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Abstract: In this paper, we investigate a fully implicit finite scheme approxima-
tion equation (IFSAE) of the 1-D linear variable-order time-fractional diffusion equa-
tion (VOTFDE). The numerical method of solving differential equations by approxi-
mating them with difference equations is called the implicit finite difference method
(IFDM). The first-order numerical scheme, stability, consistency and convergence of
the method are proven. Moreover, the scheme is implemented on two test problems
and some graphical results are offered to verify the theoretical analysis of the above
scheme and illustrate the effectiveness of the suggested schemes.
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1 Introduction

Applied mathematics is the application of mathematical methods in various fields such
as physics, engineering, medicine, biology, finance, economics, computer science and in-
dustry. Thus, applied mathematics is a combination of mathematics and engineering.
Operational calculus, also called operational analysis, is a technique used to transform
analytical problems, especially differential equations, into algebraic problems, usually the
problem of solving a polynomial equation. Numerical analysis is the study of algorithms
that use numerical approximation (as opposed to symbolic manipulations) to the prob-
lems of mathematical analysis (as distinct from discrete mathematics). This is the study
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of numerical methods that attempt to find approximate solutions rather than exact so-
lutions to problems. Numerical analysis is used in all areas of engineering and natural
sciences and, in the 21st century, also in life and social sciences, medicine, economics and
even in the arts.

Nonlinear dynamics is a hot topic in physics, complexity science, and theoretical bi-
ology. Nonlinear dynamics offers new ways of studying the numerical solution of the
variable-order time-fractional reaction-diffusion equation (VOTFRDE), namely implicit
and explicit finite difference methods. Motivated by the above facts and the literature
[3–8], namely in this work, we consider the numerical solution of the variable-order time-
fractional reaction-diffusion equation (VOTFRDE) in one-dimensional space, where the
parameter alpha is a function depending on x and t. A numerical scheme was given
in [5]– [12] for approximating the variable-order time-fractional reaction-diffusion equa-
tion (VOTFRDE). An Implicit Finite Difference Scheme method was applied for the
variable-order time-fractional reaction-diffusion equation (VOTFRDE) with the Coim-
bra derivative. Moreover, the scheme is implemented on two test problems and some
graphical results are offered to verify the theoretical analysis of the above scheme and
illustrate the effectiveness of the suggested schemes.

The paper is organized in a clear and comprehensive manner, as follows. The con-
struction of our mathematical model with boundary conditions is presented in Section
2. Section 3 develops the implicit finite difference scheme, which utilizes forward finite
difference approximations for space derivatives and Caputo’s concept for time-fractional
derivatives. In Section 4, we study the stability of the approximate scheme by using the
method of Fourier. Next, in Section 5, we prove the convergence of the approximate
scheme obtained in Section 3. The final Section 6 completes and summarizes several
numerical problems addressed using the method developed in Section 2. The numeri-
cal solutions are obtained using MATLAB and graphically visualized to provide a clear
understanding of the results.

2 Implicit Finite Difference Scheme

For the numerical solution of the space fractional diffusion equations, implicit and explicit
finite difference methods have been proposed in the literature [7], [8], [11], [16], [18]
and [20] for the numerical solution of the time-fractional diffusion equation. We augment
the implicit numerical scheme in this section. Let us take a variable-order time-fractional
diffusion equation as an example

∂βu
∂tβ

+ c∂u∂x = 0 0 < x < L, 0 < t < T, 0 < β < 1,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x).

(1)

3 Discretization and Development of the Scheme

Let [0, L] be the clomain of inerest, we discretise the domain first.We define

xi = ih, where i = 0,M, and tj = jk, where j = 0, N,

where k represents the time step size and h represents the space step length.
Let us assume that

u(xi, tj) = uj
i ,
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note that uj
i is the numerical approximation of u(xi, tj). Next, we consider the fractional-

order diffusion Equation (1), where β is the fractional order. The variable-order fractional
derivative of order β(x, t) is defined by the Coimbra derivative and is written as

∂β(x,t)u(x, t)

∂tβ(x,t)
=

{
1

Γ(1−β(x,t))

∫ t

0
uξ(x,ξ)

(t−ξ)β(x,t) dξ if 0 < β < 1,

ut(x, t) if β(x, t) = 1.
(2)

Initially, as the boundary value problem needs to be discretized to be able to solve
(1), it is first necessary to discretize the variable-order time-fractional derivative (2) as
follows:

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

1

Γ(1− β(xi, tj+1))

∫ tj+1

0

uξ(xi, ξ)

(tj+1 − ξ)β(xi,tj+1)
dξ

=
1

Γ(1− β(xi, tj+1))

j∑
s=0

∫ (s+1)k

sk

uξ(xi, ξ)

(tj+1 − ξ)β(xi,tj+1)
dξ,

then we obtain

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

1

Γ(1− β(xi, tj+1))

j∑
s=0

∫ (s+1)k

sk

(
∂u

∂ξ

)s+1

i

dξ

(tj+1 − ξ)β(xi,tj+1)
.

The first-order spatial derivative can be approximated by the following expression:(
∂u

∂ξ

)s+1

i

=
us+1
i − us

i

k
+∆(k). (3)

Adopting the discrete scheme given in (7), we discretize the variable-order time-
fractional derivative as

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

1

Γ(1− β(xi, tj+1))

j∑
s=0

us+1
i − us

i

k

∫ (j−s+1)k

(j−s)k

dy

yβ(xi,tj+1)

=
1

Γ(1− β(xi, tj+1))

j∑
n=0

uj−n+1
i − uj−n

i

k

∫ (n+1)k

nk

dy

yβ(xi,tj+1)

=
k−β(xi,tj+1)

(1−β(xi, tj+1))Γ(1−β(xi, tj+1))

j∑
n=0

(uj−n+1
i −uj−n

i )[(n+1)1−β(xi,tj+1)−n1−β(xi,tj+1)].

Let y = tj+1−ξ. We have Γ(1+β) = βΓ(β), and expanding the summation for n = 0,
we reach

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

k−β(xi,tj+1)

Γ(2− β(xi, tj+1))

[
uj+1
i − uj

i +

j∑
n=1

(uj−n+1
i − uj−n

i )

[(n+ 1)1−β(xi,tj+1) − n1−β(xi,tj+1)]

]
, (4)

where bj+1
i (n) = (n+ 1)1−β(xi,tj+1) − n1−β(xi,tj+1), ∀j = 0, N − 1.
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We will use the forward difference approximation of space derivative as follows:

∂u(xi, tj+1)

∂x
=

uj+1
i+1 − uj+1

i

h
+∆(h). (5)

Using approximations (3) and (5), the semi-linear diffusion equation (1), we obtain

k−β(xi,tj+1)

Γ(2− β(xi, tj+1))

[
uj+1
i −uj

i +

j∑
n=1

(uj−n+1
i −uj−n

i )bj+1
i (n)]

]
+c

uj+1
i+1 − uj+1

i

h
= 0, (6)

∀i = 1,M and ∀j = 1, N, where

aj+1
i =

c.kβ(xi,tj+1).Γ(2− β(xi, tj+1))

h
.

The initial and boundary conditions are

u0(xi) = u0
i , ∀i = 0,M,

uj+1
0 = uj+1

M = 0, ∀j = 0, N − 1.

We obtain the following approximate scheme for equation (1):
aj+1
i uj+1

i+1 + (1− aj+1
i )uj+1

i = uj
i −

∑j
n=1(u

j−n+1
i+1 − uj−n

i )bj+1
i (n),

∀i = 1,M − 1, ∀j = 1, N − 1,

uj+1
0 = uj+1

M = 0, ∀j = 0, N − 1,

u0
i = u0(xi), ∀i = 0,M.

(7)

3.1 Properties

The coefficients bj+1
i (n) for all i = 0,M and j = 0, N − 1, satisfy

• P1: bj+1
i (0) = 1.

• P2: 0 < bj+1
i (0) < 1.

4 Stability of the Approximate Scheme

In this section, we use the method of the Fourier analysis to discuss the stability of the
approximate scheme (7). Consider the following equation:

aj+1
i uj+1

i+1 + (1− aj+1
i )uj+1

i = uj
i −

j∑
n=1

(uj−n+1
i+1 − uj−n

i )bj+1
i (n), (8)

∀i = 1,M − 1, ∀j = 1, N − 1.

Now, we define the following function:{
uj(x) = uj

i , if xi− 1
2
< x < xi+ 1

2
, ∀i = 1,M − 1,

0, otherwise,
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where uj(x) has the Fourier series expansion

uj(x) =

+∞∑
m=−∞

ξj(m)e
2πm
L x, ∀j = 1, N − 1,

where

ξj(m) =
1

L

∫ L

0

uj(x)e−
2πm
L xdx.

After that, using Parseval’s theorem, we get∫ L

0

|uj(x)|2dx =

+∞∑
m=−∞

|ξj(m)|2, ∀j = 1, N − 1.

Then, we obtain the following expression:∫ L

0

|uj(x)|2dx =

M−1∑
i=1

|huj
i |
2, ∀j = 0, N,

and

∥uj∥22 =

M−1∑
i=1

|huj
i |
2 =

+∞∑
m=−∞

|ξj(m)|2, ∀j = 0, N.

Now, assume that the solution of the equation (8) has the form

uj
i = ξje

ντhi, (9)

where τ = 2πm
L and ν2 = −1. Next, we replace (9) in equation (8), then we have

ξj+1(1 + aj+1
i (eντh − 1)) = ξj −

j∑
n=1

(ξj−n+1 − ξj−n)b
j+1
i (n). (10)

Equation (10) can be rewritten as

ξj+1 =
ξj −

∑j
n=1(ξj−n+1 − ξj−n)b

j+1
i (n)

(1 + aj+1
i (eντh − 1))

, ∀j = 0, N − 1. (11)

We have the following first result.

Theorem 4.1 The implicit finite difference scheme (7) is unconditionally stable for
0 < β < 1 if

∃C > 0, ∥uj∥2 = |ξj | ≤ C∥u0∥2 = C|ξ0|, ∀j = 0, N − 1.

Proof. We use the proof by recurrence for j = 1, in view of (11), we obtain the
following majoration:

|ξ1| =
∣∣∣∣ ξ0

(1 + aj+1
i (eντh − 1))

∣∣∣∣= |ξ0|√
[1 + a1i (cos(τh)− 1)]2 + (a1i sin(τh))

2

=
|ξ0|

|1− 2a1i sin(
τh
2 )|

≤ C|ξ0|.
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Now, let C0 be given by

C0 = C =
1

|1− 2a1 sin( τh2 )|
such that a1 = min

0≤i≤M
(−a1i ).

We assume that the statement defined in (12) is true,

|ξj | ≤ C|ξ0|, ∀j = 1, N, (12)

and we prove that the statement defined by (13) is true,

|ξj+1| ≤ C|ξ0|, ∀j = 1, N. (13)

|ξj+1| =
∣∣∣∣ ξj −∑j

n=1(ξj−n+1 − ξj−n)b
j+1
i (n)

(1 + aj+1
i (eντh − 1))

∣∣∣∣
=

|ξj −
∑j

n=1(ξj−n+1 − ξj−n)b
j+1
i (n)|√

[1 + aj+1
i (cos(τh)− 1)]2 + (aj+1

i sin(τh))2

≤
|ξj |+

∑j
n=1 |ξj−n+1 − ξj−n||bj+1

i (n)|√
[1 + aj+1

i (cos(τh)− 1)]2 + (aj+1
i sin(τh))2

=
|ξj |+

∑j
n=1(|ξj−n+1|+ |ξj−n|)√

[1 + aj+1
i (cos(τh)− 1)]2 + (aj+1

i sin(τh))2

=
2N − 1

|1− 2aj+1
i sin( τh2 )|

|ξ0|

≤ (2N − 1)Cj |ξ0| ≤ [(2N − 1) max
0≤j≤N−1

Cj ]|ξ0|

= C|ξ0|,

where

Cj =
1

|1 + 2aj+1 sin( τh2 )|
such that aj+1 = min

0≤i≤M
(−aj+1

i ), ∀j = 0, N − 1,

then we obtain C = (2N − 1) max
0≤j≤N−1

Cj . Finally, we get

|ξj+1| ≤ C|ξ0|, ∀j = 0, N − 1,

and the approximate scheme (7) is unconditionally stable, which concludes the proof of
Theorem 4.1.

5 Convergence of the Approximate Scheme

In this section, we use the method of the Fourier analysis to discuss the convergence of
the error eji , which is given by

eji = u(xi, tj)− uj
i . (14)
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Replacing (14) in equation (8), we obtain

aj+1
i ej+1

i+1 + (1− aj+1
i )ej+1

i = eji −
j∑

n=1

(ej−n+1
i+1 − ej−n

i )bj+1
i (n) + rji (15)

∀i = 1,M − 1 and ∀j = 1, N − 1. Then we obtain

rji = kβ(xi,tj+1)Γ(2− β(xi, tj+1))[∆(k) + ∆(h)].

Next, we define the following grid functions as follows:

ej(x) =

{
eji , if xi− 1

2
< x < xi+ 1

2
, ∀i = 1,M − 1,

0, otherwise,

and

rj(x) =

{
rji , if xi− 1

2
< x < xi+ 1

2
, ∀i = 1,M − 1,

0, otherwise.

Then en(x) and rn(x) have the Fourier series expansions as follows:

ej(x) =

+∞∑
m=−∞

γj(m)e
2πm
L x, rj(x) =

+∞∑
m=−∞

λj(mp)e
2πm
L x, ∀j = 0, N, (16)

and

γj(m) =
1

L

∫ L

0

ej(x)e−
2πm
L xdx, , λj(m) =

1

L

∫ L

0

rj(x)e−
2πm
L xdx. (17)

After that, using Parseval’s thorem, we obtain∫ L

0

|ej(x)|2dx =

+∞∑
m=−∞

|γj(m)|2,
∫ L

0

|rj(x)|2dx =

+∞∑
m=−∞

|γj(m)|2, ∀j = 0, N,

then the errors ej and rj take the following form:

∥ej∥22 =

M−1∑
i=1

|heji |
2 =

+∞∑
m=−∞

|γj(m)|2, ∀j = 0, N, (18)

and

∥rj∥22 =

M−1∑
i=1

|hrji |
2 =

+∞∑
m=−∞

|λj(m)|2, ∀j = 0, N. (19)

Next, we suppose that
eji = γje

ντhi , rji = λje
ντhi, (20)

we replace (20) in equation (15), then we get

γj+1(1 + aj+1
i (eντh − 1)) = γj −

j∑
n=1

(γj−n+1 − γj−n)b
j+1
i (n) + λj ,

then

γj+1 =
γj −

∑j
n=1(γj−n+1 − γj−n)b

j+1
i (n) + λj

(1 + aj+1
i (eντh − 1))

, ∀j = 0, N − 1. (21)

We get the following result.
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Theorem 5.1 The implicit finite difference scheme (7) is convergent for 0 < β < 1
if

∥ej∥2 = |γj | ≤ C1(k + h), ∀j = 1, N.

Proof. We use the proof by recurrence for j = 1, we have

|γ1| =
∣∣∣∣ γ0 + λ0

(1 + a1i (e
ντh − 1))

∣∣∣∣≤ |γ0|+ |λ0|
|1− 2a1i sin(

τh
2 )|

≤ |λ0|
|1− 2a1i sin(

τh
2 )|

,

where γ0 = e0i = u(xi, 0)− u0
i = 0.

By the convergence of the series on the right-hand side of (19), there is a positive
constant C2 such that

∃C2 > 0, |r0i | ≤ C2(k + h), ∀i = 0,M,

then we obtain
∃C2 > 0, ∥r0∥2 = |λ0| ≤ C2

√
L(k + h),

so

|γ1| ≤
C2

√
L(k + h)

|1− 2a1i sin(
τh
2 )|

≤ C2

√
L(k + h)

|1− 2a1 sin( τh2 )|
= C1(k + h)

such that
a1 = min

0≤i≤M
(−a1i ),

and

C0 =
1

|1− 2a1 sin( τh2 )|
such that C1 = C0C2

√
L,

then we obtain
|γ1| ≤ C1(k + h).

We assume that the following statement is true:

∥ej∥2 = |γj | ≤ C1(k + h), j = 1, N, (22)

and we prove that the following statement is true:

∥ej+1∥2 = |γj+1| ≤ C1(k + h), j = 0, N − 1. (23)

One can see that |γj+1| satisfies

|γj+1| =
∣∣∣∣ γj −∑j

n=1(γj−n+1 − γj−n)b
j+1
i (n) + λj

(1 + aj+1
i (eντh − 1))

∣∣∣∣
=

∣∣∣∣ γj −∑j
n=1(γj−n+1 − γj−n)b

j+1
i (n) + λj

1− 2aj+1
i sin( τh2 )

∣∣∣∣
≤

|γj |+
∑j

n=1(|γj−n+1|+ |γj−n|)|bj+1
i (n)|+ |λj |

|1− 2aj+1
i sin( τh2 )|

≤ 2N − 1

|1− 2aj+1
i sin( τh2 )|

C1(k + h) +
|λj |

|1− 2aj+1
i sin( τh2 )|

.
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By the convergence of the series on the right-hand side of (19), there is a positive
constant C2 such that

∃C2 > 0, |rji | ≤ C2(k + h), i = 0,M, ∀j = 0, N.

Thereafter, we obtain

∃C2 > 0, ∥rj∥2 = |λj | ≤ C2

√
L(k + h), ∀j = 0, N,

then |γj+1| becomes as follows:

|γj+1| ≤
2N − 1

|1− 2aj+1
i sin( τh2 )|

C1(k + h) +
1

|1− 2aj+1
i sin( τh2 )|

C2

√
L(k + h)

≤ CC1(k + h) +
CC2

√
L

2N − 1
(k + h)

such that C = (2N − 1)max0≤j≤N−1 C
j , where Cj is given by

Cj =
1

|1 + 2aj+1 sin( τh2 )|
such that aj+1 = min

0≤i≤M
(−aj+1

i ), j = 0, N − 1.

Let

L =

(
C1(1− C)(2N − 1)

CC2

)2

.

Subsequently, we can obtain

|γj+1| ≤ CC1(k + h) +
CC2

√
L

2N − 1
(k + h) = C1(k + h).

Finally, we obtain
∥ej∥2 ≤ C1(k + h), ∀j = 0, N − 1.

So the implicit finite difference scheme (7) is convergent, which concludes the proof
of Theorem 5.1.

5.1 Solvability of the approximate scheme

Theorem 5.2 The approximate scheme (24) is uniquely solvable.

It can be seen that the corresponding homogeneous linear algebraic equations for the
approximate scheme (24) are

aj+1
i uj+1

i+1 + (1− aj+1
i )uj+1

i = uj
i −

∑j
n=1(u

j−n+1
i+1 − uj−n

i )bj+1
i (n),

∀i = 1,M − 1 and ∀j = 1, N − 1,

uj+1
0 = uj+1

M = 0, ∀i = 0,M and ∀j = 0, N − 1,

u0
i = 0, for all i = 0,M.

(24)

Proof. Similar to the proof of Theorem 4.1, we can also verify the solutions of
the equations (24) satisfy ∥uj∥2 ≤ C∥u0∥, for all j = 1, N, we have u0 = 0, so we get
uj = 0 for all j = 1, N.

This indicates that the equations (24) have only zero solutions, the approximate
scheme (24) is uniquely solvable. We now easily conclude the proof of Theorem 5.2.
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6 Numerical Experiments

In this section, two numerical examples are discussed to confirm the effectiveness of the
developed implicit difference scheme (IFDS).

Example 1. This first example is concerned with the numerical solution of the linear
variable-order time-fractional diffusion equation with initial and boundary conditions,
where the first order derivative is substituted by a Caputo fractional derivative of order
β (0 < β < 1). Consider the 1-D linear variable-order time-fractional diffusion equation
with initial and boundary conditions:

∂βu
∂tβ

+ c∂u∂x = 0 0 < x < L, 0 < t < T, 0 < β < 1,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x).

(25)

Specifically, we consider the model problem in (25) over x ∈ [0; 1], t ∈ [0; 1], L = 1,
T = 1, β = e−x−t, c = 0.5, N = M = 50, 100, 150, 200 and u0(x) = 1−0.3∗cos(pi∗x). We
present several numerical experiments to support the theoretical and numerical analyses
of the previous sections.

Example 2. We first fix in the mathematical model defined by (26), the values
of x ∈ [0; 1], t ∈ [0; 1], L = 1, T = 1, β = e−x∗t, c = 0.75, N = M = 20, 30, 40, 50
and u0(x) = 1 − 0.5 ∗ pi ∗ x. We present several numerical experiments to support the
theoretical and numerical analyses of the previous sections.

∂βu
∂tβ

+ c∂u∂x = 0 0 < x < L, 0 < t < T, 0 < β < 1,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x).

(26)

In this example, we present different numerical experiments to support the theoretical
and numerical analyses of the previous sections.
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Graphical plot of variable−order time−fractional equation with: x in [0;1],t in [0;1],L=1,T=1,beta=exp(−x−t),c=0.5,N=M=50 and u0(x)=1−0.3*cos(pi*x)
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Graphical plot of variable−order time−fractional equation with: x in [0;1],t in [0;1],L=1,T=1,beta=exp(−x−t),c=0.5,N=M=50 and u0(x)=1−0.3*cos(pi*x)

t

 

u
(x

,t
)

0

0.5

1

1.5

2

2.5

3

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

x

Graphical plot of variable−order time−fractional equation with: x in [0;1],t in [0;1],L=1,T=1,beta=exp(−x−t),c=0.5,N=M=50 and u0(x)=1−0.3*cos(pi*x)
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Figure 1. Example 1: Plot of LVTFDE: β = e−x−t, c = 0.50, u0(x) = 1− 0.3 ∗ cos(pi ∗ x)
N = M = 50, 100, 150, 200, L = T = 1, 0 < β < 1.
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Graphical plot of variable−order time−fractional equation with: x in [0;1],t in [0;1],L=1,T=1,beta=exp(−x*t),c=0.75,N=M=20 and u0(x)=1−0.3*pi*x.
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Graphical plot of variable−order time−fractional equation with: x in [0;1],t in [0;1],L=1,T=1,beta=exp(−x*t),c=0.75,N=M=30 and u0(x)=1−0.3*pi*x
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Graphical plot of variable−order time−fractional equation with: x in [0;1],t in [0;1],L=1,T=1,beta=exp(−x*t),c=0.75,N=M=40 and u0(x)=1−0.3*pi*x
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Graphical plot of variable−order time−fractional equation with: x in [0;1],t in [0;1],L=1,T=1,beta=exp(−x*t),c=0.75,N=M=50 and u0(x)=1−0.3*pi*x.
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Figure 2. Example 2: Plot of LVTFDE: β = e−x∗t, c = 0.75, u0(x) = 1 − 0.5 ∗ pi ∗ x,
N = M = 20, 30, 40, 50, L = T = 1, 0 < β < 1.

Conclusion

In this paper, we consider a numerical approximation method to solve a fractional model
for the advection-reaction-diffusion equation with the Coimbra derivative. By using
finite difference schemes and obtaining the operational matrix, all that remains is to
solve fractional partial differential equations. Some examples are given to illustrate the
effectiveness of the proposed numerical algorithm. In several cases, the capabilities of
the program developed with MATLAB were reached in terms of meshes and calculation
times.
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