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Abstract: In this paper, we will study the Inverse Gamma distribution to introduce
the Conformable Fractional Inverse Gamma Distribution (CFIGD) with a study of
the entropy measures in the fractional case. The CFIGD’s CDF, survival function,
and hazard function are defined to shed light on its behavior and suggest possible uses
for it in reliability and risk analysis. It is possible to better understand the central
tendencies and higher-order characteristics of statistics by using the conformable frac-
tional analogs of statistical measures like the expected values, r-th moments, mean,
variance, skewness, and kurtosis. In addition, the conformable fractional analogs of
well-known entropy measures like the Shannon, Renyi, and Tsallis entropy are intro-
duced, offering useful instruments for estimating uncertainty and randomness.
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1 Introduction

The Conformable Fractional Inverse Gamma Distribution (CFIGD), which offers an
avant-garde framework for simulating various real-world phenomena, has emerged as a
promising statistical tool [1,2]. The development of sophisticated tools to model complex
phenomena and derive meaningful insights is made possible by advancements in proba-
bility theory and statistical analysis [3,4]. The CFIGD stands out among these tools as a
potent and ground-breaking idea, providing a new viewpoint on probability distributions
and their applications. The CFIGD and its numerous applications in various fields will
be thoroughly explored in this research paper.
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The foundation of the CFIGD is the inverse gamma distribution, which is well-known
for its importance in Bayesian statistics. This family of distributions is the reciprocal
of a variable that follows a gamma distribution and operates on positive real numbers.
By extending conventional statistical measures to conformable fractional analogs, the
CFIGD introduces a novel approach. Our comprehension of the distribution’s central
tendencies, higher-order properties, and quantification of uncertainty is greatly improved
by these analogs [5, 7, 8].

The paper aims to clarify the fundamental characteristics of the CFIGD, namely
the cumulative distribution function (CDF), survival function, and hazard function. In
addition to these, we investigate the conformable fractional analogs of fundamental sta-
tistical quantities like the expected values, r-th moments, mean, variance, skewness, and
kurtosis. The theoretical framework of the CFIGD is built on this thorough analysis.

Nonlinear dynamics plays a pivotal role in understanding complex systems, where
traditional linear models fall short. In recent years, there has been a growing interest
in exploring non-conventional probability distributions and statistical measures to en-
hance our comprehension of intricate systems and phenomena. This paper delves into
the realm of nonlinear dynamics by introducing a novel statistical distribution, the Con-
formable Fractional Inverse Gamma Distribution (CFIGD) and studying its properties
in the context of entropy measures in the fractional case.

Nonlinear systems, characterized by their sensitivity to initial conditions and intri-
cate feedback loops, necessitate sophisticated statistical tools for accurate modeling and
analysis. The Inverse Gamma distribution has proven to be invaluable in various fields,
especially in reliability and risk analysis, where understanding the underlying proba-
bilistic nature of events is paramount. The extension of this distribution to its fractional
counterpart, as explored in this paper, opens new avenues for studying nonlinear systems
with fractional dynamics, providing a more nuanced understanding of their behavior.

The organization of this paper is listed as follows. In the following section, we will
introduce the basic definitions and remarks on conformable fractional derivatives. In
Section 3, we will introduce a fractional inverse gamma distribution, this part is followed
by Section 4 with the conclusion for this paper and references.

2 Conformable Fractional Derivative

Fractional calculus is a branch of mathematics that deals with fractional derivatives and
integrals, and it has numerous applications in a variety of scientific and engineering dis-
ciplines. A current framework for describing non-local and memory-dependent complex
processes is offered by fractional derivatives. One of the fascinating developments in this
field is the idea of a “conformable fractional derivative”, introduced by Khalil et al. [6]
in 2014.

When applied to phenomena with non-differentiable or non-smooth behavior, integer-
order derivatives, which are frequently used in classical calculus, have some limitations.
Fractional derivatives, however, overcome these limitations by taking into account non-
integer orders, which better capture a variety of natural and artificial systems utilizing
the notion of conformable fractional derivative. This new concept provides a different
perspective on fractional derivatives and their applications [9–11]. The conformable frac-
tional derivative, while retaining the advantages of fractional calculus, offers an intriguing
framework for modeling complex phenomena that exhibit conformability to prevailing
physical laws [12–15].
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Definition 2.1 Let α be a real nonnegative number. For a positive integer m such
that m − 1 < α ≤ m, the Riemann-Liouville fractional-order differential operator of a
function f of order α is defined by

Dα
a f(x) =

1

Γ(m− α)

dm

dxm

∫ x

a

(x− t)m−α−1f(t)dt. (1)

Definition 2.2 Let α ∈ R and m = ⌈α⌉. The Caputo fractional-order derivative
operator Dα

a is defined by

Dα
a f = Jm−α

a Dmf. (2)

Definition 2.3 Let α ∈ R+ and m = ⌈α⌉ such that m − 1 < α ≤ m. Then the
Caputo fractional-order deivative operator of order α is given by

Dα
a f(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t)dt, x > a. (3)

It should be noted that if a = 0 in Equation (3), one can get the most reliable version of
the Caputo fractional-order derivative operator. That is,

Dα
∗ f(x) =

1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt, x > 0. (4)

Definition 2.4 Let ω : [0,∞) → R and t > 0, then given ω of order α, the con-
formable fractional derivative is defined as

Dα(ω)(t) = lim
ϵ→0

ω(t+ ϵt1−α)− ω(t)

ϵ
(5)

for all t > 0 and α ∈ (0, 1). If ω is α-differentiable in some (0, a), a > 0 and
limt→0+ ω(α)(t) exists, then specify ω(α)(0) = limt→0+ ω(α)(t).

Remark 2.1 The conformable fractional derivatives of ω of order α are denoted
by ω(α)(t) for Dα(ω)(t). Furthermore, we simply state ω is α-differentiable if the con-
formable fractional derivative of ω of order α exists, where Dα(t

p) = ptp−α.

Remark 2.2 The integral departs from the standard Riemann integral and instead
involves an erroneous version. The parameter α takes values in the interval (0, 1).
The conformable derivative, while maintaining all the conventional characteristics of the
ordinary first derivative, is under consideration. Furthermore, the derivative gives rise
to correct propositions according to the context presented.

• Dα(aω + bφ) = aDα(ω) + bDα(φ),

• Dα(t
p) = ptp−α, for all p ∈ R,

• Dα(ωφ) = ωDα(φ) + φDα(ω),

• Dα(
ω
φ ) =

φDα(ω)−ωDα(φ)
φ2 .
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3 Fractional Inverse Gamma Distribution

The Inverse Gamma distribution, denoted as IG(δ, β), is a two-parameter family of
continuous probability distributions defined on the positive real line. The Cumulative
Distribution Function (CDF) of the Inverse Gamma distribution is given by

G(x; δ, β) = 1− βδ

Γ(δ)

∫ x

0

tδ+1e−β/tdt, (6)

where δ > 0 and β > 0 are the shape and scale parameters, respectively, and Γ(δ)
represents the Gamma function.

The Probability Density Function (PDF) of the Inverse Gamma distribution is defined
as

g(x; δ, β) =
βδ

Γ(δ)
x−(δ+1)e−β/x, (7)

where δ > 0 and β > 0 are the shape and scale parameters, respectively, and Γ(δ)
represents the Gamma function.

In this section, we will introduce the CFIGD defined as follows:

x2αDαy + (bxα − β + xα)y = 0,

gα(x) =
α2(βα )

(b+1)/α

βΓ( (b−α−1)
α )

x−(b+1)e
−β

(αxα) .
(8)

Consequently,

lim
α→1−

gα(x) =
βb

Γ(b)
x−(b+1)e

−β
x . (9)

This represents the PDF of the Inverse Gamma distribution. Consequently, the CPDF
gα(x) can be seen as an extension or generalization of the PDF for the Inverse Gamma
distribution as the following Figure 1 shows, and for more about fractional distributions,
see [16–21]. For the Inverse Gamma distribution, α refers to the shape parameter. The

Figure 1: The CPDF of the inverse gamma distribution for different values of α.

shape parameter α is a crucial parameter that governs the shape of the distribution. It
determines the skewness and tail behavior of the distribution.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (2) (2024) 159–167 163

Figure 2: The CFSF of the inverse gamma distribution for different values of α.

A higher value of α results in a distribution that is more concentrated around its
mean, with lighter tails. On the other hand, a lower value of α leads to a more spread-
out distribution with heavier tails. Note that α must be greater than 0.

Definition 3.1 The Conformable α-Inverse Gamma Distribution (CFCDF) is de-
fined as

Gα(x) =

∫ x

0

gα(t)d
αt,

Gα(x) =
(αβ )

(2+b−α)(−1+α)
α Γ(2 + b− 1

α − α, x−αβ

α )

Γ( 1+b−α
α )

.

(10)

Definition 3.2 The Conformable Fractional Survival Function (CFSF) of X, (Sα)
is defined as

Sα(x) = 1−Gα(X)

Sα(x) = 1−
(αβ )

(2+b−α)(−1+α)
α Γ(2 + b− 1

α − α, x−αβ

α )

Γ( 1+b−α
α )

.
(11)

Definition 3.3 The Conformable Fractional Hazard Function (CFHF) X, (Hα) is
defined as

Hα =
Sα(x)

gα(x)
,

Hα(x) =
e

−x−αβ

α x−1−bα
−1−b+2α

α β
1+b−2α

α

Γ( 1+b−α
α )− (αβ )

(2+b−α)(−1+α)
α Γ(2 + b− 1

α − α, x−αβ

α )
.

(12)

Definition 3.4 The conformable fractional expectation Eα for the function v(x) is
defined as follows:

Eαv(X) =

∫
v(x)gα(x)d

αx,

Eα(X
r) =

α
−r
α β

r
αΓ( 1+b−r−α

α )

Γ( 1+b−α
α )

.

(13)
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To find the conformable fractional variance, conformable fractional standard deviation,
conformable fractional skewness, and conformable fractional kurtosis, we will find the
Eα(X

r) for r = 1, 2, 3, 4 as follows:

Eα(X) = µα =
(αβ )

−1
α Γ(−1 + b

α )

Γ( 1+b−r−α
α )

,

Eα(X
2) =

(αβ )
−2
α Γ(−1+b−α

α )

Γ( 1+b−α
α )

,

Eα(X
3) =

(αβ )
1− 1+b

α β(βα )
2−b
α Γ(−1 + −2+b

α )

αΓ(−1 + 1+b
α )

,

Eα(X
4) =

(αβ )
1− 1+b

α β(βα )
3−b
α Γ(−1 + −3+b

α )

αΓ(−1 + 1+b
α )

.

(14)

Definition 3.5 The conformable fractional variance is defined as follows:

ασ2 = Eα(X
2)− (µα)

2,

ασ2 =

α
−2
α β

2
α

(
− Γ(−1 + b

α )
2 + Γ(−1+b−α

α )Γ( 1+b−α
α )

)
Γ( 1+b−α

α )2
.

(15)

Definition 3.6 The conformable fractional standard deviation is defined as follows:

ασ =

√√√√√α
−2
α β

2
α

(
− Γ(−1 + b

α )
2 + Γ(−1+b−α

α )Γ( 1+b−α
α )

)
Γ( 1+b−α

α )2
.

(16)

Definition 3.7 The conformable fractional skewness is defined as follows:

αsk =
Eα(X − µ)3

ασ3
, (17)

and the conformable fractional skewness for CFIGD is defined as

sk =

(
2Γ(−1 + b

α )
3 − 3Γ(−1 + b

α )Γ(
−1+b−α

α )Γ( 1+b−α
α ) + Γ(−2+b−α

α )Γ( 1+b−α
α )2

)
(
− Γ(−1 + b

α )
2 + Γ(−1+b−α

α )Γ( 1+b−α
α )

) 3
2

.

(18)

Definition 3.8 The conformable fractional kurtosis is defined as follows:

αku =
Eα(X − µ)4

ασ4
, (19)

and the conformable fractional kurtosis for CFIGD is defined as

αku =
−3Γ(−1 + b

α )
4 + 6Γ(−1 + b

α )
2Γ(−1+b−α

α )Γ( 1+b−α
α )(

Γ(−1 + b
α )

2 − Γ(−1+b−α
α )Γ( 1+b−α

α )

)2

−
4Γ(−1 + b

α )Γ(
−2+b−α

α )Γ( 1+b−α
α )2 + Γ(−3+b−α

α )Γ( 1+b−α
α )3(

Γ(−1 + b
α )

2 − Γ(−1+b−α
α )Γ( 1+b−α

α )

)2 .

(20)
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Definition 3.9 The conformable fractional Shannon entropy of a random variable x
for the CFIGD is defined as follows:

SHα(x) = −Eα log gα(X),

SHα(x) =
1 + b− α− 2α log(α) + α log(β) + α log(Γ( 1+b−α

α ))− (1 + b)Ψ(0, 1+b−α
α )

α
.

(21)

Definition 3.10 The conformable fractional Tsallis entropy of a random variable x
for the CFIGD is defined as follows:

SHT,ξ(x) =
1

1− ξ
log(Eα(gα(X))ξ−1 − 1),

SHT,ξ(x) =
−1 + α−2+2ξβ1−ξξ1−

(1+b)ξ
α Γ( 1+b−α

α )−ξΓ(−α+ξ+bξ
α )

1− ξ
.

(22)

In Table 1, the quantiles of the distribution are classified by α in the rows and q in the
columns, the parameters of the distribution are β = 0.85 and b = 2.51.

α \ q 25 50 75
0.1 0.037 0.181 0.298
0.2 0.144 0.393 0.534
0.3 0.363 0.646 0.771
0.4 0.767 0.952 1.023
0.5 1.5 1.333 1.302
0.6 2.85 1.823 1.624
0.7 5.5 2.491 2.019
0.8 11.456 3.49 2.546
0.9 29.883 5.34 3.394

Table 1: Quantiles of the distribution.

The percentiles of the distribution are classified by α in the rows and q in the columns,
the parameters of the distribution are β = 0.70 and b = 1.51.

Corollary 3.1 Hence limξ→1 SHT,α,ξ(x) = SHα(x). We get that the limit of the
conformable fractional Tsallis entropy is equal to the conformable fractional Shannon
entropy.

Definition 3.11 The conformable fractional Renyi entropy of a random variable x
for the CFIGD is defined as follows:

SHR,α,ξ =
1

1− ξ
log(Eα(gα(X))ξ−1),

SHR,α,ξ =
1

α(−1 + ξ)

(
− 2α(−1 + ξ) log(α) + α(−1 + ξ) log(β)− α log(ξ)

+ ξ log(ξ) + bξ log(ξ) + αξ log(Γ(−1 +
1 + b

α
))− α log(Γ(−1 +

(1 + b)ξ

α
))

)
.

(23)

Corollary 3.2 Hence limξ→1 SHR,α,ξ = SHα(x). We get that the limit of the con-
formable fractional Renyi entropy is equal to the conformable fractional Shannon entropy.
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α \ q 10 20 30 40 50 60 70 80 90
0.1 0.001 0.006 0.023 0.05 0.084 0.12 0.158 0.196 0.233
0.2 0.002 0.022 0.069 0.128 0.19 0.249 0.306 0.357 0.404
0.3 0.004 0.053 0.138 0.23 0.315 0.391 0.458 0.516 0.567
0.4 0.01 0.104 0.236 0.36 0.464 0.551 0.622 0.681 0.73
0.5 0.023 0.187 0.374 0.526 0.644 0.734 0.804 0.859 0.903
0.6 0.052 0.322 0.57 0.746 0.868 0.953 1.014 1.059 1.093
0.7 0.12 0.556 0.866 1.049 1.159 1.227 1.269 1.296 1.313
0.8 0.301 1.004 1.353 1.508 1.575 1.601 1.606 1.601 1.59
0.9 0.982 2.112 2.359 2.359 2.294 2.215 2.139 2.068 2.004

Table 2: Percentiles of the distribution.

4 Conclusion

The paper defines the Cumulative Distribution Function (CDF), survival function, and
hazard function of the CFIGD, offering valuable insights into its behavior and potential
applications in reliability and risk analysis. Statistical measures such as the expected
values, r-th moments, mean, variance, skewness, and kurtosis are introduced as con-
formable fractional analogs, facilitating a deeper understanding of its central tendencies
and higher-order characteristics. Additionally, this research reveals the conformable frac-
tional analogs of popular entropy measures like the Shannon, Renyi, and Tsallis entropy,
providing useful tools for quantifying uncertainty and randomness.
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