the subject of many studies (see,
for example, [11]). Subsequently, in 1976, Rossler proposed another chaotic system like
the Lorenz one, in 1979, Rossler put forward the concept of hyperchaos and proposed the
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hyperchaotic Rossler system [13]. As a kind of behavior that is more complex than chaos,
hyperchaos has greater application potential in some engineering and technological fields,
which need strong complexity, including secure communications [23], nonlinear circuits,
encryption, and other fields [20]. Constructing a hyperchaotic system is a real challenge
because of the absence of a uniform method to generate this kind of complex systems.
Until now, the main method to build a hyperchaotic system is to design it by changing
an existing chaotic system. A hyperchaotic system can be generated by adding a simple
state feedback controller to a regular chaotic system. The addition of feedback control
introduces additional nonlinearities that can lead to more complex and richer dynamical
behavior, e.g., the Lü system [14] and the Lorenz system [6].

Hyperchaotic systems with an infinite number of equilibrium points have been clas-
sified as a newly introduced class of dynamical systems with hidden attractors. This
classification highlights the richness and complexity of these systems and their unique
properties that were not fully understood before [21], [15], [8], [1]. The coexistence of
multiple attractors in a system is indeed an exceedingly interesting phenomenon that
has attracted increasing attention in the scientific community. It challenges our conven-
tional understanding of systems having a single stable state and opens up new avenues for
studying and understanding complex dynamics. The coexistence of attractors introduces
the concept of multistability, where a system can exhibit different long-term behaviors
depending on its initial conditions or parameters. This phenomenon has been observed
in various fields of study, including physics, biology, chemistry, engineering, and social
sciences. The Lorenz system is a well-known example that demonstrates the phenomenon
of coexisting attractors, what makes the Lorenz system particularly interesting is that
depending on the system’s initial conditions, it can yield a symmetric pair of strange
attractors, breaking the symmetry of the butterfly attractor. These two attractors exist
simultaneously alongside each other in the system’s phase space [9], [2], [22].

The synchronization of chaotic systems is a fascinating area of research that has
attracted considerable attention due to its theoretical significance and practical appli-
cations, especially in the field of secure communication. Chaotic systems are highly
sensitive to initial conditions, and even a tiny change in the initial state can lead to
drastically different trajectories over time. Despite this sensitivity, it is possible to syn-
chronize two or more chaotic systems in a way that they evolve with similar dynamics,
exhibiting identical or correlated chaotic behaviors [16], [17], [5], [7], [18].

The rest of the paper is organized as follows. In Section 2, the novel hyperchaotic
system is introduced with brief details. The dynamical system analysis and its properties
are presented in Section 3. In Section 4, a synchronization control system is designed.
Finally, conclusions are presented in Section 5.

2 The Novel 4D System with an Infinite Number of Equilibrium Points

The celebrated Lorenz system is described by the following equations [10]:
ẋ = −a(y − x),

ẏ = −xz + cx− y,

ż = xy − bz,

(1)

where a, b, c are real parameters. When a = 10, b = 8/3, c = 28, it shows chaotic
behavior. According to this system, a new 4D system is obtained by introducing an
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Figure 1: Three-dimensional projections of the hyperchaotic attractor of system (2):
(a, b, c, d) = (10, 5, 30, 20). (a) x-y-z phase space; (b) x-y-u phase space; (c) y-z-u phase space;
(d) x-z-u phase space.

additional dimension with a linear state feedback controller to the third equation, and
our new 4D system is given by the following dynamics:


ẋ = −a(x− y),

ẏ = −xz + cx− y,

ż = xy − bz − u,

u̇ = dx.

(2)

We represent the state of the 4D system (2) by X = (x, y, z, u), and a, b, c, d are positive
parameters. When the parameters of system (2) are taken as (a, b, c, d) = (10, 5, 30, 20)
and the initial conditions (x0, y0, z0, u0) = (0.1, 0.1, 0.1, 0.1), the system has a hyper-
chaotic attractor, and the corresponding four Lyapunov exponents can be calculated:
L1 = 0.8289, L2 = 0.5692, L3 = −0.2836, L4 = −16.9904. The phase portraits of the new
hyperchaotic system (2) are shown in Figure 1.

The Lyapunov dimension, commonly known as the Kaplan-Yorke dimension DKY [3],
of this system is

DKY = j +
1

|Lj+1|

j∑
i=1

Li = 3 +
L1 + L2 + L3

|L4|
,

DKY = 3 +
0.8289 + 0.5692− 0.2836

| − 16.9904|
= 3.07.
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3 Dynamical Analysis

3.1 Symmetry

The system (2) is symmetrical with respect to the z-axis for its invariance under the
coordinate transformation (x, y, z, u) −→ (−x,−y, z,−u).

3.2 Dissipativity and existence of attractor

For a dynamical system, the divergence of the system (2) is defined by

∇V =
dẋ

dx
+

dẏ

dy
+

dż

dz
+

du̇

du
= −(a+ b+ 1) = −16 < 0. (3)

Therefore, the above analysis proves that our system is dissipative. The exponential
contraction rate is calculated as follows:

V (t) = V (0)e−(a+b+1)t. (4)

It shows that each volume containing the system trajectories shrinks to zero as t −→ ∞
at an exponential rate −(a+ b+ 1). There exists an attractor in system (2).

3.3 Equilibrium points

The equilibria of the system (2) can be found by setting ẋ = ẏ = ż = u̇ = 0 and
a, b, c, d > 0,

a(y − x) = 0, (5)

− xz + cx− y = 0, (6)

xy − bz − u = 0, (7)

dx = 0. (8)

Equation (8) reveals that x = 0. By substituting x = 0 into (5), we have y = 0, by
substituting x = 0 and y = 0 into (7), we have

−bz − u = 0.

In other words, system (2) has an infinite number of equilibrium points

E = {(x, y, z, u) ∈ R4|x = 0, y = 0, u = −bz}.

For the equilibrium E, the Jacobian matrix of system (2) is given by

JE =


−a a 0 0
c− z −1 0 0
0 0 −b −1
d 0 0 0

 .

The charasteristic equation of system (2) evaluated at the equilibrium E is

λ4 + (a+ b+ 1)λ3 + (a+ b (a+ 1)− a (c− z))λ2 + b (a− a (c− z))λ = 0,
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and the eigenvalues are

λ1 = 0, λ2 = −b, λ3 = −1

2

√
4ac− 2a− 4az + a2 + 1− 1

2
a− 1

2
,

λ4 =
1

2

√
4ac− 2a− 4az + a2 + 1− 1

2
a− 1

2
.

Providing z > c−1, we have λ2 < 0, Re(λ3) < 0 and Re(λ4) < 0, then the equilibrium
point E is stable. Therefore, if z < c−1, the eigenvalue λ4 is positive, then the equilibrium
point E is unstable. Moreover, if z = c − 1, the system (2) reduces to the one whose
dimension is less than four.

3.4 Bicurcation diagram and Lyapunov exponents

In this subsection, to explore the effect of the parameters a, b, c and d on the behavior of a
new 4D system, we fixed the parameters (a, b, c) = (10, 5, 30) and varied d in [0, 25]. Now
we carry out the dynamic analysis of the system (2) numerically by its Lyapunov exponent
spectrum and bifurcation diagram. Figure 2 shows the bifurcation diagram of system
(2) with different values of the parameter d and the initial conditions (x0, y, z0, u0) =
(1.8, 0.1, 0.79, 2.8). Table 1 represents the Lyapunov exponents and Lyapunov dimensions
of the system (2) with different values of the parameter d .

Figure 2: Bifurcation diagrams of hyperchaotic system (2) when a = 10, b = 5, c = 30 and d
varies in [0, 25].

The dynamics of system (2) changes with the increasing value of the parameter d.
We can see that the results obtained from the Lyapunov spectrum agree with the results
given by the bifurcation diagram in Figure 2 and the maximal Lyapunov exponents in
Table 1.
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Table 1: Lyapunov exponents of (2) with (a, b, c) = (10, 5, 30) and different values of d.

d L1 L2 L3 L4 Attractor type DKY

2 0 -0.7873 -0.6745 -14.5233 Periodic attractor 1

12 0.9154 0.0452 -0.0832 -16.7967 Hyperchaotic attractor 3.05

19 0.4400 -0.0128 -0.4658 -15.8353 Chaotic attractor 2.92

3.5 Coexisting attractors

The system (2) shows many complex dynamics behaviors such as hyperchaos, chaos,
and periodic. Several coexisting attractors of the system (2) will be present under some
appropriate parameters. A system with coexisting attractors is very sensitive to system
parameters and initial values. In the event of a sudden disturbance, the state of the
system can easily shift from an ideal state to another state that may be undesirable.
The coexisting attractors of the system (2) satisfying different initial values can exhibit
various dynamic behaviors.

Coexistence of hyperchaotic and chaotic attractors

When we fix a = 10, b = 5, c = 30, d = 20, and change the initial values slightly, the
dynamical behaviors of the system may produce large variations in the long term:
(a) For the initial values (0.1, 0.1, 0.1, 0.1), the Lyapunov exponents of the system (2)
are found to be L1 = 0.8289, L2 = 0.5692, L3 = −0.2836, and L4 = −16.9904, while the
fractal dimension of the system is estimated to be 3.07. A hyperchaotic attractor with
an infinite number of equilibrium points can be obtained, whose 3D phase portrait is
shown in Figure 3 (a).

(b) For the initial values (−2.2, 0.1, 1, 0.1), the trajectories of system (2) converge to
a chaotic attractor. The Lyapunov exponents of the system (2) are found to be L1 =
0.6775, L2 = −0.1010, L3 = −2.7889, and L4 = −13.3054, while the fractal dimension of
the system is estimated to be 2.83, whose 3D phase portrait is shown in Figure 3(b).
Therefore, the modification of the inial conditions causes a change of the hyperchaotic
behavior of the system (2). The trajectories of system (2) converge to two types of
attractors (hyperchaos or chaos).

Coexistence of hyperchaotic and periodic attractors

When we fix a = 10, b = 5, c = 30, d = 2, and change the initial values slightly, the
dynamical behaviors of the system may produce large variations in the long term:

(a) For the initial values (−1.8, 0.1, 0.79, 2.8) the trajectories of system (2) converge
to a hyperchaotic attractor. The Lyapunov exponents of the system (2) are found to be
L1 = 0.5365, L2 = 0.0710, L3 = −0.1822, and L4 = −16.3938, while the fractal dimension
of the system is estimated to be 3.03, whose 3D phase portrait is shown in Figure 4(a).

(b) For the initial values (1.8, 0.1, 0.79, 2.8), the trajectories of system (2) converge
to a stable periodic orbit. The Lyapunov exponents of the system (2) are found to be
L1 = 0, L2 = −0.7873, L3 = −0.6745, and L4 = −14.5233, while the fractal dimension of
the system is estimated to be 1, whose 3D phase portrait is shown in Figure 4(b).
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Figure 3: (a) Hyperchaotic attractor with (a, b, c, d) = (10, 5, 30, 20) and (x0, y0, z0, u0) =
(0.1, 0.1, 0.1, 0.1). (b) Chaotic attractor with (a, b, c, d) = (10, 5, 30, 20) and (x0, y0, z0, u0) =
(−2.2, 0.1, 1, 0.1).

A small change in the initial condition of the system causes a wide difference of tra-
jectories. For different initial conditions, the trajectories converge to different attractors:
a periodic orbit and hyperchaotic attractor.

Figure 4: (a) Hyperchaotic attractor with (a, b, c, d) = (10, 5, 30, 2) and (x0, y0, z0, u0) =
(−1.8, 0.1, 0.79, 2.8). (b) Periodic attractor with (a, b, c, d) = (10, 5, 30, 2) and (x0, y0, z0, u0) =
(1.8, 0.1, 0.79, 2.8)

4 Synchronization of a New Hyperchaotic System

In this section, the synchronization of the novel 4D hyperchaotic system (2) newly in-
troduced is discussed. Synchronization is done between a system designed as a master
one and another system as a slave one. The principle of synchronization is to apply to
the slave system a control function such as the error between the two systems tends to
zero. We have synchronized two identical new hyperchaotic systems with different initial
conditions via the active control method.
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As the master system, we consider the novel 4D hyperchaotic system (2) given by
ẋ1 = −a(x1 − x2),

ẋ2 = −x1x3 + cx1 − x2,

ẋ3 = x1x2 − bx3 − x4,

ẋ4 = dx1.

(9)

The slave system is the same system (2), with the added to it control signals U =
{u1, u2, u3, u4}. It is given by

ẏ1 = −a(y1 − y2) + u1,

ẏ2 = −y1y3 + cy1 − y2 + u2,

ẏ3 = y1y2 − by3 − y4 + u3,

ẏ4 = dy1 + u4.

(10)

The synchronization error is defined by
e1 = y1 − x1,

e2 = y2 − x2,

e3 = y3 − x3,

e4 = y4 − x4.

(11)

Then the error dynamics is expressed by
ė1 = a(e2 − e1) + u1,

ė2 = ce1 − e2 − y1y3 + x1x3 + u2,

ė3 = −be3 − e4 + y1y2 − x1x2 + u3,

ė4 = de1 + u4.

(12)

We choose the active control functions u1, u2, u3, u4 as shown in equation (13) to eliminate
the nonlinear terms in (12): 

u1 = v1,

u2 = y1y3 − x1x3 + v2,

u3 = −y1y2 + x1x2 + v3,

u4 = v4.

(13)

So, the system to be controlled is a linear system with a control input {v1, v2, v3, v4}
ė1 = a(e2 − e1) + v1,

ė2 = ce1 − e2 + v2,

ė3 = −be3 − e4 + v3,

ė4 = de1 + v4.

(14)

The control input v1, v2, v3 and v4 is used to force the error to converge to zero. So, the
two systems (9) and (10) are synchronized.

We choose a constant matrix C which will control the error dynamics (14) such that
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[ė1, ė2, ė3, ė4]
T = C[e1, e2, e3, e4]

T . (15)

For the Routh-Hurwitz criterion, all eigenvalues of the chosen matrix C must be negative
[19] to stabilize the synchronization between the master system (9) and the slave system
(10):

C =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The eigenvalues (λ1, λ2, λ3, λ4) = (−1,−1,−1,−1) of the matrix C are negative,
which ensures the stability of the dynamic error. Therefore two systems (9) and (10) are
synchronized.

Using (14), (15) and (16), we find the control functions
a(e2 − e1) + v1 = −e1,

ce1 − e2 + v2 = −e2,

−be3 − e4 + v3 = −e3,

de1 + v4 = −e4,

(16)


v1 = (a− 1)e1 − ae2,

v2 = −ce1,

v3 = (b− 1)e3 + e4,

v4 = −de1 − e4.

(17)

The control function U = {u1, u2, u3, u4} ensures synchronization between the master
system (9) and the slave system (10),

u1 = (a− 1)e1 − ae2,

u2 = y1y3 − x1x3 − ce1,

u3 = −y1y2 + x1x2 + (b− 1)e3 + e4,

u4 = −de1 − e4.

(18)

The initial conditions of the master system and the slave system are taken as follows:

(x1, x2, x3, x4) = (3, 4, 10,−8),

(y1, y2, y3, y4) = (−2, 32,−6, 12).

The results of simulations are depicted in Figure 5 and Figure 6, these figures show
that the synchronization occurs and the errors will converge to zero exponentially after
applying the active control.

5 Conclusions

In this work, we have introduced a novel hyperchaotic system with an infinite number
of equilibrium points. Depending on parameter selection and initial conditions, this sys-
tem can generate various types of coexisting attractors. Through theoretical analysis
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Figure 5: Synchronization of different state variables.

Figure 6: Errors of the synchronization system.
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and numerical simulations, we investigate the dynamical behaviors of the new hyper-
chaotic system. This exploration encompasses dissipativity and invariance, equilibrium
points and their stability, periodic orbits, as well as chaotic and hyperchaotic attrac-
tors. We conduct numerical simulations, including phase diagrams and the Lyapunov
exponent spectrum, to analyze and validate the complex phenomena exhibited by our
hyperchaotic system. Furthermore, we successfully achieve synchronization between this
system, designed as the master one, and another system acting as the slave one, using
the active control techniques.
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