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Boundary Value Problem for Fractional

q-Difference Equations

N. Allouch 1, S. Hamani 1∗ and J. Henderson 2
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B.P. 227, 27000, Mostaganem, Algeria.

2 Department of Mathematics, Baylor University, Waco, Texas. 76798-7328, USA.
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Abstract: In this paper, we study the existence of solutions for a class of boundary
value problems for fractional q-difference equations involving the Caputo fractional
q-difference derivative. Our results are given by applying some standard fixed point
theorems. Furthermore, an example is presented to illustrate one of the main results.

Keywords: fractional q-difference equations; Caputo fractional q-derivative;
existence; fixed point; Leray-Schauder nonlinear alternative.

Mathematics Subject Classification (2010): 26A33, 34A37, 70K05, 70K20.

1 Introduction

Fractional calculus is an important branch in mathematical analysis, currently being
addressed by many researchers in various fields of science and engineering such as physics,
chemistry, biology, economics, control theory, and biophysics, etc. For more details,
see [15, 19, 22, 23, 27]. Recently, considerable attention has been given to the existence
of solutions to the boundary value problems for fractional differential equations. See for
example, the papers of Benchohra et al. [4, 10,11] and references therein.

In 1910, Jackson [16,17], the first researcher to develop q-difference calculus or quan-
tum calculus in a systematic way, introduced the notions of the q-integral and some
classical concepts.

Combining fractional calculus and q-calculus, we obtain fractional q-difference cal-
culus. This generalizes q-calculus by defining the q-derivatives and q-integrals in an
arbitrary order. The fractional q-difference calculus had its origin in the end of the

∗ Corresponding author: mailto:hamani_samira@yahoo.fr

© 2024 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua111
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sixties with the works of Al-Salam [7] and Agarwal [3]. For an extended book on the
subject, we suggest to the reader the recent book [9]. Since then, there has appeared
much work on the theory of fractional q-difference calculus and fractional q-difference
equations, see [8, 24,25] for example.

Moreover, fractional q-difference equations have wide applications in several fields
such as engineering, economics, chemistry, physics, and so on. So, the boundary value
problems for fractional q-difference equations involving the Caputo fractional q-derivative
have become of importance and the existence of their solutions has been studied by a
great number of researchers, see the references [1, 2, 5, 6, 26].

In this paper, motivated by the works of Benchohra et al. [11] and Benhamida et
al. [12], we wish to discuss the existence of solutions of the boundary value problem for
fractional q-difference equations of the form

(CDα
q y)(t) = f(t, y(t)), for a.e. t ∈ J = [0, T ], 0 < α ≤ 1, (1)

ay(0) + by(T ) = c, (2)

where T > 0, q ∈ (0, 1), CDα
q is the Caputo fractional q-difference derivative of order

0 < α ≤ 1, f : [0, T ]× R → R is a given function and a, b and c are real constants such
that a+ b ̸= 0.

We give three existence results, one based on Banach’s fixed point theorem, another
based on Schaefer’s fixed point theorem and the third based on Leray-Schauder nonlinear
alternative theorem. Finally, we present an example.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be
used in the remainder of this paper.

Let T > 0 and define J := [0, T ]. Consider the Banach space C(J,R) of continuous
functions from J into R, with the norm

∥y∥∞ = sup{|y(t)| : 0 ≤ t ≤ T}.

Let L1(J,R) denote the Banach space of measurable functions y : J → R which are
Lebesgue integrable, with the norm

∥y∥L1 =

∫
J

|y(t)|dt.

Now, we recall some definitions and properties of the fractional q-calculus [13,18].
For a ∈ R and 0 < q < 1, we set

[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)(n) is expressed by

(a− b)(0) = 1, (a− b)(n) =

n−1∏
k=0

(a− bqk), a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aα
∞∏
k=0

(
a− bqk

a− bqk+α

)
, a, b, α ∈ R.

Note that if b = 0, then a(α) = aα.
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Definition 2.1 [18] The q-gamma function is defined by

Γq(α) =
(1− q)(α−1)

(1− q)α−1
, α ∈ R− {0,−1,−2, . . .}.

Notice that the q-gamma function satisfies Γq(α+ 1) = [α]qΓq(α).

Definition 2.2 [18] The q-derivative of order n ∈ N of a function f : J → R, is
defined by (D0

qf)(t) = f(t),

(Dqf)(t) = (D1
qf)(t) =

f(t)− f(qt)

(1− q)t
, t ̸= 0, (Dqf)(0) = lim

t→0
(Dqf)(t),

and
(Dn

q f)(t) = (D1
qD

n−1
q f)(t), t ∈ J, n ∈ {1, 2, . . .}.

Set Jt := {tqn : n ∈ N} ∪ {0}.

Definition 2.3 [18] The q-integral of a function f : Jt → R, is defined by

(Iqf)(t) =

∫ t

0

f(s)dqs =

∞∑
n=0

t(1− q)qnf(tqn),

provided that the series converges.

We note that (DqIqf)(t) = f(t), while if f is continuous at 0, then

(IqDqf)(t) = f(t)− f(0).

Definition 2.4 [3] The Riemann-Liouville fractional q-integral of order α ≥ 0 of a
function f : J → R is defined by (I0q f)(t) = f(t), and

(Iαq f)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s)dqs, t ∈ J.

Note that for α = 1, we have (I1q f)(t) = (Iqf)(t).

Lemma 2.1 [25] For α ≥ 0 and β ∈ (−1,+∞), we have

(Iαq (t− a)(β))(t) =
Γq(β + 1)

Γq(α+ β + 1)
(t− a)(α+β), 0 < a < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(α+ 1)
t(α).

Definition 2.5 [24] The Riemann-Liouville fractional q-derivative of order α ≥ 0 of
a function f : J → R is defined by (D0

qf)(t) = f(t), and

(Dα
q f)(t) = (D[α]

q I [α]−α
q f)(t), t ∈ J,

where [α] is the integer part of α.
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Definition 2.6 [24] The Caputo fractional q-derivative of order α ≥ 0 of a function
f : J → R is defined by (D0

qf)(t) = f(t), and

(CDα
q f)(t) = (I [α]−α

q D[α]
q f)(t), t ∈ J,

where [α] is the integer part of α.

Lemma 2.2 [24] Let α, β ≥ 0 and let f be a function defined on J . Then the
following identities hold:

(i) (Iαq I
β
q f)(t) = (Iα+β

q f)(t),

(ii) (Dα
q I

α
q f)(t) = f(t).

Lemma 2.3 [24] Let α ≥ 0 and let f be a function defined on J . Then the following
equality holds:

(Iαq
CDα

q f)(t) = f(t)−
[α]−1∑
k=0

tk

Γq(k + 1)
(Dk

q f)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q f)(t) = f(t)− f(0).

Next, we offer a variety of fixed point theorems.

Theorem 2.1 (Banach contraction principle) [14]
Let C be a non-empty closed subset of a Banach space X, then any contraction mapping
H of C into itself has a unique fixed point.

Theorem 2.2 (Schaefer) [28] Let X be a Banach space and H : X → X be a
completely continuous operator. If the set

E(H) := {y ∈ X : y = λH(y), for λ ∈ (0, 1)}

is bounded, then H has a fixed point.

Theorem 2.3 (Nonlinear alternative of Leray-Schauder) [14] Let X be a Banach
space and C be a closed, convex subset of X. Let U be an open subset of C with 0 ∈ U
and H : U → C be a continuous and compact operator. Then either

(a) H has fixed points, or

(b) There exist y ∈ ∂U and λ ∈ (0, 1) with y = λH(y).

3 Main Results

Let us start by defining what we mean by a solution of the problem (1)-(2).

Definition 3.1 A function y ∈ C(J,R) is said to be a solution of the problem (1)-
(2) if y satisfies the equation (CDα

q y)(t) = f(t, y(t)) on J , and satisfies the condition
ay(0) + by(T ) = c.
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For the existence of solutions to the problem (1)-(2), we need the following auxiliary
lemma.

Lemma 3.1 Let h : J → R be continuous, the solution of the boundary value problem

(CDα
q y)(t) = h(t), t ∈ J = [0, T ], 0 < α ≤ 1, (3)

ay(0) + by(T ) = c, (4)

is given by

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs−

b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
h(s)dqs+

c

a+ b
. (5)

Proof. Applying the Riemann-Liouville fractional q-integral of order α to both sides
of equation (3), and by using Lemma 2.3, we have

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs+ c0. (6)

Using the boundary condition of the problem in (4), we obtain

ay(0) + by(T ) = ac0 + b(Iαq h(T ) + c0) = c.

So

c0 =
c

a+ b
− b

a+ b
Iαq h(T ).

Finally, by substitution of c0 into (6), we give

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs−

b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
h(s)dqs+

c

a+ b
.

The proof is completed. 2

In the following subsections we prove the existence and uniqueness results of the
problem (1)-(2) by using a variety of fixed point theorems.

We consider the following hypotheses:

(H1) The function f : [0, T ]× R → R is continuous.

(H2) There exists a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y|, for each t ∈ J and each x, y ∈ R.

(H3) There exists a constant M > 0 such that

|f(t, x)| ≤M, for each t ∈ J and each x ∈ R.

The first result is based on the Banach contraction principle theorem (Theorem 2.1).

Theorem 3.1 Assume that the hypothesis (H2) is satisfied. If(
1 +

|b|
|a+ b|

)
LT (α)

Γq(α+ 1)
< 1, (7)

then the problem (1)-(2) has a unique solution on [0, T ].
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Proof. Transform the problem (1)-(2) into a fixed point problem. Consider the
operator

H : C(J,R) −→ C(J,R)

defined by

(Hy)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, y(s))dqs

− b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
f(s, y(s))dqs+

c

a+ b
. (8)

By Lemma 3.1, the fixed points of H are the solutions of the problem (1)-(2). We shall
prove that H is a contraction mapping on C(J,R).

For x, y ∈ C(J,R) and for each t ∈ J = [0, T ], we have

|(Hx)(t)− (Hy)(t)| =

∣∣∣∣∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, x(s))− f(s, y(s))) dqs

− b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
(f(s, x(s))− f(s, y(s))) dqs

∣∣∣∣∣ .
Therefore, by (H2), we obtain

|(Hx)(t)− (Hy)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, x(s))− f(s, y(s))| dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, x(s))− f(s, y(s))| dqs,

≤ L

∫ t

0

(t− qs)(α−1)

Γq(α)
|x(s)− y(s)| dqs

+
L|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|x(s)− y(s)| dqs.

Hence

∥H(x)−H(y)∥∞ ≤
(
1 +

|b|
|a+ b|

)
LT (α)

Γq(α+ 1)
∥x− y∥∞.

By (7), H is a contraction, and by the Banach contraction principle theorem, we deduce
that H has a unique fixed point, which is the unique solution of the problem (1)-(2). 2
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The second result is based on Schaefer’s fixed point theorem (Theorem 2.2).

Theorem 3.2 Assume that the hypotheses (H1) and (H3) hold. Then the problem
(1)-(2) has at least one solution on [0, T ].

Proof. We shall use Schaefer’s fixed point theorem to prove that H defined by (8)
has a fixed point.
The proof will be given in several steps.

Step 1: H is continuous.
Let {yn}n∈N be a sequence such that yn → y in C(J,R). Then, for each t ∈ J , we

have

|(Hyn)(t)− (Hy)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, yn(s))− f(s, y(s))| dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, yn(s))− f(s, y(s))| dqs.

Hence, for each t ∈ J , we find

∥H(yn)−H(y)∥∞ ≤
(
1 +

|b|
|a+ b|

)
T (α)

Γq(α+ 1)
∥f(., yn(.))− f(., y(.))∥∞.

Since f is continuous, we have

∥H(yn)−H(y)∥∞ → 0 as n→ ∞.

Consequently, H is continuous on C(J,R).
Step 2: H maps bounded sets into bounded sets in C(J,R).
Indeed, it is enough to show that for any r > 0, there exists a positive constant R

such that for each y ∈ Br = {y ∈ C(J,R) : ∥y∥∞ ≤ r}, we have ∥H(y)∥∞ ≤ R.
Let y ∈ Br. Then, for each t ∈ J , we have

|(Hy)(t)| =

∣∣∣∣ ∫ t

0

(t−qs)(α−1)

Γq(α)
f(s, y(s))dqs−

b

a+b

∫ T

0

(T − qs)(α−1)

Γq(α)
f(s, y(s))dqs+

c

a+b

∣∣∣∣.
By (H3), we obtain

|(Hy)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, y(s))|dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, y(s))|dqs+

|c|
|a+ b|

,

≤
(
1 +

|b|
|a+ b|

)
MT (α)

Γq(α+ 1)
+

|c|
|a+ b|

.

Hence

∥H(y)∥∞ ≤
(
1 +

|b|
|a+ b|

)
MT (α)

Γq(α+ 1)
+

|c|
|a+ b|

:= R.

Consequently, H is uniformly bounded on Br.
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Step 3: H maps bounded sets into equicontinuous sets of C(J,R).
Let t1, t2 ∈ J, t1 < t2 and let Br be a bounded set of C(J,R) as in Step 2. Let

y ∈ Br, then

|(Hy)(t2)− (Hy)(t1)| =

∣∣∣∣ ∫ t2

0

(t2 − qs)(α−1)

Γq(α)
f(s, y(s))dqs

−
∫ t1

0

(t1 − qs)(α−1)

Γq(α)
f(s, y(s))dqs

∣∣∣∣,
≤

∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
Γq(α)

|f(s, y(s))|dqs

+

∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
|f(s, y(s))|dqs.

By (H3), we get

|(Hy)(t2)− (Hy)(t1)| ≤ M

Γq(α)

∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
dqs

+
M

Γq(α)

∫ t2

t1

(t2 − qs)(α−1)dqs.

Thus

∥(Hy)(t2)− (Hy)(t1)∥∞ ≤ M

Γq(α+ 1)

(
t
(α)
2 − t

(α)
1

)
.

As t1 → t2, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1, 2 and 3, together with the Arzela-Ascoli theorem, we

can conclude that H is completely continuous.
Step 4: A priori bound.
Now, we prove that the set Ω = {y ∈ C(J,R) : y = λH(y), 0 < λ < 1} is bounded.

Let y ∈ Ω. Thus, for each t ∈ J , we have

y(t) = λ(Hy)(t),

= λ

(∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, y(s))dqs

− b

a+ b

∫ T

0

(T − qs)(α−1)

Γq(α)
f(s, y(s))dqs+

c

a+ b

)
.

Then, by (H3) (as in Step 2), it follows that, for each t ∈ J , we get

∥y(t)∥∞ ≤
(
1 +

|b|
|a+ b|

)
MT (α)

Γq(α+ 1)
+

|c|
|a+ b|

.

Consequently, ∥y(t)∥∞ ≤ R <∞, the set Ω is bounded.
As a consequence of Schaefer’s fixed point theorem, we deduce that H has a fixed

point which is a solution of the problem (1)-(2). 2
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The third result is based on the Leray-Schauder nonlinear alternative theorem (The-
orem 2.3).

Theorem 3.3 Assume that (H1) holds and the following hypotheses are satisfied:

(H4) There exist ϕf ∈ L1(J,R+) and ψ : [0,∞) → (0,∞) are continuous and nonde-
creasing such that

|f(t, y)| ≤ ϕf (t)ψ(|y|) for each t ∈ J and each y ∈ R.

(H5) There exists a number ν > 0 such that

ν(
1 + |b|

|a+b|

)
ψ(ν)(Iαq ϕf )(T ) +

|c|
|a+b|

> 1.

Then the problem (1)-(2) has at least one solution on [0, T ].

Proof. We shall use the Leray-Schauder theorem to prove that H defined by (8) has
a fixed point. As shown in Theorem 3.2, we see that the operator H is continuous and
completely continuous.

Let y ∈ C(J,R) such that for each t ∈ [0, T ] , we have y(t) = λ(Hy)(t) for λ ∈ (0, 1).
Then, from (H4) and for every t ∈ J , we give

|y(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, y(s))|dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
|f(s, y(s))|dqs+

|c|
|a+ b|

,

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
ϕf (s)ψ(|y|)dqs

+
|b|

|a+ b|

∫ T

0

(T − qs)(α−1)

Γq(α)
ϕf (s)ψ(|y|)dqs+

|c|
|a+ b|

.

Thus

∥y∥∞ ≤
(
1 +

|b|
|a+ b|

)
ψ(∥y∥∞)(Iαq ϕf )(T ) +

|c|
|a+ b|

.

Hence

∥y∥∞(
1 + |b|

|a+b|

)
ψ(∥y∥∞)(Iαq ϕf )(T ) +

|c|
|a+b|

≤ 1.

Then, by condition (H5), there exists ν such that ∥y∥∞ ̸= ν. Let us set

U = {y ∈ C(J,R) : ∥y∥∞ < ν} .

The operator H : U → C(J,R) is completely continuous. From the choice of U , there
is no y ∈ ∂U such that y = λH(y), for some λ ∈ (0, 1). As a result, by the nonlinear
alternative of Leray-Schauder type, H has a fixed point y ∈ U , which is a solution of the
problem (1)-(2). The proof is completed. 2
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4 Example

Consider the boundary value problem for fractional 1
3 -difference equations

(CD
1
2
1
3

y)(t) =
e−t2y(t)

(6 + t)(1 + y(t))
, t ∈ J = [0, 1], 0 < α ≤ 1, (9)

y(0) + y(1) = 0, (10)

where α = 1
2 , q =

1
3 , a = 1, b = 1, c = 0, T = 1, and

f(t, y) =
e−t2y

(6 + t)(1 + y)
, (t, y) ∈ J × [0,∞).

Let x, y ∈ [0,∞) and t ∈ J . Then we have

|f(t, x)− f(t, y)| =

∣∣∣∣∣ e−t2

(6 + t)

(
x

1 + x
− y

1 + y

)∣∣∣∣∣ ,
≤ e−t2

(6 + t)
|x− y|,

≤ 1

6
|x− y|.

Hence, the condition (H2) holds with L = 1
6 . We shall check that condition (7) is satisfied

with T = 1. Indeed,(
1 +

|b|
|a+ b|

)
LT (α)

Γq(α+ 1)
=

(
1 +

1

2

)
1

6Γq(
3
2 )
,

= 0.2666 < 1,

where Γ 1
3
( 32 ) ≈ 0.9376. Then, by Theorem 3.1, the problem (9)-(10) has a unique solution

on [0, 1].

5 Conclusion

In this paper, we have presented the existence and uniqueness of solutions of the boundary
value problem for fractional q-difference equations. The uniqueness result is obtained by
applying the Banach contraction principle theorem, while the existence results are proved
via Schaefer’s fixed point theorem and the Leray-Schauder nonlinear alternative theorem.
Finally, we illustrated our main results by providing an example.
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Abstract: In this research, we present a novel numerical approach to tackle
an incommensurate system of fractional differential equations of 2α-order, where
α = (α1, α2, α3, · · · , αn) with 0 < αi ≤ 1, ∀i = 1, 2, 3, · · · , n. Our proposed method
involves reducing the system to α-fractional differential equations using a newly de-
rived result, followed by the implementation of the Modified Fractional Euler Method
(MFEM), a recent numerical technique. We demonstrate the efficacy of our approach
through an illustrative example, providing validation for our proposed methodology.

Keywords: incommensurate system; fractional differential equations; modified frac-
tional Euler method.
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1 Introduction

In recent years, Fractional Differential Equations (FDEs) have been extensively studied
and applied due to their ability to capture the dynamics of systems with long-range
interactions, anomalous diffusion, and viscoelasticity. The fractional derivatives allow
for the inclusion of memory and hereditary properties, making them suitable for model-
ing phenomena that exhibit memory retention and relaxation effects. While significant
progress has been made in solving FDEs, there remains a challenging class of problems
known as incommensurate higher-order FDEs. These equations involve fractional deriva-
tives of different orders that are not rational multiples of each other. As a result, they
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lack a common denominator, leading to difficulties in analytical solutions and numerical
treatments.

In this paper, we focus on addressing incommensurate higher-order FDEs, which are
characterized by having fractional derivatives of different orders. Such systems present
unique challenges in numerical solutions due to their complex nature [1–4]. Our ob-
jective is to develop an efficient and accurate numerical method to handle this class of
FDEs. The proposed numerical approach is based on two main steps. First, we derive
a result that enables us to transform the incommensurate system into a set of α-FDEs,
where α = (α1, α2, α3, · · · , αn). This transformation simplifies the problem and prepares
it for numerical treatment. The parameters αi are limited to the range 0 < αi ≤ 1,
for i = 1, 2, 3, · · · , n, encompassing various degrees of fractional order, allowing for a
comprehensive analysis of the system’s behavior. Next, we employ the Modified Frac-
tional Euler Method (MFEM), a recently developed numerical technique tailored to solve
FDEs efficiently and accurately. The MFEM incorporates adaptive step-size control and
higher-order approximation schemes, making it well-suited for addressing the complexi-
ties of incommensurate higher-order fractional systems.

To demonstrate the effectiveness of our numerical approach, we present two illustra-
tive examples. The results obtained by our proposed method are compared with existing
analytical solutions, showcasing the accuracy and reliability of our approach. The rest
of the paper is organized as follows. Section 2 provides a brief overview of the relevant
background and related works. Section 3 outlines the theoretical framework and the
proposed numerical approach in detail. In Section 4, we present two numerical examples
with some comparisons, and in Section 5, we conclude the whole paper.

2 Preliminaries

In this section, we recall some preliminaries and basic results related to fractional calculus.
For more about FDEs and fractional calculus, see [5].

Definition 2.1 Let α be a real nonnegative number. Then the Riemann-Liouville
fractional-order integrator Jα

a is defined by

Jα
a f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, a ≤ x ≤ b. (1)

Definition 2.2 Let α ∈ R+ and m = ⌈α⌉ such that m − 1 < α ≤ m. Then the
Caputo fractional-order differentiator of order α is given by

Dα
a f(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t)dt, x > a. (2)

Theorem 2.1 [6] (Generalized Taylor’s Theorem). Suppose that Dkα
∗ f(x) ∈ C(0, b]

for k = 0, 1, · · · , n + 1, where 0 < α ≤ 1. Then the function f can be expanded about
x = x0 as

f(x) =

n∑
i=0

xiα

Γ(iα+ 1)
Diα

∗ f(x0) +
x(n+1)α

Γ((n+ 1)α+ 1)
D

(n+1)α
∗ f(ξ), (3)

with 0 < ξ < x, ∀x ∈ (0, b].
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Now, by using the first three terms of the generalized Taylor theorem and for ξ ∈ (a, b),
ti ∈ [a, b], in which the interval is divided as a = t0 < t1 = t0 + h < t2 = t0 + 2h < · · · <
tn = t0 + nh = b with h = b−a

n for i = 1, 2, · · · , n, we can expand y(t) about t = ti to
develop a new further modification for the Fractional Euler Method (FEM), called the
MFEM. This formula has the form [7,8]

y(ti+1) = y(ti) +
hα

Γ(α+ 1)
f

(
ti +

hα

2Γ(α+ 1)
, y(ti) +

hα

2Γ(α+ 1)
f(ti, y(ti))

)
+

h2α

Γ(2α+ 1)
D2α(ξ),

(4)

where ξ ∈ (a, b).

3 Numerical Approach

In this section, we propose a novel result that can reduce the higher incommensurate
fractional system of 2α-order into an α-fractional system, where α = (α1, α2, α3, · · · , αn)
with 0 < αi ≤ 1, ∀i = 1, 2, 3, · · · , n. Then, we describe how one can deal with the
produced system.

Lemma 3.1 Any FDE of order nα, n ∈ Z+ and α ∈ (0, 1], with functions possessing
values in R, can be converted into a system of FDEs of order α with values in Rnd.

Proof. To prove this result, we should first take the scalar case that takes place
whenever d = 1 and then we will consider the remaining case that occurs when α > 1.
For this reason, we should note that the general form of the FDE of order nα in its scalar
case can be given by

Dnαy(t) = G(t, y(t), Dαy(t), D2αy(t), · · · , D(n−1)αy(t)), (5)

where G is a continuous function defined on the subset I × R × R × · · · × R so that it
takes values in R for a given interval I. Now, define the function

Ψ(t, v0, v1, · · · , vn−1) = (v1, v2, · · · , G(t, v0, v1, · · · , vn−1)) (6)

as a continuous function defined on I × R× R× · · · × R as G, but it takes the values in
Rn. In this regard, we consider the following equation:

DαY(t) = Ψ(t,Y(t)), for t ∈ I. (7)

Now, we want to show that x : I → R is a solution of equation (6) if and only if the
function

X :I → Rn,

t → (x(t), Dαx(t), D2αx(t), · · · , D(n−1)αx(t)),
(8)

is a solution of equation (7). To this end, we assume that x is a solution to equation (6)
such that X is as defined above. Then we have

DαX(t) =


Dαx(t)
D2αx(t)

...
D(n−1)αx(t)
Dnαx(t)

 =


Dαx(t)
D2αx(t)

...
D(n−1)αx(t)

G(t, x(t), Dαx(t), D2αx(t), · · · , D(n−1)αx(t))

 , (9)
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i.e.,
DαX(t) = Ψ(t,X(t)). (10)

Herein, the converse of the above discussion is similar. Now, for the case of α > 1, one
can reread the above proof again, and substitute each occurrence of R by Rd to get the
result.

Corollary 3.1 Lemma 3.1 can hold for α = (α1, α2, · · · , αn), where 0 < αi ≤ 1, for
all i = 1, 2, · · · , n.

For the purpose of addressing FDEs of 2α-order, where α = (α1, α2, · · · , αn) such
that 0 < αi ≤ 1, for all i = 1, 2, · · · , n, we consider this system has the following form:

D2α1y1(t) = g1(t,Y(t), D2αY(t)),

D2α2y2(t) = g2(t,Y(t), D2αY(t)),

D2α3y3(t) = g3(t,Y(t), D2αY(t)),

...

D2αnyn(t) = gn(t,Y(t), D2αY(t))

(11)

with the initial conditions
yi(0) = ai, Dαyi(0) = bi (12)

such that ai and bi are constants for all i = 1, 2, · · · , n, where

Y(t) = (y1(t), y2(t), y3(t), · · · , yn(t))

and
D2αY(t) =

(
D2α1y1(t), D

2α2y2(t), D
2α3y3(t), · · · , D2αnyn(t)

)
.

In order to obtain an approximate solution to system (11), we reduce it with the use
of Lemma 3.1 into α-FDEs. In particular, we suppose that

v1(t) = Dα1y1(t),

v2(t) = Dα2y2(t),

v3(t) = Dα3y3(t),

...

vn(n) = Dαnyn(t).

(13)

Actually, the above assumption would convert system (11) to the following form:

Dα1y1(t) = v1(t) = h1(t,X(t)),

Dα1v1(t) = g1(t,X(t)),

Dα2y2(t) = v2(t) = h2(t,X(t)),

Dα2v2(t) = g2(t,X(t)),

Dα3y3(t) = v3(t) = h3(t,X(t)),

Dα3v3(t) = g3(t,X(t)),

...

Dαnyn(t) = vn(t) = hn(t,X(t)).

Dαnvn(t) = gn(t,X(t))

(14)
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with the initial conditions

yi(0) = ai, vi(0) = bi, ∀i = 1, 2, · · · , n, (15)

whereX(t) = (y1(t), v1(t), y2(t), v2(t), y3(t), v3(t), · · · , yn(t), vn(t)). Now, to solve system
(14), we use the MFEM. This method divides the solutions interval [a, b] as a = t0 < t1 =
t0 + h < t2 = t0 + 2h < · · · < tn = t0 + nh = b, in which ti = a+ ih are called the mesh
points for i = 1, 2, · · · , n, and h = b−a

n is the step size of the algorithm. Accordingly,
based on the MFEM, we obtain the following states:

y1(ti+1) = y1(ti) +
hα1

Γ(α1 + 1)
h1

(
ti +

hα1

2Γ(α1 + 1)
,X(ti) +

hα1

Γ(α1 + 1)
h1(ti,X(ti))

)
,

v1(ti+1) = v1(ti) +
hα1

Γ(α1 + 1)
g1

(
ti +

hα1

2Γ(α1 + 1)
,X(ti) +

hα1

Γ(α1 + 1)
g1(ti,X(ti))

)
,

y2(ti+1) = y2(ti) +
hα2

Γ(α2 + 1)
h2

(
ti +

hα2

2Γ(α2 + 1)
,X(ti) +

hα2

Γ(α2 + 1)
h2(ti,X(ti))

)
,

v2(ti+1) = v2(ti) +
hα2

Γ(α2 + 1)
g2

(
ti +

hα2

2Γ(α2 + 1)
,X(ti) +

hα2

Γ(α2 + 1)
g2(ti,X(ti))

)
,

y3(ti+1) = y3(ti) +
hα3

Γ(α3 + 1)
h3

(
ti +

hα3

2Γ(α3 + 1)
,X(ti) +

hα3

Γ(α3 + 1)
h3(ti,X(ti))

)
,

v3(ti+1) = v3(ti) +
hα3

Γ(α3 + 1)
g3

(
ti +

hα3

2Γ(α3 + 1)
,X(ti) +

hα3

Γ(α3 + 1)
g3(ti,X(ti))

)
,

...

yn(ti+1) = yn(ti) +
hαn

Γ(αn + 1)
hn

(
ti +

hαn

2Γ(αn + 1)
,X(ti) +

hαn

Γ(αn + 1)
hn(ti,X(ti))

)
,

vn(ti+1) = vn(ti) +
hαn

Γ(αn + 1)
gn

(
ti +

hαn

2Γ(αn + 1)
,X(ti) +

hαn

Γ(αn + 1)
gn(ti,X(ti))

)
(16)

for all i = 1, 2, · · · , n. As a matter of fact, formulas (16) represent an approximate
solution of system (14) and therefore (y1(t), y2(t), y3(t), · · · , yn(t) is then the desired
solution of system (11).

4 Illustrative Examples

In this part, we illustrate our proposed approach by considering two incommensurate
systems of FDEs, each of them is of 2α-order, where α = (α, β) with 0 < α, β ≤ 1.

Example 4.1 Consider the following system:

D2αx1(t) +
1

2
(x1(t)− x2(t)) = 1,

D2βx2(t) +
1

2
(x2(t)− x1(t)) = 2

(17)

with the initial conditions
x1(0) = 1, Dαx1(0) = 0,

x2(0) =
1

2
, Dβx2(0) = 0.

(18)
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To solve system (17)-(18) with the use of Lemma 3.1, we assume u1(t) = Dαx1(t) and
u2(t) = Dβx2(t). This would convert system (17)-(18) to be as follows:

Dαx1(t) = u1(t),

Dαu1(t) = 1− 1

2
(x1(t)− x2(t)),

Dβx2(t) = u2(t),

Dβu2(t) = 2− 1

2
(x2(t)− x1(t))

(19)

with the initial conditions
x1(0) = 1, u1(0) = 0,

x2(0) =
1

2
, u2(0) = 0.

(20)

For simplicity, one might suppose

f1(t,X(t)) = u1(t),

f2(t,X(t)) = 1− 1

2
(x1(t)− x2(t)),

f3(t,X(t)) = u2(t),

f4(t,X(t)) = 2− 1

2
(x2(t)− x1(t)),

(21)

where X(t) = (x1(t), u1(t), x2(t), u2(t)). This would make system (19)-(20) to be as

Dαx1(t) = f1(t,X(t)),

Dαu1(t) = f2(t,X(t)),

Dβx2(t) = f3(t,X(t)),

Dβu2(t) = f4(t,X(t))

(22)

with the initial conditions
x1(0) = 1, u1(0) = 0,

x2(0) =
1

2
, u2(0) = 0.

(23)

To solve system (22)-(23) by the MFEM, we are applying the solution’s formula (16) to
obtain

x1(ti+1) = x1(ti) +
hα

Γ(α+ 1)
f1

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

Γ(α+ 1)
f1(ti,X(ti))

)
,

u1(ti+1) = u1(ti) +
hα

Γ(α+ 1)
f2

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

Γ(α+ 1)
f2(ti,X(ti))

)
,

x2(ti+1) = x2(ti) +
hβ

Γ(β + 1)
f3

(
ti +

hβ

2Γ(β + 1)
,X(ti) +

hβ

Γ(β + 1)
f3(ti,X(ti))

)
,

u2(ti+1) = u2(ti) +
hβ

Γ(β + 1)
f4

(
ti +

hβ

2Γ(β + 1)
,X(ti) +

hβ

Γ(β + 1)
f4(ti,X(ti))

)
(24)

for all i = 1, 2, · · · , n. In fact, the first and third equations of system (24) represent the
numerical solution of system (17). In order to see the validity of our scheme, we make
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some comparisons between our approximate solutions

x1(ti+1) = x1(ti) +
hα

Γ(α+ 1)
f1

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

Γ(α+ 1)
f1(ti,X(ti))

)
x2(ti+1) = x2(ti) +

hβ

Γ(β + 1)
f3

(
ti +

hβ

2Γ(β + 1)
,X(ti) +

hβ

Γ(β + 1)
f3(ti,X(ti))

) (25)

and the following exact solution that could be obtained when α = β = 1:

x1(t) =
3

4
t2 +

3

4
cos(t)− 5

4
,

x2(t) =
3

4
t2 − 3

4
cos(t) +

5

4

(26)

for system (17)-(18). In particular, Figure 1 depicts a graphical comparison between the
numerical solution (25) and the exact solution (26). In addition, we plot in Figures 2
and 3 the numerical solution (25) of system (17)-(18) in accordance with commensurate
and incommensurate fractional-order values, respectively.
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Figure 1: Approximate vs. exact solution of (x1(t), x2(t)) for α = 1 and β = 1.
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Figure 2: Approximate vs. exact solutions of (x1(t), x2(t)) for commensurate fractional-order
values.
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Figure 3: Approximate solutions of (x1(t), x2(t)) for incommensurate fractional-order values.

Example 4.2 Consider the following system:

D2αx1(t) = 3x1(t) + 3x2(t)−Dαx1(t),

D2βx2(t) = 3x1(t) + 3x2(t)−Dβx2(t)
(27)

with the initial conditions
x1(0) = 1, Dαx1(0) = 0,

x2(0) = 1, Dβx2(0) = 0.
(28)

To solve system (27)-(28) with the use of Lemma 3.1, we assume u1(t) = Dαx1(t) and
u2(t) = Dβx2(t). This would convert system (27)-(28) to be as follows:

Dαx1(t) = u1(t),

Dαu1(t) = 3x1(t) + 3x2(t)− u1(t),

Dβx2(t) = u2(t),

Dβu2(t) = 3x1(t) + 3x2(t)− u2(t)

(29)

with the initial conditions
x1(0) = 1, u1(0) = 0,

x2(0) = 1, u2(0) = 0.
(30)

For simplicity, one might suppose

f1(t,X(t)) = u1(t),

f2(t,X(t)) = 3x1(t) + 3x2(t)− u1(t),

f3(t,X(t)) = u2(t),

f4(t,X(t)) = 3x1(t) + 3x2(t)− u2(t),

(31)

where X(t) = (x1(t), u1(t), x2(t), u2(t)). This would make system (29)-(30) to be as

Dαx1(t) = f1(t,X(t)),

Dαu1(t) = f2(t,X(t)),

Dβx2(t) = f3(t,X(t)),

Dβu2(t) = f4(t,X(t))

(32)
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with the initial conditions
x1(0) = 1, u1(0) = 0,

x2(0) = 1, u2(0) = 0.
(33)

To solve system (32)-(33) by the MFEM, we are applying the solution’s formula (16) to
obtain

x1(ti+1) = x1(ti) +
hα

Γ(α+ 1)
f1

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

Γ(α+ 1)
f1(ti,X(ti))

)
,

u1(ti+1) = u1(ti) +
hα

Γ(α+ 1)
f2

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

Γ(α+ 1)
f2(ti,X(ti))

)
,

x2(ti+1) = x2(ti) +
hβ

Γ(β + 1)
f3

(
ti +

hβ

2Γ(β + 1)
,X(ti) +

hβ

Γ(β + 1)
f3(ti,X(ti))

)
,

u2(ti+1) = u2(ti) +
hβ

Γ(β + 1)
f4

(
ti +

hβ

2Γ(β + 1)
,X(ti) +

hβ

Γ(β + 1)
f4(ti,X(ti))

)
(34)

for all i = 1, 2, · · · , n. In fact, the first and third equations of system (34) represent the
numerical solution of system (27). In order to see the validity of our scheme, we make
some comparisons between our approximate solutions

x1(ti+1) = x1(ti) +
hα

Γ(α+ 1)
f1

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

Γ(α+ 1)
f1(ti,X(ti))

)
x2(ti+1) = x2(ti) +

hβ

Γ(β + 1)
f3

(
ti +

hβ

2Γ(β + 1)
,X(ti) +

hβ

Γ(β + 1)
f3(ti,X(ti))

) (35)

and the following exact solution that could be obtained when α = β = 1:

x1(t) = c1e
2t + c2e

−3t + c3 + c4e
−t

x2(t) = c1e
2t + c2e

−3t − c3 − c4e
−t

(36)

for system (27)-(28), where c1 = 1
5 , c2 = − 1

5 and c3 = c4 = 0. In particular, Figures 4
and 5 depict graphical comparisons between the numerical solutions given in (35) and
the exact solution (36). In addition, we plot in Figures 6 and 7 the numerical solution
(35) of system (27)-(28) in accordance with commensurate fractional-order values, and
similarly, we plot in Figures 8 and 9 the numerical solution (35) of the same system
according to some incommensurate fractional-order values.
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Figure 4: Approximate vs. exact solutions of x1(t) for α = 1 and β = 1.
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Figure 6: Approximate vs. exact solutions of x1(t) for commensurate fractional-order values.
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Figure 8: Approximate vs. exact solutions of x1(t) for incommensurate fractional-order values.
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Figure 9: Approximate vs. exact solutions of x2(t) for incommensurate fractional-order values.

5 Conclusion

In conclusion, this research introduces a novel and effective numerical approach for ad-
dressing the challenges posed by incommensurate systems of fractional differential equa-
tions of 2α-order, where α = (α1, α2, α3, · · · , αn) with 0 < αi ≤ 1, ∀i = 1, 2, 3, · · · , n.
Our proposed method offers a systematic solution by transforming the incommensu-
rate system into a set of α-fractional differential equations using a newly derived result.
Subsequently, we successfully apply the Modified Fractional Euler Method (MFEM), a
recently developed numerical technique, to efficiently solve the transformed equations.
Through an illustrative example, we demonstrate the practical efficacy and reliability of
our numerical approach.
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1 Introduction

Determining the price of derivative products in the capital market is an important prob-
lem in the field of financial mathematics. Derivative products are contracts whose profit
value is determined by the underlying asset. One of the derivative products are options.
An option is an agreement between two parties whereby the contract holder has the right
to sell or buy an amount of the underlying asset at a certain price and at a stated time.
The most widely used option pricing method is the Black-Scholes differential equation
since it provides an option price solution for the options of one or more underlying assets.
Options with several underlying assets are termed as multi-asset options. Derivation of
the Black-Scholes differential equation is generally done using the ∆-hedging theory that
can only be done on a complete market by setting the stock portfolio value equal to the
option value. This is called a portfolio replication. The opposite of a complete market
is an incomplete market. In the incomplete market, there are only a few securities or
financial products. Portfolios or wealth processes on the incomplete market can only be
built using primary securities, so there is an impossibility to replicate the payoff with a
portfolio of underlying assets [2]. Pricing of financial products in the incomplete market
is one of the BSDEs applications.

Several previous studies stated that the Black-Scholes differential equation can be
obtained through BSDEs (Backward Stochastic Differential Equations). BSDEs are a
useful method for studying options pricing problems because they have several advan-
tages. BSDEs can be used on the incomplete market. Another advantage of BSDEs
is that there is no need to change the measurement to a neutral risk condition. When
determining the price of options, the return value is adjusted according to the investor’s
risk preferences, while the discount rate differs between the investors. There is an alter-
native method, namely by adjusting all investors’ risk preferences. This risk preference is
marked with a number called the risk premium and then the expected value is calculated
in the new probability measure, which is a neutral risk measure. The BSDE solution
corresponds to the PDE (partial differential equation) solution. This result is given by
an analogy called the Feynman-Kac theorem.

BSDEs application in financial mathematics was first introduced by El Karoui et
al. [2]. This study shows that the Black-Scholes differential equation for one asset can
be obtained using BSDEs [2]. Actually, the process of changing portfolio values (wealth
process) can be represented in the form of BSDEs. This research was conducted on one
asset options. Pricing of single asset options, non-linear in the incomplete market can
also be modeled using BSDEs [2]. In the complete market, option prices are a BSDEs
solution with a linear generator function f . On the other hand, in the incomplete market,
changes in portfolio wealth are given by BSDEs with the non-linear generator function
f [2]. The generalization of the Feynman-Kac theorem has an important function in the
solution of parabolic PDEs including the BSDEs in option pricing.

This research begins by formulating risky asset prices and a risk-free asset. Then we
construct a multi-asset portfolio that contains risky and risk-free assets. The portfolio
is structured in such a way that it satisfies the system of BSDEs (6) and (14). Then the
existence and uniqueness of the solution of the System (6) and (14) are proven. Using the
Feynman-Kac theorem, a multi-asset Black-Scholes differential equation can be obtained.
Simulation and the analysis of multi-asset option price simulation results are also carried
out.
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2 The Feynman-Kac Theorem

In this section, we firstly present a theorem on the existence and uniqueness of the
solution to BSDE (1). Then we give the Feynman-Kac theorem which provides the
relation between BSDE (1) and semilinear PDE (3). These two theorems are essential
for the main result of this study and are given without proof. The complete proofs can
be found in [2, 9]. Let us first consider a BSDE{

−dY (t) = f (t,X(t), Y (t), Z(t)) dt− Z(t) dW (t), t ∈ [0, T ),
YT = ξ,

(1)

or, equivalently,

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ), (2)

where W is an m-dimensional Brownian motion on a probability space (Ω,F , {Ft},P),
the terminal condition ξ : Ω 7→ R is a random variable being FT -measurable, and f is a
generator function from R+×Rn×R×R1×n into R. Here, Xt is an Rn-valued stochastic
process satisfying the differential equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t).

Moreover, the terminal condition ξ and the generator function f are called a pair of
standard parameters if they satisfy the following conditions:

1. ξ ∈ L2
T (R),

2. f(·, ·, 0, 0) ∈ H2
T (R),

3. f is uniformly Lipschitz, i.e., there exists a number M > 0 such that

|f(·, ·, y1, z1)− f(·, ·, y2, z2)| ≤ M(|y1 − y2|+ |z1 − z2|), a.s. for all y1, y2, z1, z2,

where L2
T (Rd) is a space of d-dimensional random variables which are FT -measurable

and square integrable, and H2
T (Rm×n) is a space of Rm×n-valued predictable processes

Y such that
∫ T

0
|Yt|2dt is an integrable random variable.

Theorem 2.1 If (f, ξ) is a pair of standard parameters, then (1) has a unique solu-
tion (Y,Z) in H2

T (R)×H2
T (R1×m).

In the following theorem, we give the Feynman-Kac theorem which explains the re-
lation between BSDE (1) and the semilinear PDE{

−∂V (t,x)
∂t − LV (t, x)− f(t, x, V (t, x), (▽xV (t, x))Tσ(x)) = 0, t ∈ [0, T ), x ∈ Rn,

V (T, x) = ζ(x), x ∈ Rn,

(3)

where L is a generator function given by

LV (t, x) = (▽xV (t, x))Tµ(x) +
1

2
Tr(σT (x)HxV (t, x)σ(x)). (4)

Theorem 2.2 Let V be a solution of (3) and let

Yt = V
(
t,Xt

)
, Zt =

(
▽x V (t,Xt)

)T
σ(Xt), YT ,

then (Yt, Zt) is a solution of BSDE (1) with the terminal condition ξ = V (T,XT ).
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3 The BSDE of Multi-Asset Options

In this section, we will derive the BSDE of multi-asset options. But first, let us introduce
the assumptions we use to derive the BSDE.

Assumption 3.1 The following statements are some assumptions:

(1) we use basket options;

(2) the payoff of basket options is a geometric mean, i.e.,

Payoff = (

n∏
i=1

Sαi
i −K)+, (5)

where Σαi = 1 and αi ≥ 0;

(3) the wealth process can be replicated;

(4) there exists a risk premium.

The equation of multi-asset options has the form of multi-dimensional parabolic par-
tial differential equations. There are several types of multi-asset options that have dif-
ferent payoffs. According to Assumption 3.1 (1), we use basket options that consist of
more than two underlying assets. The basket option pricing formula can be obtained
from the multi-asset Black-Scholes differential equation. The multivariable problem of
pricing basket options can be reduced to one dimension if the payoff of basket options
satisfies Assumption 3.1 (2) (see [5]).

Multi-asset options are formed from several underlying assets consisting of risky assets
and risk-free assets. In this study, stocks and bonds are used as risky and risk-free assets,
respectively. Suppose Si denotes the price of the i-th stock which satisfies the geometric
Brownian motion equation as follows:

dSi

Si
= µi dt+

m∑
j=1

σij dWj , i = 1, 2, ..., n , (6)

where µi is the i-th stock return, σij is the volatility of the i-th stock due to the j-th
Brownian motion and W = [W1,W2, . . . ,Wm]T is an m-dimensional Brownian motion of
a probability space (Ω,F , {Ft},P). The movement price of the bond P at time t satisfies
the equation

P (t) = υ e−
∫ T
t

r(u) du

or {
dP (t) = P (t) r dt, 0 ≤ t < T

P (T ) = υ,
(7)

where r is a risk-free interest rate and T is a due time.

Here, we use a multi-asset portfolio equation to determine the option price. Once
the price of options is obtained, we can construct a multi-asset portfolio of stocks that
has the same value as basket options. This is called a replicating portfolio strategy. In
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particular, the multi-asset portfolio equation Y is made to have the equal value as the
options at time t ∈ [0, T ]. A portfolio with this strategy is also known as a wealth process.

A multi-asset portfolio Y consists of n stock assets and a bond asset. Suppose the
stock asset Si, i = 1, 2, 3, · · · , n, has a proportion of ∆i and a bond P has a proportion
of ∆P . The value of the portfolio at t is defined as

Y (t) =

n∑
i=1

∆i Si + ∆P P. (8)

We assume that the value of (8) satisfies the self-financing strategy, therefore we obtain

dY (t) =

n∑
i=1

∆i dSi +∆P dP. (9)

Substituting (6) and (7) into (9), we get

dY (t) =

(
Y r +

n∑
i=1

∆i Si (µi − r)

)
dt+

n∑
i=1

m∑
j=1

∆i Si σij dWj . (10)

From Assumption 3.1 (3), the portfolio Y can be replicated, hence there exists a risk-free
portfolio Π that has the same value as the portfolio Y and satisfies

dΠ = dV (S1, S2, . . . , Sn, t)−
n∑

i=1

∆i dSi . (11)

Using the multi-dimensional Itô formula, we obtain

dV (S1, S2, . . . , Sn, t) =

(
∂V

∂t
+

1

2
Tr(σ(S)

T
HSV σ(S)) +▽SV (t,S(t))Tµ(S)

)
dt

+ (▽SV (t,S(t))Tσ(S)) dW (t) , (12)

where

1

2
Tr

(
σ(S)

T
HSV σ(S)

)
=

n∑
i=1

m∑
j=1

aijSiSj ,

aij =

m∑
k=1

σik σjk ,

and

▽SV (t,S(t))
T
σ(S)) dWt =

n∑
i=1

m∑
j=1

σijSi
∂V

∂Si
dWj .

Substituting (6) and (12) into (11), we have

dΠ =

(
∂V

∂t
+

1

2

n∑
i=1

m∑
j=1

aij Si Sj
∂2V

∂Si∂Sj
−

n∑
i=1

µi(∆i Si − ∂V

∂Si
)

)
dt

+

n∑
i=1

m∑
j=1

Si σij

(
∆i −

∂V

∂Si

)
dWj .
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Since Π is a risk-free portfolio, we obtain ∆i =
∂V

∂Si
, (i = 1, 2, . . . , n). Substituting it to

(10), we get

−dY (t) = −
(
Y r +

n∑
i=1

∂V

∂Si
Si (µi − r)

)
dt−

n∑
i=1

m∑
j=1

∂V

∂Si
Si σij dWj . (13)

According to Assumption 3.1 (4), there exists a risk premium

λ =


λ1

λ2

...
λm


such that 

σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm

λ =


µ1 − r
µ2 − r

...
µn − r

 .

Furthermore, (13) becomes

−dY (t) =−

(
Y r +

[
∂V

∂S1
S1

∂V

∂S2
S2 . . .

∂V

∂Sn
Sn

]

×


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm

×


λ1

λ2

...
λm


)
dt

−
[
∂V

∂S1
S1

∂V

∂S2
S2 . . .

∂V

∂Sn
Sn

]
×


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm



×


dW1

dW2

...
dWm


and can be written as

−dY (t) = f(t,S(t), Y (t),Z(t)) dt− Z(t) dW(t), (14)

where

f(t,S(t), Y (t),Z(t)) =− Y r − Z(t)λ (15)
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with

Z(t) =

[
∂V

∂S1
S1

∂V

∂S2
S2 . . .

∂V

∂Sn
Sn

]
×


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σn1 σn2 . . . σnm

 .

Then, based on the fact that the portfolio Y is constructed such that it has the same
value as the basket option, we have the terminal condition of BSDE (14) given by

YT = (

n∏
i=1

Si(T )
αi −K)+ , (16)

where K ∈ R+.

4 Existence and Uniqueness of Solution to the System (6) and (14)

This section provides a theorem on the existence and uniqueness of solution of the system
(6) and (14). This theorem explains the sufficient condition under which a solution of
the system (6) and (14) exists and is unique.

Theorem 4.1 Let (3) with f(t, x, y, z) = −yr − zλ and

V (T, (x1, x2, · · · , xn)
T ) = (

n∏
i=1

xαi
i −K)+

have solutions in H2
T (R). Then there exists a unique solution of the system (6) and (14)

in H2
T (R). Furthermore, (3) also has a unique solution in H2

T (R).

Proof. Firstly, we will prove that the BSDE

dỸ (t) = f(t,S(t), Ỹ (t),U)dt−U(t)dW (t) (17)

has a unique solution when the terminal condition is given by

U(T ) = (

n∏
i=1

Si(T )
αi −K)+.

The proof is given as follows.

1. In this part, we will prove that ỸT ∈ L2
T (R).

The terminal condition of BSDE (17) is given by ỸT = (
∏n

i=1 Si(T )
αi −K)+. Since

Si(T ) is FT -measurable, we can obtain that so is ỸT . Moreover, we also have

E[Si(T )
2] = Si(0)

2 exp

2µT +

m∑
j=1

σ2
ij T

 < ∞ ,

hence

E[|Ỹ 2
T |] = E


∣∣∣∣∣∣∣
( n∏

i=1

Si(T )
αi −K

)+
2
∣∣∣∣∣∣∣
 < ∞ .
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Therefore, we get

ỸT =

(
n∏

i=1

Si(T )
αi −K

)+

∈ L2
T (R) .

2. In this part, we will prove that f(·, ·, 0, 0) ∈ H2
T (R).

Based on (15), we obtain

E

[∫ T

0

|f(·, ·, 0, 0)|2 dt

]
= 0 < ∞ .

Thus, f(·, ·, 0, 0) is a predictable process and we also have

f(·, ·, 0, 0) ∈ H2
T (R).

3. In this last part, we prove that f is uniformly Lipschitz.
We can observe that for L = max(r, |λ|), we have

f(t,S(t), y1, z1)− f(t,S(t), y1, z1)| ≤ L(|y1 − y2|+ |z1 − z2|) .

Therefore f is a uniform Lipschitz function.

Thus three conditions in Theorem 2.1 are satisfied, so (17) has a unique solution.
Moreover, suppose that V is one of the solutions of (3), which is possible because we as-
sume that (3) has a solution. According to the Feynman-Kac theorem and the uniqueness
of the solution (17), we obtain that the pair (Ỹ ,U) given by

Ỹ (t) = V (t,S(t)) (18)

and

U(t) = (∇xV (t,S(t)))Tσ(S(t)) (19)

is the unique solution of (17). Consequently, by a contradiction argument, we have
Y (t) = V (t,S(t)) is a unique solution of the system (6) and (14). Furthermore, by a
similar argument, we can also conclude that the solution of (3) is unique.

5 Simulations of Multi-Asset Option Prices

In this section, we present the simulation of pricing of the multi-asset option in the basket
option. From Theorem 4.1, we obtain that the solution of the system (6) and (14) is
equivalent to the solution of

∂V
∂t +

1

2

∑n
i=1

∑m
j=1 aij Si Sj

∂2V

∂Si ∂Sj
+
∑n

i=1

∂V

∂Si
r Si − rV = 0 ,

dSi = µiSi dt+
∑m

j=1 σijSi dWj , i = 1, 2, ..., n ,

V (T, (S1, S2, · · · , Sn)
T ) = (

∏n
i=1 x

αi
i −K)+

(20)

if (3) has solutions in H2
T (R). We can see that the last equation above is the multi-asset

Black-Scholes differential equation and the exact solution is given by (see [5])

V (S1, . . . , Sn, t) = e−q̂(T−t) Sα1
1 Sα2

2 . . . Sαn
n N(d̂1)−Ke−r(T−t)N(d̂2), (21)
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where

d̂1 =
ln
(

S
α1
1 S

α2
2 ...Sαn

n

K

)
+ (r − q̂ + σ̂2

2 )(T − t)

σ̂
√
T − t

,

d̂2 =
ln
(

S
α1
1 S

α2
2 ... Sαn

n

K

)
+ (r − q̂ − σ̂2

2 )(T − t)

σ̂
√
T − t

= d̂1 − σ̂
√
T − t,

σ̂2 =

n∑
i=1

aijαiαj ,

q =

n∑
i=1

aii
2
αi +

σ̂2

2
.

Here, we know that (21) is also the solution of the BSDE of multi-asset options (14).
Simulations were carried out to determine the effect of several variables on the option
price. These variables are the strike price, interest rate, maturity date, and stock volatil-
ity. The simulation is carried out on the assets of 2, 5, 10 and 30. In each option price
simulation, the number of the Brownian motion used is equal to the number of stock
assets, the price of each stock is 100 and the proportion of each stock in basket options
has the same value.
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Figure 1: The effect of the strike price on the option price.

We plot the call option price influenced by different strike prices given by (21), see
Figure 1. The call option price decreases when the value of strike price increases. If
the call option is exercised at maturity, then the profit from the call option is the share
price that exceeds the strike, Sαi

i − K. Therefore, the price of the call option is more
expensive, the lower the strike price is. This also relates to the stock prices.

If the stock price is fixed, while the strike price is getting smaller, then the profit will
be getting bigger. Therefore, the call option is more valuable as the stock price increases.
Figure 1 also shows that the more assets in the call option, the higher the price of the
call option.
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Figure 2: The effect of the interest rate on the option price.

Figure 2 shows that a higher interest rate causes a higher price of the call option.
This is caused by the fact that if the interest rate in economy rises, the return expected
by investors on stock assets tends to rise. On the other hand, the current value of funds
received by the option holder is decreasing. The combination of these two causes an
increase in the call option price.
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Figure 3: The effect of the time maturity on the option price.

Based on the simulation results, see Figure 3, it is found that a longer expiration
time caused a higher call option price. The longer the maturity of a call option, the
more opportunities the option holder gets to exercise his rights on that option. Based
on Figure 4, it is found that the higher the volatility, the higher the price of the call
option. Volatility shows a measure of the uncertainty of stock prices in the future. When
volatility increases, stock prices also increase. As a result, the profit derived from the
call option also increases. On the other hand, the loss from the call option is the price
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Figure 4: The effect of the volatility on the option price.

of the premium or the price of the call option paid at the beginning of the transaction.
Therefore, it is found that a higher volatility resulted in a higher call option price.

6 Conclusion

In this work, we obtain a model of the multi-asset portfolio given by the system (6) and
(14). The terminal condition of the BSDE is made equal to the payoff of the multi-asset
option. From the theorems on the existence and uniqueness of the solution of the BSDE
(see Theorem 1 and Theorem 3), we prove that there exists a unique solution of the
system (6) and (14). Utilizing the Feynman-Kac theorem (Theorem 2), we can obtain
the solution of the system (6) and (14), which is consistent with the multi-asset Black-
Scholes differential equation’s solution. In addition, there are also several factors that
affect the price of multi-asset options.
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Abstract: In this paper, a new 4D autonomous hyperchaotic system with an infinite
number of equilibrium points is introduced and analyzed. This hyperchaotic system
is constructed by introducing an additional dimension with a linear state feedback
controller to the third equation in the Lorenz system. The dynamical properties of
the new hyperchaotic system are discussed by means of dissipation, symmetry, Lya-
punov exponents, bifurcation diagrams, equilibrium points and coexisting attractors.
Finally, the synchronization of the novel hyperchaotic system is discussed.

Keywords: Lorenz system; hyperchaos; infinite equilibria; Lyapunov exponent; syn-
chronization.

Mathematics Subject Classification (2010): 93B52, 70K50, 34H10, 37G35,
34D06.

1 Introduction

A hyperchaotic system is a type of the dynamical system that exhibits chaotic behavior
with at least two positive Lyapunov exponents, and the minimal dimension of the phase
space that embeds the hyperchaotic attractor should be at least four. In 1963, Lorenz
proposed a three-dimensional system with two scrolls, which is recognized as the first
chaotic model reported in literature [10], it has been the subject of many studies (see,
for example, [11]). Subsequently, in 1976, Rossler proposed another chaotic system like
the Lorenz one, in 1979, Rossler put forward the concept of hyperchaos and proposed the
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hyperchaotic Rossler system [13]. As a kind of behavior that is more complex than chaos,
hyperchaos has greater application potential in some engineering and technological fields,
which need strong complexity, including secure communications [23], nonlinear circuits,
encryption, and other fields [20]. Constructing a hyperchaotic system is a real challenge
because of the absence of a uniform method to generate this kind of complex systems.
Until now, the main method to build a hyperchaotic system is to design it by changing
an existing chaotic system. A hyperchaotic system can be generated by adding a simple
state feedback controller to a regular chaotic system. The addition of feedback control
introduces additional nonlinearities that can lead to more complex and richer dynamical
behavior, e.g., the Lü system [14] and the Lorenz system [6].

Hyperchaotic systems with an infinite number of equilibrium points have been clas-
sified as a newly introduced class of dynamical systems with hidden attractors. This
classification highlights the richness and complexity of these systems and their unique
properties that were not fully understood before [21], [15], [8], [1]. The coexistence of
multiple attractors in a system is indeed an exceedingly interesting phenomenon that
has attracted increasing attention in the scientific community. It challenges our conven-
tional understanding of systems having a single stable state and opens up new avenues for
studying and understanding complex dynamics. The coexistence of attractors introduces
the concept of multistability, where a system can exhibit different long-term behaviors
depending on its initial conditions or parameters. This phenomenon has been observed
in various fields of study, including physics, biology, chemistry, engineering, and social
sciences. The Lorenz system is a well-known example that demonstrates the phenomenon
of coexisting attractors, what makes the Lorenz system particularly interesting is that
depending on the system’s initial conditions, it can yield a symmetric pair of strange
attractors, breaking the symmetry of the butterfly attractor. These two attractors exist
simultaneously alongside each other in the system’s phase space [9], [2], [22].

The synchronization of chaotic systems is a fascinating area of research that has
attracted considerable attention due to its theoretical significance and practical appli-
cations, especially in the field of secure communication. Chaotic systems are highly
sensitive to initial conditions, and even a tiny change in the initial state can lead to
drastically different trajectories over time. Despite this sensitivity, it is possible to syn-
chronize two or more chaotic systems in a way that they evolve with similar dynamics,
exhibiting identical or correlated chaotic behaviors [16], [17], [5], [7], [18].

The rest of the paper is organized as follows. In Section 2, the novel hyperchaotic
system is introduced with brief details. The dynamical system analysis and its properties
are presented in Section 3. In Section 4, a synchronization control system is designed.
Finally, conclusions are presented in Section 5.

2 The Novel 4D System with an Infinite Number of Equilibrium Points

The celebrated Lorenz system is described by the following equations [10]:
ẋ = −a(y − x),

ẏ = −xz + cx− y,

ż = xy − bz,

(1)

where a, b, c are real parameters. When a = 10, b = 8/3, c = 28, it shows chaotic
behavior. According to this system, a new 4D system is obtained by introducing an
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Figure 1: Three-dimensional projections of the hyperchaotic attractor of system (2):
(a, b, c, d) = (10, 5, 30, 20). (a) x-y-z phase space; (b) x-y-u phase space; (c) y-z-u phase space;
(d) x-z-u phase space.

additional dimension with a linear state feedback controller to the third equation, and
our new 4D system is given by the following dynamics:


ẋ = −a(x− y),

ẏ = −xz + cx− y,

ż = xy − bz − u,

u̇ = dx.

(2)

We represent the state of the 4D system (2) by X = (x, y, z, u), and a, b, c, d are positive
parameters. When the parameters of system (2) are taken as (a, b, c, d) = (10, 5, 30, 20)
and the initial conditions (x0, y0, z0, u0) = (0.1, 0.1, 0.1, 0.1), the system has a hyper-
chaotic attractor, and the corresponding four Lyapunov exponents can be calculated:
L1 = 0.8289, L2 = 0.5692, L3 = −0.2836, L4 = −16.9904. The phase portraits of the new
hyperchaotic system (2) are shown in Figure 1.

The Lyapunov dimension, commonly known as the Kaplan-Yorke dimension DKY [3],
of this system is

DKY = j +
1

|Lj+1|

j∑
i=1

Li = 3 +
L1 + L2 + L3

|L4|
,

DKY = 3 +
0.8289 + 0.5692− 0.2836

| − 16.9904|
= 3.07.
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3 Dynamical Analysis

3.1 Symmetry

The system (2) is symmetrical with respect to the z-axis for its invariance under the
coordinate transformation (x, y, z, u) −→ (−x,−y, z,−u).

3.2 Dissipativity and existence of attractor

For a dynamical system, the divergence of the system (2) is defined by

∇V =
dẋ

dx
+

dẏ

dy
+

dż

dz
+

du̇

du
= −(a+ b+ 1) = −16 < 0. (3)

Therefore, the above analysis proves that our system is dissipative. The exponential
contraction rate is calculated as follows:

V (t) = V (0)e−(a+b+1)t. (4)

It shows that each volume containing the system trajectories shrinks to zero as t −→ ∞
at an exponential rate −(a+ b+ 1). There exists an attractor in system (2).

3.3 Equilibrium points

The equilibria of the system (2) can be found by setting ẋ = ẏ = ż = u̇ = 0 and
a, b, c, d > 0,

a(y − x) = 0, (5)

− xz + cx− y = 0, (6)

xy − bz − u = 0, (7)

dx = 0. (8)

Equation (8) reveals that x = 0. By substituting x = 0 into (5), we have y = 0, by
substituting x = 0 and y = 0 into (7), we have

−bz − u = 0.

In other words, system (2) has an infinite number of equilibrium points

E = {(x, y, z, u) ∈ R4|x = 0, y = 0, u = −bz}.

For the equilibrium E, the Jacobian matrix of system (2) is given by

JE =


−a a 0 0
c− z −1 0 0
0 0 −b −1
d 0 0 0

 .

The charasteristic equation of system (2) evaluated at the equilibrium E is

λ4 + (a+ b+ 1)λ3 + (a+ b (a+ 1)− a (c− z))λ2 + b (a− a (c− z))λ = 0,
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and the eigenvalues are

λ1 = 0, λ2 = −b, λ3 = −1

2

√
4ac− 2a− 4az + a2 + 1− 1

2
a− 1

2
,

λ4 =
1

2

√
4ac− 2a− 4az + a2 + 1− 1

2
a− 1

2
.

Providing z > c−1, we have λ2 < 0, Re(λ3) < 0 and Re(λ4) < 0, then the equilibrium
point E is stable. Therefore, if z < c−1, the eigenvalue λ4 is positive, then the equilibrium
point E is unstable. Moreover, if z = c − 1, the system (2) reduces to the one whose
dimension is less than four.

3.4 Bicurcation diagram and Lyapunov exponents

In this subsection, to explore the effect of the parameters a, b, c and d on the behavior of a
new 4D system, we fixed the parameters (a, b, c) = (10, 5, 30) and varied d in [0, 25]. Now
we carry out the dynamic analysis of the system (2) numerically by its Lyapunov exponent
spectrum and bifurcation diagram. Figure 2 shows the bifurcation diagram of system
(2) with different values of the parameter d and the initial conditions (x0, y, z0, u0) =
(1.8, 0.1, 0.79, 2.8). Table 1 represents the Lyapunov exponents and Lyapunov dimensions
of the system (2) with different values of the parameter d .

Figure 2: Bifurcation diagrams of hyperchaotic system (2) when a = 10, b = 5, c = 30 and d
varies in [0, 25].

The dynamics of system (2) changes with the increasing value of the parameter d.
We can see that the results obtained from the Lyapunov spectrum agree with the results
given by the bifurcation diagram in Figure 2 and the maximal Lyapunov exponents in
Table 1.
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Table 1: Lyapunov exponents of (2) with (a, b, c) = (10, 5, 30) and different values of d.

d L1 L2 L3 L4 Attractor type DKY

2 0 -0.7873 -0.6745 -14.5233 Periodic attractor 1

12 0.9154 0.0452 -0.0832 -16.7967 Hyperchaotic attractor 3.05

19 0.4400 -0.0128 -0.4658 -15.8353 Chaotic attractor 2.92

3.5 Coexisting attractors

The system (2) shows many complex dynamics behaviors such as hyperchaos, chaos,
and periodic. Several coexisting attractors of the system (2) will be present under some
appropriate parameters. A system with coexisting attractors is very sensitive to system
parameters and initial values. In the event of a sudden disturbance, the state of the
system can easily shift from an ideal state to another state that may be undesirable.
The coexisting attractors of the system (2) satisfying different initial values can exhibit
various dynamic behaviors.

Coexistence of hyperchaotic and chaotic attractors

When we fix a = 10, b = 5, c = 30, d = 20, and change the initial values slightly, the
dynamical behaviors of the system may produce large variations in the long term:
(a) For the initial values (0.1, 0.1, 0.1, 0.1), the Lyapunov exponents of the system (2)
are found to be L1 = 0.8289, L2 = 0.5692, L3 = −0.2836, and L4 = −16.9904, while the
fractal dimension of the system is estimated to be 3.07. A hyperchaotic attractor with
an infinite number of equilibrium points can be obtained, whose 3D phase portrait is
shown in Figure 3 (a).

(b) For the initial values (−2.2, 0.1, 1, 0.1), the trajectories of system (2) converge to
a chaotic attractor. The Lyapunov exponents of the system (2) are found to be L1 =
0.6775, L2 = −0.1010, L3 = −2.7889, and L4 = −13.3054, while the fractal dimension of
the system is estimated to be 2.83, whose 3D phase portrait is shown in Figure 3(b).
Therefore, the modification of the inial conditions causes a change of the hyperchaotic
behavior of the system (2). The trajectories of system (2) converge to two types of
attractors (hyperchaos or chaos).

Coexistence of hyperchaotic and periodic attractors

When we fix a = 10, b = 5, c = 30, d = 2, and change the initial values slightly, the
dynamical behaviors of the system may produce large variations in the long term:

(a) For the initial values (−1.8, 0.1, 0.79, 2.8) the trajectories of system (2) converge
to a hyperchaotic attractor. The Lyapunov exponents of the system (2) are found to be
L1 = 0.5365, L2 = 0.0710, L3 = −0.1822, and L4 = −16.3938, while the fractal dimension
of the system is estimated to be 3.03, whose 3D phase portrait is shown in Figure 4(a).

(b) For the initial values (1.8, 0.1, 0.79, 2.8), the trajectories of system (2) converge
to a stable periodic orbit. The Lyapunov exponents of the system (2) are found to be
L1 = 0, L2 = −0.7873, L3 = −0.6745, and L4 = −14.5233, while the fractal dimension of
the system is estimated to be 1, whose 3D phase portrait is shown in Figure 4(b).
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Figure 3: (a) Hyperchaotic attractor with (a, b, c, d) = (10, 5, 30, 20) and (x0, y0, z0, u0) =
(0.1, 0.1, 0.1, 0.1). (b) Chaotic attractor with (a, b, c, d) = (10, 5, 30, 20) and (x0, y0, z0, u0) =
(−2.2, 0.1, 1, 0.1).

A small change in the initial condition of the system causes a wide difference of tra-
jectories. For different initial conditions, the trajectories converge to different attractors:
a periodic orbit and hyperchaotic attractor.

Figure 4: (a) Hyperchaotic attractor with (a, b, c, d) = (10, 5, 30, 2) and (x0, y0, z0, u0) =
(−1.8, 0.1, 0.79, 2.8). (b) Periodic attractor with (a, b, c, d) = (10, 5, 30, 2) and (x0, y0, z0, u0) =
(1.8, 0.1, 0.79, 2.8)

4 Synchronization of a New Hyperchaotic System

In this section, the synchronization of the novel 4D hyperchaotic system (2) newly in-
troduced is discussed. Synchronization is done between a system designed as a master
one and another system as a slave one. The principle of synchronization is to apply to
the slave system a control function such as the error between the two systems tends to
zero. We have synchronized two identical new hyperchaotic systems with different initial
conditions via the active control method.
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As the master system, we consider the novel 4D hyperchaotic system (2) given by
ẋ1 = −a(x1 − x2),

ẋ2 = −x1x3 + cx1 − x2,

ẋ3 = x1x2 − bx3 − x4,

ẋ4 = dx1.

(9)

The slave system is the same system (2), with the added to it control signals U =
{u1, u2, u3, u4}. It is given by

ẏ1 = −a(y1 − y2) + u1,

ẏ2 = −y1y3 + cy1 − y2 + u2,

ẏ3 = y1y2 − by3 − y4 + u3,

ẏ4 = dy1 + u4.

(10)

The synchronization error is defined by
e1 = y1 − x1,

e2 = y2 − x2,

e3 = y3 − x3,

e4 = y4 − x4.

(11)

Then the error dynamics is expressed by
ė1 = a(e2 − e1) + u1,

ė2 = ce1 − e2 − y1y3 + x1x3 + u2,

ė3 = −be3 − e4 + y1y2 − x1x2 + u3,

ė4 = de1 + u4.

(12)

We choose the active control functions u1, u2, u3, u4 as shown in equation (13) to eliminate
the nonlinear terms in (12): 

u1 = v1,

u2 = y1y3 − x1x3 + v2,

u3 = −y1y2 + x1x2 + v3,

u4 = v4.

(13)

So, the system to be controlled is a linear system with a control input {v1, v2, v3, v4}
ė1 = a(e2 − e1) + v1,

ė2 = ce1 − e2 + v2,

ė3 = −be3 − e4 + v3,

ė4 = de1 + v4.

(14)

The control input v1, v2, v3 and v4 is used to force the error to converge to zero. So, the
two systems (9) and (10) are synchronized.

We choose a constant matrix C which will control the error dynamics (14) such that
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[ė1, ė2, ė3, ė4]
T = C[e1, e2, e3, e4]

T . (15)

For the Routh-Hurwitz criterion, all eigenvalues of the chosen matrix C must be negative
[19] to stabilize the synchronization between the master system (9) and the slave system
(10):

C =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The eigenvalues (λ1, λ2, λ3, λ4) = (−1,−1,−1,−1) of the matrix C are negative,
which ensures the stability of the dynamic error. Therefore two systems (9) and (10) are
synchronized.

Using (14), (15) and (16), we find the control functions
a(e2 − e1) + v1 = −e1,

ce1 − e2 + v2 = −e2,

−be3 − e4 + v3 = −e3,

de1 + v4 = −e4,

(16)


v1 = (a− 1)e1 − ae2,

v2 = −ce1,

v3 = (b− 1)e3 + e4,

v4 = −de1 − e4.

(17)

The control function U = {u1, u2, u3, u4} ensures synchronization between the master
system (9) and the slave system (10),

u1 = (a− 1)e1 − ae2,

u2 = y1y3 − x1x3 − ce1,

u3 = −y1y2 + x1x2 + (b− 1)e3 + e4,

u4 = −de1 − e4.

(18)

The initial conditions of the master system and the slave system are taken as follows:

(x1, x2, x3, x4) = (3, 4, 10,−8),

(y1, y2, y3, y4) = (−2, 32,−6, 12).

The results of simulations are depicted in Figure 5 and Figure 6, these figures show
that the synchronization occurs and the errors will converge to zero exponentially after
applying the active control.

5 Conclusions

In this work, we have introduced a novel hyperchaotic system with an infinite number
of equilibrium points. Depending on parameter selection and initial conditions, this sys-
tem can generate various types of coexisting attractors. Through theoretical analysis
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Figure 5: Synchronization of different state variables.

Figure 6: Errors of the synchronization system.
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and numerical simulations, we investigate the dynamical behaviors of the new hyper-
chaotic system. This exploration encompasses dissipativity and invariance, equilibrium
points and their stability, periodic orbits, as well as chaotic and hyperchaotic attrac-
tors. We conduct numerical simulations, including phase diagrams and the Lyapunov
exponent spectrum, to analyze and validate the complex phenomena exhibited by our
hyperchaotic system. Furthermore, we successfully achieve synchronization between this
system, designed as the master one, and another system acting as the slave one, using
the active control techniques.

References

[1] Y. Chen and Q.A. Yang. new Lorenz-type hyperchaotic system with a curve of equilibria.
Mathematics and Computers in Simulation 112 (2015) 40–55.

[2] C. Dong and J. Wang. Hidden and coexisting attractors in a novel 4D hyperchaotic system
with no equilibrium point. Fractal and Fractional 6(6) (2022) 306.

[3] P. Frederickson, J.L. Kaplan, E.D. Yorke and J.A. Yorke. The Liapunov dimension of
strange attractors. Journal of differential equations 49 (2) (1983) 185–207.

[4] F. Zhang, X. Liao, G. Zhang and C. Mu. Complex dynamics of a new 3D Lorenz-type
autonomous chaotic system. Pramana - J. Phys. 89 (2017) 84.

[5] A. Ikhlef and N. Mansouri. Hyperchaotification and Synchronization of Chaotic Systems.
International Journal of Control 2 (4) (2012) 69–74.

[6] J. Qiang. Hyperchaos generated from the Lorenz chaotic system and its control. Physics
Letters A 366 (3) (2007) 217–222.

[7] Basil H. Jasim, Anwer Hammadi Mjily, Anwer Mossa Jassim AL-Aaragee. A novel 4 di-
mensional hyperchaotic system with its control, synchronization and implementation. In-
ternational Journal of Electrical and Computer Engineering 11 (4) (2021) 2974.

[8] Sifeu Takougang Kingni, Viet-Thanh Pham, Sajad Jafari and Paul Woafo. A chaotic system
with an infinite number of equilibrium points located on a line and on a hyperbola and its
fractional-order form. Chaos, Solitons & Fractals 99 (2017) 209–218.

[9] Qiang Lai, Tsafack Nestor, Kengne Jacques and Xiao-Wen Zhao. Coexisting attractors and
circuit implementation of a new 4D chaotic system with two equilibria. Chaos, Solitons &
Fractals 107 (2018) 92–102.

[10] E.N. Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences 20 (2) (1963)
130–141.

[11] L. Meddour and K. Belakrouml. On the Equivalence of Lorenz System and Li System.
Nonlinear Dynamics and Systems Theory 22 (1) (2022) 58–65.

[12] T. Nestor, A. Belazi, B. Abd-El-Atty, M.N. Aslam, C. Volos, D. Dieu, J. Nkapkop and A.
Abd El-Latif. A new 4D hyperchaotic system with dynamics analysis, synchronization, and
application to image encryption, Symmetry 14 (2) (2022) 424.

[13] O. Rossler. An equation for hyperchaos. Physics Letters A 71 (1979) 155-157.

[14] S. Pang and Y. Liu. A new hyperchaotic system from the Lü system and its control. Journal
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Abstract: In this paper, we will study the Inverse Gamma distribution to introduce
the Conformable Fractional Inverse Gamma Distribution (CFIGD) with a study of
the entropy measures in the fractional case. The CFIGD’s CDF, survival function,
and hazard function are defined to shed light on its behavior and suggest possible uses
for it in reliability and risk analysis. It is possible to better understand the central
tendencies and higher-order characteristics of statistics by using the conformable frac-
tional analogs of statistical measures like the expected values, r-th moments, mean,
variance, skewness, and kurtosis. In addition, the conformable fractional analogs of
well-known entropy measures like the Shannon, Renyi, and Tsallis entropy are intro-
duced, offering useful instruments for estimating uncertainty and randomness.
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1 Introduction

The Conformable Fractional Inverse Gamma Distribution (CFIGD), which offers an
avant-garde framework for simulating various real-world phenomena, has emerged as a
promising statistical tool [1,2]. The development of sophisticated tools to model complex
phenomena and derive meaningful insights is made possible by advancements in proba-
bility theory and statistical analysis [3,4]. The CFIGD stands out among these tools as a
potent and ground-breaking idea, providing a new viewpoint on probability distributions
and their applications. The CFIGD and its numerous applications in various fields will
be thoroughly explored in this research paper.
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The foundation of the CFIGD is the inverse gamma distribution, which is well-known
for its importance in Bayesian statistics. This family of distributions is the reciprocal
of a variable that follows a gamma distribution and operates on positive real numbers.
By extending conventional statistical measures to conformable fractional analogs, the
CFIGD introduces a novel approach. Our comprehension of the distribution’s central
tendencies, higher-order properties, and quantification of uncertainty is greatly improved
by these analogs [5, 7, 8].

The paper aims to clarify the fundamental characteristics of the CFIGD, namely
the cumulative distribution function (CDF), survival function, and hazard function. In
addition to these, we investigate the conformable fractional analogs of fundamental sta-
tistical quantities like the expected values, r-th moments, mean, variance, skewness, and
kurtosis. The theoretical framework of the CFIGD is built on this thorough analysis.

Nonlinear dynamics plays a pivotal role in understanding complex systems, where
traditional linear models fall short. In recent years, there has been a growing interest
in exploring non-conventional probability distributions and statistical measures to en-
hance our comprehension of intricate systems and phenomena. This paper delves into
the realm of nonlinear dynamics by introducing a novel statistical distribution, the Con-
formable Fractional Inverse Gamma Distribution (CFIGD) and studying its properties
in the context of entropy measures in the fractional case.

Nonlinear systems, characterized by their sensitivity to initial conditions and intri-
cate feedback loops, necessitate sophisticated statistical tools for accurate modeling and
analysis. The Inverse Gamma distribution has proven to be invaluable in various fields,
especially in reliability and risk analysis, where understanding the underlying proba-
bilistic nature of events is paramount. The extension of this distribution to its fractional
counterpart, as explored in this paper, opens new avenues for studying nonlinear systems
with fractional dynamics, providing a more nuanced understanding of their behavior.

The organization of this paper is listed as follows. In the following section, we will
introduce the basic definitions and remarks on conformable fractional derivatives. In
Section 3, we will introduce a fractional inverse gamma distribution, this part is followed
by Section 4 with the conclusion for this paper and references.

2 Conformable Fractional Derivative

Fractional calculus is a branch of mathematics that deals with fractional derivatives and
integrals, and it has numerous applications in a variety of scientific and engineering dis-
ciplines. A current framework for describing non-local and memory-dependent complex
processes is offered by fractional derivatives. One of the fascinating developments in this
field is the idea of a “conformable fractional derivative”, introduced by Khalil et al. [6]
in 2014.

When applied to phenomena with non-differentiable or non-smooth behavior, integer-
order derivatives, which are frequently used in classical calculus, have some limitations.
Fractional derivatives, however, overcome these limitations by taking into account non-
integer orders, which better capture a variety of natural and artificial systems utilizing
the notion of conformable fractional derivative. This new concept provides a different
perspective on fractional derivatives and their applications [9–11]. The conformable frac-
tional derivative, while retaining the advantages of fractional calculus, offers an intriguing
framework for modeling complex phenomena that exhibit conformability to prevailing
physical laws [12–15].
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Definition 2.1 Let α be a real nonnegative number. For a positive integer m such
that m − 1 < α ≤ m, the Riemann-Liouville fractional-order differential operator of a
function f of order α is defined by

Dα
a f(x) =

1

Γ(m− α)

dm

dxm

∫ x

a

(x− t)m−α−1f(t)dt. (1)

Definition 2.2 Let α ∈ R and m = ⌈α⌉. The Caputo fractional-order derivative
operator Dα

a is defined by

Dα
a f = Jm−α

a Dmf. (2)

Definition 2.3 Let α ∈ R+ and m = ⌈α⌉ such that m − 1 < α ≤ m. Then the
Caputo fractional-order deivative operator of order α is given by

Dα
a f(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t)dt, x > a. (3)

It should be noted that if a = 0 in Equation (3), one can get the most reliable version of
the Caputo fractional-order derivative operator. That is,

Dα
∗ f(x) =

1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt, x > 0. (4)

Definition 2.4 Let ω : [0,∞) → R and t > 0, then given ω of order α, the con-
formable fractional derivative is defined as

Dα(ω)(t) = lim
ϵ→0

ω(t+ ϵt1−α)− ω(t)

ϵ
(5)

for all t > 0 and α ∈ (0, 1). If ω is α-differentiable in some (0, a), a > 0 and
limt→0+ ω(α)(t) exists, then specify ω(α)(0) = limt→0+ ω(α)(t).

Remark 2.1 The conformable fractional derivatives of ω of order α are denoted
by ω(α)(t) for Dα(ω)(t). Furthermore, we simply state ω is α-differentiable if the con-
formable fractional derivative of ω of order α exists, where Dα(t

p) = ptp−α.

Remark 2.2 The integral departs from the standard Riemann integral and instead
involves an erroneous version. The parameter α takes values in the interval (0, 1).
The conformable derivative, while maintaining all the conventional characteristics of the
ordinary first derivative, is under consideration. Furthermore, the derivative gives rise
to correct propositions according to the context presented.

• Dα(aω + bφ) = aDα(ω) + bDα(φ),

• Dα(t
p) = ptp−α, for all p ∈ R,

• Dα(ωφ) = ωDα(φ) + φDα(ω),

• Dα(
ω
φ ) =

φDα(ω)−ωDα(φ)
φ2 .
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3 Fractional Inverse Gamma Distribution

The Inverse Gamma distribution, denoted as IG(δ, β), is a two-parameter family of
continuous probability distributions defined on the positive real line. The Cumulative
Distribution Function (CDF) of the Inverse Gamma distribution is given by

G(x; δ, β) = 1− βδ

Γ(δ)

∫ x

0

tδ+1e−β/tdt, (6)

where δ > 0 and β > 0 are the shape and scale parameters, respectively, and Γ(δ)
represents the Gamma function.

The Probability Density Function (PDF) of the Inverse Gamma distribution is defined
as

g(x; δ, β) =
βδ

Γ(δ)
x−(δ+1)e−β/x, (7)

where δ > 0 and β > 0 are the shape and scale parameters, respectively, and Γ(δ)
represents the Gamma function.

In this section, we will introduce the CFIGD defined as follows:

x2αDαy + (bxα − β + xα)y = 0,

gα(x) =
α2(βα )

(b+1)/α

βΓ( (b−α−1)
α )

x−(b+1)e
−β

(αxα) .
(8)

Consequently,

lim
α→1−

gα(x) =
βb

Γ(b)
x−(b+1)e

−β
x . (9)

This represents the PDF of the Inverse Gamma distribution. Consequently, the CPDF
gα(x) can be seen as an extension or generalization of the PDF for the Inverse Gamma
distribution as the following Figure 1 shows, and for more about fractional distributions,
see [16–21]. For the Inverse Gamma distribution, α refers to the shape parameter. The

Figure 1: The CPDF of the inverse gamma distribution for different values of α.

shape parameter α is a crucial parameter that governs the shape of the distribution. It
determines the skewness and tail behavior of the distribution.
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Figure 2: The CFSF of the inverse gamma distribution for different values of α.

A higher value of α results in a distribution that is more concentrated around its
mean, with lighter tails. On the other hand, a lower value of α leads to a more spread-
out distribution with heavier tails. Note that α must be greater than 0.

Definition 3.1 The Conformable α-Inverse Gamma Distribution (CFCDF) is de-
fined as

Gα(x) =

∫ x

0

gα(t)d
αt,

Gα(x) =
(αβ )

(2+b−α)(−1+α)
α Γ(2 + b− 1

α − α, x−αβ

α )

Γ( 1+b−α
α )

.

(10)

Definition 3.2 The Conformable Fractional Survival Function (CFSF) of X, (Sα)
is defined as

Sα(x) = 1−Gα(X)

Sα(x) = 1−
(αβ )

(2+b−α)(−1+α)
α Γ(2 + b− 1

α − α, x−αβ

α )

Γ( 1+b−α
α )

.
(11)

Definition 3.3 The Conformable Fractional Hazard Function (CFHF) X, (Hα) is
defined as

Hα =
Sα(x)

gα(x)
,

Hα(x) =
e

−x−αβ

α x−1−bα
−1−b+2α

α β
1+b−2α

α

Γ( 1+b−α
α )− (αβ )

(2+b−α)(−1+α)
α Γ(2 + b− 1

α − α, x−αβ

α )
.

(12)

Definition 3.4 The conformable fractional expectation Eα for the function v(x) is
defined as follows:

Eαv(X) =

∫
v(x)gα(x)d

αx,

Eα(X
r) =

α
−r
α β

r
αΓ( 1+b−r−α

α )

Γ( 1+b−α
α )

.

(13)
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To find the conformable fractional variance, conformable fractional standard deviation,
conformable fractional skewness, and conformable fractional kurtosis, we will find the
Eα(X

r) for r = 1, 2, 3, 4 as follows:

Eα(X) = µα =
(αβ )

−1
α Γ(−1 + b

α )

Γ( 1+b−r−α
α )

,

Eα(X
2) =

(αβ )
−2
α Γ(−1+b−α

α )

Γ( 1+b−α
α )

,

Eα(X
3) =

(αβ )
1− 1+b

α β(βα )
2−b
α Γ(−1 + −2+b

α )

αΓ(−1 + 1+b
α )

,

Eα(X
4) =

(αβ )
1− 1+b

α β(βα )
3−b
α Γ(−1 + −3+b

α )

αΓ(−1 + 1+b
α )

.

(14)

Definition 3.5 The conformable fractional variance is defined as follows:

ασ2 = Eα(X
2)− (µα)

2,

ασ2 =

α
−2
α β

2
α

(
− Γ(−1 + b

α )
2 + Γ(−1+b−α

α )Γ( 1+b−α
α )

)
Γ( 1+b−α

α )2
.

(15)

Definition 3.6 The conformable fractional standard deviation is defined as follows:

ασ =

√√√√√α
−2
α β

2
α

(
− Γ(−1 + b

α )
2 + Γ(−1+b−α

α )Γ( 1+b−α
α )

)
Γ( 1+b−α

α )2
.

(16)

Definition 3.7 The conformable fractional skewness is defined as follows:

αsk =
Eα(X − µ)3

ασ3
, (17)

and the conformable fractional skewness for CFIGD is defined as

sk =

(
2Γ(−1 + b

α )
3 − 3Γ(−1 + b

α )Γ(
−1+b−α

α )Γ( 1+b−α
α ) + Γ(−2+b−α

α )Γ( 1+b−α
α )2

)
(
− Γ(−1 + b

α )
2 + Γ(−1+b−α

α )Γ( 1+b−α
α )

) 3
2

.

(18)

Definition 3.8 The conformable fractional kurtosis is defined as follows:

αku =
Eα(X − µ)4

ασ4
, (19)

and the conformable fractional kurtosis for CFIGD is defined as

αku =
−3Γ(−1 + b

α )
4 + 6Γ(−1 + b

α )
2Γ(−1+b−α

α )Γ( 1+b−α
α )(

Γ(−1 + b
α )

2 − Γ(−1+b−α
α )Γ( 1+b−α

α )

)2

−
4Γ(−1 + b

α )Γ(
−2+b−α

α )Γ( 1+b−α
α )2 + Γ(−3+b−α

α )Γ( 1+b−α
α )3(

Γ(−1 + b
α )

2 − Γ(−1+b−α
α )Γ( 1+b−α

α )

)2 .

(20)
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Definition 3.9 The conformable fractional Shannon entropy of a random variable x
for the CFIGD is defined as follows:

SHα(x) = −Eα log gα(X),

SHα(x) =
1 + b− α− 2α log(α) + α log(β) + α log(Γ( 1+b−α

α ))− (1 + b)Ψ(0, 1+b−α
α )

α
.

(21)

Definition 3.10 The conformable fractional Tsallis entropy of a random variable x
for the CFIGD is defined as follows:

SHT,ξ(x) =
1

1− ξ
log(Eα(gα(X))ξ−1 − 1),

SHT,ξ(x) =
−1 + α−2+2ξβ1−ξξ1−

(1+b)ξ
α Γ( 1+b−α

α )−ξΓ(−α+ξ+bξ
α )

1− ξ
.

(22)

In Table 1, the quantiles of the distribution are classified by α in the rows and q in the
columns, the parameters of the distribution are β = 0.85 and b = 2.51.

α \ q 25 50 75
0.1 0.037 0.181 0.298
0.2 0.144 0.393 0.534
0.3 0.363 0.646 0.771
0.4 0.767 0.952 1.023
0.5 1.5 1.333 1.302
0.6 2.85 1.823 1.624
0.7 5.5 2.491 2.019
0.8 11.456 3.49 2.546
0.9 29.883 5.34 3.394

Table 1: Quantiles of the distribution.

The percentiles of the distribution are classified by α in the rows and q in the columns,
the parameters of the distribution are β = 0.70 and b = 1.51.

Corollary 3.1 Hence limξ→1 SHT,α,ξ(x) = SHα(x). We get that the limit of the
conformable fractional Tsallis entropy is equal to the conformable fractional Shannon
entropy.

Definition 3.11 The conformable fractional Renyi entropy of a random variable x
for the CFIGD is defined as follows:

SHR,α,ξ =
1

1− ξ
log(Eα(gα(X))ξ−1),

SHR,α,ξ =
1

α(−1 + ξ)

(
− 2α(−1 + ξ) log(α) + α(−1 + ξ) log(β)− α log(ξ)

+ ξ log(ξ) + bξ log(ξ) + αξ log(Γ(−1 +
1 + b

α
))− α log(Γ(−1 +

(1 + b)ξ

α
))

)
.

(23)

Corollary 3.2 Hence limξ→1 SHR,α,ξ = SHα(x). We get that the limit of the con-
formable fractional Renyi entropy is equal to the conformable fractional Shannon entropy.
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α \ q 10 20 30 40 50 60 70 80 90
0.1 0.001 0.006 0.023 0.05 0.084 0.12 0.158 0.196 0.233
0.2 0.002 0.022 0.069 0.128 0.19 0.249 0.306 0.357 0.404
0.3 0.004 0.053 0.138 0.23 0.315 0.391 0.458 0.516 0.567
0.4 0.01 0.104 0.236 0.36 0.464 0.551 0.622 0.681 0.73
0.5 0.023 0.187 0.374 0.526 0.644 0.734 0.804 0.859 0.903
0.6 0.052 0.322 0.57 0.746 0.868 0.953 1.014 1.059 1.093
0.7 0.12 0.556 0.866 1.049 1.159 1.227 1.269 1.296 1.313
0.8 0.301 1.004 1.353 1.508 1.575 1.601 1.606 1.601 1.59
0.9 0.982 2.112 2.359 2.359 2.294 2.215 2.139 2.068 2.004

Table 2: Percentiles of the distribution.

4 Conclusion

The paper defines the Cumulative Distribution Function (CDF), survival function, and
hazard function of the CFIGD, offering valuable insights into its behavior and potential
applications in reliability and risk analysis. Statistical measures such as the expected
values, r-th moments, mean, variance, skewness, and kurtosis are introduced as con-
formable fractional analogs, facilitating a deeper understanding of its central tendencies
and higher-order characteristics. Additionally, this research reveals the conformable frac-
tional analogs of popular entropy measures like the Shannon, Renyi, and Tsallis entropy,
providing useful tools for quantifying uncertainty and randomness.
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Abstract: The SPM CALM Buoy is an offshore facility for loading/unloading crude
oil. The SPM CALM Buoy in Indonesia is mostly operated in shallow water, so an
analysis of the depth variation impact on the performance of the CALM Buoy is of
necessity. The results of the analysis of the ship motion in free floating condition
under the conditions of regular waves and spectral response show that the surge,
sway, and yaw motions are influenced by depth variations, while the heave, roll, and
pitch are influenced by frequency. For the CALM Buoy, all movements are affected by
the depth variations. The results of the analysis in mooring condition show that the
tension on the mooring line and offset on the CALM Buoy are affected by variations
in depth and not affected by the towing force of the ship. The deeper the water
area, the higher the values of the tension and offset. At a depth of 21 m to 42 m, a
pre-tension of 10% of MBL is used, while at a depth of 50 m, a pre-tension of 15%
of MBL is used since the initial pre-tension of 10% is unable to accommodate the
movement of the CALM Buoy. This is because the second order wave load has a
greater influence on moored structures such as the CALM Buoy.
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1 Introduction

Petroleum remains the main choice for addressing the needs for energy sources, that is,
fuel for motor vehicles, industry, and power plants. Indonesia’s production capacity of
only around 800,000 barrels per day cannot meet the need for oil consumption reaching
more than 2 million barrels per day [1]. This is because Indonesia only relies on its
production from the old wells on land, that are of the colonial era. Based on the data
from the Ministry of Energy and Mineral Resources, Indonesia still has oil reserves of
320 billion barrels situated off the west coast of Aceh. With the discovery of offshore
oil reserves, offshore exploitation technology is needed to reap the advantage out of the
potential of such discovery.

Since the petroleum exploitation is done offshore, it is necessary that a floating struc-
ture be built so as to be able to exploit and distribute petroleum. There are two ways
to distribute the petroleum, that is, by flowing it through subsea pipelines and by using
tankers. Distribution through subsea pipelines is considered not economical enough due
to its high costs if the pipes should be installed in deep waters. So, distribution by using
tankers is preferred because it is more economical.

The process of transporting crude oil from the drilling site to tankers is called offload-
ing. Tankers require stability criteria during the offloading period, so a mooring system
is required to maintain the motion limit of the ship against wave excitation. There are
many configurations of mooring systems, among others, spread mooring, turret mooring,
and single point mooring. The single point mooring type is a mooring system that can
follow environmental conditions so that tankers can move following the waves without
having to stop the offloading process.

One of the single point mooring types is SBM (Single Buoy Mooring) [2]. Single buoy
mooring is a type of single point mooring using a buoy useful for mooring and connecting
the riser to the tanker. Single Buoy Mooring mostly operates in shallow water because
its function is to distribute oil from ships to storage depots. The buoys used for mooring
systems greatly affect the strength and stability of the mooring system. The size of the
buoy used must be in accordance with the size of the ship used during the offloading
period because the incorrect motion response from the ship is a significant factor in
influencing the stability of the buoy. The problems raised in this study include: what
is the behavior of the CALM Buoy and tanker in free floating condition?, how does the
difference in depth affect the tension on the mooring line and the offset on the Buoy?
and what is the trend of the influence of depth variation on the level of the tension on the
mooring line? The purpose of this study is to answer these three problems, the results
are considered to be useful later as reference information for the interested companies.

2 Experiment

2.1 Instruments and materials

All segments of the Mooring Line are made of chains. For a long time, the chain has
been the main choice in offshore operations because the chain has more strength than
seabed aberration and makes a very significant contribution to anchor grip. All segments
of the Mooring Line are made of a wire rope. Basically, this wire rope is lighter than
the chain, therefore the wire rope has a higher restoring force in deep sea waters and
requires lower pre-tension than the chain. To avoid lifting the anchor on the wire rope,
a longer wire rope is needed than when using a chain. The wire rope is more susceptible
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to corrosion attack, therefore it requires extra care because mechanical damage due to
corrosion is a more common factor causing failure. The Mooring Line is a combination
of more than one chain segment and the wire rope. By combining the Mooring Line into
more than one segment, namely the chain and wire rope, one will obtain the following
advantages: a low pre-tension, high restoring force, larger holding anchor and resistance
to aberration. These advantages make the Mooring Line with combined segments very
suitable for application in the deep sea.

2.2 Work procedures

2.2.1 Theory

Various literatures and related theoretical basis are employed to support this research,
starting from the effect of depth on the response of SPAR motion in deep water [3]. Based
on the research, there is no significant change in depth variation when the object operates
in deep water. However, when it is in shallow water, the change in depth variation has
a significant effect on the response of the structure due to the energy difference (surge
wave force) resulted from the difference in depth [4], [5], [6]. The difference in the
response value of the structure movement in the free floating condition was analyzed by
the frequency domain analysis method using the equation

M(ω)r + C(ω)r +K(ω)r = Xeiωt, (1)

where
M(ω) : mass matrix of frequency function (tons),
C(ω) : damping matrix of frequency function (ton/s),
K(ω) : stiffness matrix of frequency function (kN/m),
X : complex load vector giving information on load amplitude and phase at all degrees of
freedom. The pattern eiωt sets the variation harmonics of the sample load with frequency.
r : displacement vector (m).

After the response value of the frequency-based structure movement is obtained, the
response value of the structure in mooring state is found by the time domain analysis
method using the equation

[m+A(ω)]ẍ+ C(ω)ẋ+D1ẋ+D2f(ẋ) +Kx = qW1 + q1WA + q2WA + qCU + qxet, (2)

where qW1 is the wind drag force, q1WA is the wave drift of first order, q2WA is the wave
drift force of second order, qCU is the current force, qxet is the other external force.

When a time-based analysis (time domain analysis) is made, several outputs are
obtained in the form of tension from the mooring line and hawser. In addition, the
offset, heave, and roll/pitch of CALM Buoy are obtained [7], [8], [9], [10]. To find out
the value of the tension occuring due to the holding back of the response of the structure
resulted from wave excitation, the equation below is used.

Tmax = TH + wh, (3)

where Tmax is the maximum tension of the mooring rope (tons), TH is the horizontal
pre-tension (tons), w is the chain weight in water (ton/m), h is the water depth (m).

The tension value is affected by the ratio of the length of the mooring line to the
depth of the water. In this analysis, the magnitude of the pre-tension value for each
depth is made the same, which is 10% of the MBL [11].
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Figure 1: Setup of the Mooring Line.

The movement of the floating structure in the moored condition can be considered
as a first order high frequency movement and a second order low frequency movement
divided separately. The motion equation of the wave frequency [12] for the FPSO is

(Mij + µij)ẍ
(1)
j +

∫ ∞

0

Kij(τ)ẋ
(1)
j (t− τ)dτ + Cijx

(1)
j = Fmoor

i + F
wave(1)
i , (4)

where
x
(1)
i is the wave frequency motion, Fwave(1) is the first order wave force, Fmoor is the

mooring force, M is the inertia matrix FPSO.
The equation of low frequency motion of FPSO [12] is as below:

(m+ µ11)ẍ
(2)
1 + µ12ẍ

(2)
2 + µ16ẍ

(2)
2 + (B11 +Bwdd)ẋ

(2)
1 = Fwind

1 + F current
1 + F

wave(2)
1 + Fmoor

1

µ21ẍ
(2)
1 + (m+ µ22)ẍ

(2)
2 + µ26ẍ

(2)
6 +B22ẋ

(2)
2 = Fwind

2 + F current
2 + F

wave(2)
2 + Fmoor

2

µ61ẍ
(2)
1 + µ62ẍ

(2)
2 + (I + µ66)ẍ

(2)
6 +B66ẋ

(2)
6 = Fwind

6 + F current
6 + F

wave(2)
6 + Fmoor

6

(5)

where x(2) is the low frequency motion, B11, B22, B33 are the damping coeficients, Bwdd

is the wave drift damping coeficient in the direction of the x-axis, F current
i is the current

force, Fwind
i is the wind force, Fmoor

i is the mooring force, F
wave(2)
i is the second order

wave drift force.

2.2.2 CALM Buoy

The CALM Buoy is a mooring system commonly used for loading/unloading processes as
a connector between tankers and the fuel transit terminal. The #SPM150 CALM Buoy
is one of the SPM owned by PT. Pertamina, operating off the coast of Tuban, having a
configuration of 6 symmetrical mooring lines, a hull size of 11 m, an outer skirt diameter
of 15 m, a water draft of 2.95 m, and an ability to accommodate vessels with a capacity
of up to 150,000 DWT.

2.2.3 Environmental data

The environmental data used in this study are the data taken from the Tuban offshore
environment, obtained from Sofec with a significant wave height of Hs = 3.1 m, a wave
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period of Tp = 6.9 sec, a wind speed of 11 knots, and a surface current speed of 0.75
m/sec. The depth variation is obtained from the calculation of environmental parameters,
that is, the ratio of the wave number to the depth or non-dimensional water depth (kh)
and based on structural parameters, that is, the ratio of depth to draft (D/T) [13].

Depth (m) 21 23 25 27 30 33 37 42 50
kh 1.3 1.4 1.5 1.6 1.8 2.0 2.2 2.5 3.0
D/T 1.2 1.3 1.4 1.5 1.7 1.9 2.1 2.4 2.9

Table 1: Calculation of Depth Variation.

The results of the calculation of depth variation for this study can be seen in Table 1.
The selection of a low interval at the initial depth and a high interval at the final depth
is due to the authors’ desire to know a more specific downward trend when in shallow
waters.

2.2.4 Structure modeling

The modeling of the ship structure and CALM Buoy in this study uses the software,
while the analysis of the motion of the structure during mooring condition uses the
Ariane software. For the modeling of the software, structural coordinate data are used
to create a meshing to be used for hydrodynamic analysis. The meshing form of the ship
structure and the CALM Buoy can be seen in the image below.

Figure 2: The results of modeling the structure of the ship on the software.

The analysis carried out on software is only to find out the characteristics of the
object’s motion in free-floating condition [14]. For further analysis, that is, the analysis
of the mooring condition, mooring software is used. The analysis of mooring conditions is
carried out under two conditions, that is, the inline mooring condition and between-line
mooring conditions [15]. From Figure 4 below, the inline condition can be described as
the ship is in a floating position parallel to the mooring line. This position indicates
that there is only one mooring line that holds the ship when the ship is subjected to
environmental loading in the form of waves or currents coming from the front of the
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Figure 3: CALM Buoy modeling results on the software.

Figure 4: Inline conditions moored modeling on mooring software.

Figure 5: Inline conditions moored modeling on mooring software.

ship. From Figure 5, the between-line condition can be described as the ship is in a
floating position between two mooring lines. This position indicates that there are two
mooring lines that hold the ship when the ship is subjected to environmental loading in
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the form of waves or currents coming from the front of the ship. Therefore, the tension
received by the mooring line in the between-line condition is smaller than in the inline
condition because the load is distributed to two mooring lines.

2.2.5 Model validation

The validation criteria used refer to ABS (American Bureau of Shipping) of which the
maximum value for displacement validation is 2% and, for other provisions, the maximum
value is 1%.

3 Results and Discussion

After going through the data processing stage, the results and discussion are as follows.
The discussion is to find out the effect of the depth variation on the performance of
the CALM Buoy in offloading conditions. The performance of the CALM Buoy can be
analyzed in terms of the magnitude of the tension on the mooring line, the offset, heave,
and roll/pitch of the buoy. The CALM Buoy performance analysis is carried out with
the help of mooring software using the time domain analysis method. The output data
in the form of time history is then processed to obtain significant values to be used in
the performance analysis.

3.1 Research location

The research site as shown in Figure 6 is in the Main Transit Terminal Facility, offshore
of Tuban Regency, East Java Province, at the coordinates of 111◦56′21′′ east longitude
and 06◦42′48” south latitude. From Figure 6 below, it is known that the CALM Buoy

Figure 6: The Research Location in Tuban.

and the ship are located off the coast of Tuban not too far from the mainland and not
too deep.

3.2 Motion analysis of free floating conditions

The motion analysis of the ship and CALM Buoy in free-floating condition was made
to determine the behavior or characteristics of structural motion on regular waves. The
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RAO analysis was carried out at the depth referring to Table 1. For the ship’s RAO,
the highest values of the surge, sway, and yaw motions were affected by the depth of
the water, while the highest values of the heave, roll, and pitch motions were affected by
the magnitude of the frequency. For the RAO of the CALM Buoy, all the motions were
affected by the depth variation condition.

3.3 Response analysis on random waves

The response analysis on random waves resulted in the same conclusion as that in the
free-floating condition. This was because the results of the analysis on random waves
follow those of the analysis in the free-floating condition.

3.4 Tension analysis on mooring line

The tension analysis on the mooring line was carried out in two conditions, using the
time domain analysis method, that is, inline condition and between-line condition.

Figure 7: Example of value measurement of time history.

In the inline condition, the analysis was made only for the mooring line number 1. In
the between-line condition, the analysis was made for the mooring lines number 2 and
3. This was due to the condition of the mooring line configuration in which, for both
conditions, an analysis was made just for the mooring line having the greatest tension.
The tension value for mooring line 1 can be seen in Table 2. For mooring lines 2 and 3,
it can be seen in Table 3 and Table 4.

Depth (m)
Description 21 23 25 27 30 33 37 42 50

MEAN (KN)) 541.19 552.05 450.72 553.27 567.14 568.91 586.61 617.26 664.37
Tension 1/3 762.45 791.99 813.69 819.85 856.93 885.86 947.15 1043.80 1084.50
highest (KN)
Tension 1/10 912.88 960.47 995.54 1016.60 1089.20 1134.86 1232.90 1411.00 1500.00
highest (KN)
Tension 1/100 1175.60 1268.80 1320.00 1381.00 1520.00 1603.00 1788.20 2229.20 2483.00
highest (KN)
MAX (KN) 1719.83 1841.95 1560.51 2033.80 2283.89 2536.75 2712.01 3612.01 4470.45
MIN (KN) 171.20 161.32 148.19 157.50 147.60 152.54 151.95 156.40 171.83

Table 2: Calculation of the Value of Tension on Mooring Line 1.

The tension values in inline and between-line conditions increased due to variation
in depth. The significant value of tension for inline condition at a depth of 21 m to
that of 50 m increased by 29%. The significant value of the tension for the between-line
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Depth (m)
Description 21 23 25 27 30 33 37 42 50

MEAN (KN)) 540.12 552.77 535.96 546.28 566.35 540.85 583.31 596.22 871.56
Tension 1/3 708.58 719.22 742.62 764.88 780.27 801.65 868.36 905.53 1177.90
highest (KN)
Tension 1/10 853.13 854.21 886.41 922.96 1009.90 987.69 1084.80 1156.30 1421.70
highest (KN)
Tension 1/100 1080.50 1096.20 1150.00 1208.00 1385.50 1290.50 1468.00 1670.30 2071.00
highest (KN)
MAX (KN) 1739.28 1832.96 1555.38 1804.56 2185.98 2134.09 2348.60 2679.82 4476.58
MIN (KN) 198.60 179.48 179.25 176.16 179.49 178.16 184.18 171.17 347.60

Table 3: Calculation of the Value of Tension on Mooring Line 2.

Depth (m)
Description 21 23 25 27 30 33 37 42 50

MEAN (KN)) 539.33 546.34 531.79 542.31 558.72 540.78 579.78 598.78 875.14
Tension 1/3 702.25 715.35 736.03 756.77 788.52 802.03 863.30 909.10 1189.10
highest (KN)
Tension 1/10 847.73 850.84 874.64 912.02 996.14 986.56 1078.80 1156.60 1449.20
highest (KN)
Tension 1/100 1057.80 1100.00 1120.00 1194.40 1356.40 1302.30 1494.80 1650.40 2162.00
highest (KN)
MAX (KN) 1426.31 1824.89 1538.04 1727.19 2038.19 2524.84 2310.40 3026.76 4322.85
MIN (KN) 201.78 180.82 180.63 173.92 180.39 183.15 168.84 181.78 351.48

Table 4: Calculation of the Value of Tension on Mooring Line 3.

condition on the mooring line 2 and mooring line 3 at a depth of 21 m to that of 50 m
increased by 39%. At a depth of 50 m, the tension value for the between-line condition
was greater than that for the inline condition because the pre-tension value changed from
10% MBL to 15% MBL (minimum breaking load)

3.5 Calm Buoy offset analysis

The offset analysis for the mooring line was made under two conditions, that is, the inline
condition and between-line condition. The offset for the inline condition can be seen in
Table 5, and that for the between-line condition can be seen in Table 6.

Depth (m)
Description 21 23 25 27 30 33 37 42 50
MEAN (m)) 0.37 0.44 0.55 0.56 0.69 0.80 1.01 1.30 1.49
Offset 1/3 0.71 0.85 0.99 1.08 1.32 1.53 1.92 2.43 2.84
highest (m)
Offset 1/10 0.92 1.11 1.27 1.40 1.71 1.96 2.44 3.08 3.67
highest (m)
Offset 1/100 1.21 1.47 1.66 1.88 2.28 2.60 3.19 4.00 4.83
highest (m)
MAX (m) 1.60 1.97 2.17 2.64 2.99 3.59 4.12 5.13 5.84

Table 5: Inline condition offset calculation.

The buoy offset in inline and between-line conditions increased due to depth variation.
In the inline condition, at a depth of 21 m, the significant offset was 0.71 m, and it
continued to increase to 2.84 m at a depth of 50 m. In the between-line condition, at a
depth of 21 m, the value was 0.68 m and continued to increase up to 2.04 m at a depth
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Depth (m)
Description 21 23 25 27 30 33 37 42 50
MEAN (m)) 0.35 0.40 0.45 0.52 0.67 0.72 0.9 1.05 0.85
Offset 1/3 0.68 0.77 0.86 1.00 1.27 1.36 1.72 2.04 1.61
highest (m)
Offset 1/10 0.88 0.98 1.12 1.31 1.63 1.74 2.23 2.66 2.07
highest (m)
Offset 1/100 1.18 1.37 1.50 1.80 2.17 2.28 2.94 3.59 2.76
highest (m)
MAX (m) 1.55 1.99 1.97 2.54 2.8 3.53 3.89 4.47 3.70

Table 6: Between-line condition offset calculation.

of 42 m, then decreased at a depth of 50 m to 1.16 m. The significant decrease in the
tension value was due to the difference in the pre-tension values, that is, from 10% MBL
to 15% MBL.

3.6 Motion response analysis of Calm Buoy in moored condition

The analysis of the motion response of the CALM Buoy in moored condition covered
heave and roll/pitch motions. These motions were the performance parameters of the
CALM Buoy. The values of these motions can be seen in Table 7 and Table 8.

Depth (m)
Description 21 23 25 27 30 33 37 42 50
MEAN (m)) 0.84 0.87 0.92 0.96 1.02 1.08 1.15 1.23 1.45
Heave 1/3 0.91 0.95 1.00 1.04 1.10 1.17 1.25 1.37 1.62
highest (m)
Heave 1/10 0.95 0.99 1.04 1.08 1.15 1.21 1.31 1.45 1.72
highest (m)
Heave 1/100 1.00 1.05 1.10 1.14 1.21 1.29 1.40 1.58 1.88
highest (m)
MAX (m) 1.13 1.12 1.19 1.23 1.34 1.48 1.92 1.77 2.10

Table 7: Calculation of the value of heave of the Calm Buoy.

The heave value had an upward trend based on depth variation. At a depth of 50 m
it showed a decrease due to difference in pre-tension values.

3.7 Tension trend based on depth variation

For the inline condition, the trend of significant tension values was only analyzed for
mooring line 1. Whereas for the between-line condition, the analysis was made for
mooring lines 2 and 3 because the trend value was based on the mooring line with the
greatest tension. The trend of significant changes in tension values based on the depth
variation can be seen in Figure 8, Figure 9 and Figure 10.
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Depth (m)
Description 21 23 25 27 30 33 37 42 50

MEAN (deg)) 6.80 8.26 8.85 8.90 9.75 9.80 11.10 12.90 10.20
Roll/Pitch 1/3 12.80 16.06 16.95 17.37 18.50 18.62 21.20 25.74 20.10
highest (deg)

Roll/Pitch 1/10 16.60 20.59 21.71 22.18 23.87 24.25 27.24 34.50 26.22
highest (deg)

Roll/Pitch 1/100 21.90 26.39 27.56 28.31 31.44 34.70 35.90 46.98 35.11
highest (deg)
MAX (deg) 29.40 33.22 33.50 33.80 40.27 45.00 48.78 59.50 44.00

Table 8: Calculation of roll/pitch of the Calm Buoy.

Figure 8: Tension on mooring line 1, the trendline in inline condition based on kh and D/T.

Figure 9: Tension on mooring line 2, the trendline in between-line condition based on kh and
D/T.

Figure 10: Tension on mooring line 3, the trendline in between-line condition based on kh and
D/T.
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The significant tension value in the inline condition based on both environmental and
structural parameters has an upward trend based on depth variation. The tension trend
in inline condition starts to look steady within a depth of 42 m up to that of 50 m.
For the significant tension value in the between-line condition, it is not known at what
depth the tension trend starts to stabilize because at a depth of 50 m, a pre-tension value
different from that of the previous depth is used.

4 Conclusion

The maximum value of the ship’s RAO motion varies in accordance with the depth of
the water. The maximum values of the surge, sway, and yaw motions are affected by the
difference in depth, while the heave, pitch, and roll are affected by the frequency. The
maximum RAO value of all motions of the CALM Buoy is affected by the difference in
depth.

The value of the ship’s response in the random waves for the surge, sway, and heave
motions is affected by the depth variation, while for roll, pitch and yaw motions, it is
not affected by the depth variation. The response value follows that of the RAO value.
The response value of the CALM Buoy in the random waves for all motions is affected
by variation in depth because the response value follows that of the RAO value, whereas
the CALM Buoy motion is not affected by changes in depth.

The tension on the mooring line for both inline and between-line conditions is affected
by variation in depth. If in the analysis of the movement of the structure, the deeper
the water area, the smaller the movement of the structure, then in the analysis of the
tension on the mooring line, it has the opposite value. The tension in the inline condition
from a depth of 21 m to 50 m increased by 29%, while for the between-line condition, it
increased by 39%. This is because the resulting tension is caused by the increase in the
heave and offset values at depth variation.

The offset of the CALM Buoy in both inline and between-line conditions is affected
by variation in depth. The highest offset in inline condition occurs at a depth of 50 m up
to 5.84 m. At the same time the farthest offset in the between-line condition occurs at
a depth of 48 m up to 4.47 m, this is because in the between-line condition, at a depth
of 50 m, a pre-tension of 15% MBL is used. The tension in the mooring line for both
inline and between-line conditions has a trend of increasing values along with increasing
depth. The significant tension value in the inline condition at a depth of 21 m is 762.45
KN and continues to increase until a depth of 50 m, at which the significant tension is
1084.5 KN. The significant tension value in between-line condition at a depth of 21 m is
708.58 KN, and it continues to rise, at a depth of 50 m, the significant tension reaches
1189.1 KN. For the inline condition, the tension value starts to stay steady at a depth
of 42 m up to 50 m. For the between-line condition, it is not known at what depth the
tension trend starts to be steady because at a depth of 50 m, a pre-tension is different
from that at the previous depth so that the tension trend seems to increase significantly.
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Abstract: In this work, we investigate the escape phenomenon, the onset of bista-
bility, jumps, as well as other bifurcations present in the twin-well Duffing equation.
Based on the known steady-state asymptotic solution – the amplitude-frequency im-
plicit function – and using the theory of differential properties of implicit functions,
we compute the singular and critical points of this function. This enables us to predict
several bifurcations present in the dynamical system under study. The main result is
the calculation of the escape bifurcation set – the set of parameters for which escape
phenomena occur, and equations to compute the onset of bistability.
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1 Introduction and Motivation

We study the dynamics of a vibrating system governed by the Duffing equation with
negative linear stiffness [1, 2]:

d2x

dt2
+ k

dx

dt
− αx+ γx3 = f cosωt (k, α, γ > 0) . (1)

After rescaling the variables as in [2]:

τ = t
√
α, y = αx, h = k/

√
α > 0, c = γ/α3 > 0, Ω = ω/

√
α, (2)

we obtain the nondimensional Duffing equation
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d2y

dτ2
+ h

dy

dτ
− y + cy3 = f cosΩτ (h, c > 0) , (3)

which is a twin-well potential system with a potential function V (y) = 1
2y

2 − 1
4cy

4 + C
(note that for h = 2ζ, c = γ, we get equation (7.1.2) of [2]). Equation (3) appears
in many physical problems, in early applications, it was used to model buckled beam
dynamics [3, 4], see also [5] and references therein.

Many bifurcations of dynamics occurring in equation (3) were described before [1,2].
The motivation of this work is to find and classify all bifurcations of the dynamics by
studying qualitative changes in the differential properties of the approximate asymptotic
solution (metamorphoses) of the Duffing equation (3).

Our main aim is to investigate an escape phenomenon, i.e., a transition from one
well to cross-well motion under a smooth transition of a control parameter. This is an
important problem since such a transition can result in a sudden increase in the amplitude
of vibration with serious consequences for a vibrating construction. Moreover, we also
aim at determining the onset of bistability and emergence of jump phenomena.

In the next section, we describe the methods used to find approximate asymptotic
solutions of Eq.(3) and to study their differential properties. The equations for singular
points and vertical tangencies are solved in Sections 3 and 4, respectively. In Section 5,
we verify our analytical calculations by solving Eq.(3) numerically and summarize our
results in the last section.

2 Methods

Our approach is based on: (i) the asymptotic solutions of nonlinear differential equations
and (ii) the differential properties of implicit functions, see [6] and references therein.
The idea to use the Implicit Function Theorem to ”define and find different branches
intersecting at the singular points of amplitude profiles” was proposed in [7].

Let us now look how the 1 : 1 resonance can be computed within the asymptotic
approach [8–10]. For small nonzero ε, the asymptotic solutions of Eq.(3) are assumed in
the form

y (τ) = A0 +A cos (Ωτ + φ) + εy1 (A0, A, φ, τ) + . . . . (4)

Working in the spirit of [10], Section 13.5, we get the following conditions for the steady-
states:

K1 (A0, A) = A0

(
3
2A

2c+ cA2
0 − 1

)
= 0, (5a)

K2 (A0, A,Ω) = h2A2Ω2 +A2
(
Ω2 + 1− 3cA2

0 − 3
4cA

2
)2 − f2 = 0. (5b)

Furthermore, following [10] again, we can solve Eq.(5a) for A0 and substitute to (5b)
obtaining the Type I (small orbits) solutions

L1 (A,Ω) = h2A2Ω2 +A2
(
Ω2 − 2 + 15

4 cA2
)2 − f2 = 0

(
cA2

0 = 1− 3
2A

2c > 0
)
, (6)

and the Type II (large orbits) ones

L2 (A,Ω) = h2A2Ω2 +A2
(
Ω2 + 1− 3

4cA
2
)2 − f2 = 0 (A0 = 0) . (7)

We now start our analysis of the differential properties of implicit functions K1,
K2, see Eqs.(5). Equations (5) describe a curve in the three-dimensional (3D) space
(A0, A,Ω), being an intersection of two surfaces, K1 (A0, A) = 0 and K2 (A0, A,Ω) = 0.
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The singular points of this curve are computed from the following equations [11,12]:

K1 (A0, A) = 0
K2 (A0, A, Ω) = 0

det

(
∂K1

∂A0

∂K2

∂A0

∂K1

∂A
∂K2

∂A

)
= 0

det

(
∂K1

∂A0

∂K2

∂A0

∂K1

∂Ω
∂K2

∂Ω

)
= 0

det

(
∂K1

∂A
∂K2

∂A
∂K1

∂Ω
∂K2

∂Ω

)
= 0



. (8)

The determinant conditions in (8) mean that at a singular point, the continuous and
differentiable functions A0 (Ω) , A (Ω) , and A0 (A) , Ω (A) , as well as A (A0) , Ω (A0)
do not exist.

In the neighborhood of a singular point (A0∗, A∗, Ω∗; h∗, c∗, f∗), the 3D curve,
defined by Eqs.(5), changes its form. Accordingly, the bifurcation diagram changes its
form as well, i.e., the dynamics undergoes a bifurcation.

Alternatively, we analyze simpler 2D curves defined in Eqs.(6), (7). The conditions
for singular points are [11,13]

Li (A,Ω;h, c, f) = 0

∂Li (A,Ω;h, c, f)

∂Ω
= 0

∂Li (A,Ω;h, c, f)

∂A
= 0

 , (9)

where i = 1, 2 and the functions L1, L2 are defined in Eqs.(6), (7), respectively.
The second and third conditions in (9) entail that at a singular point, the continuous

and differentiable functions Ω (A) or A (Ω) do not exist. Accordingly, the amplitude
response curve Li (A,Ω;h, c, f) = 0 changes its differential properties at a singular point
(Ω∗, A∗;h∗, c∗, f∗).

The metamorphoses of the amplitude-frequency curves (i.e., the changes of differential
properties) can also occur in a non-singular setting. More precisely, a metamorphosis of
this kind occurs when a smooth change of parameters leads to the formation of vertical
tangential points of an amplitude [14–16]. It follows that the equations guaranteeing the
formation of a (non-singular) vertical tangential point (A∗, Ω∗) are

Li (A,Ω;h, c, f) = 0
∂Li (A,Ω;h, c, f)

∂A
= 0

}
(i = 1, 2) . (10)

More precisely, the second of conditions (10) entails that the function A (Ω) has a vertical
tangency (the continuous and differentiable function A (Ω) does not exist).

Finally, the equations

Li (A,Ω;h, c, f) = 0
∂Li (A,Ω;h, c, f)

∂Ω
= 0

}
(i = 1, 2) , (11)
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are conditions for the maxima, minima, and inflection points of the function A (Ω) [11]
(the function Ω (A) has a vertical tangency at any of these points).

Equations (8), (9), (10), (11) are general and permit the prediction of the diverse
metamorphoses of amplitude-frequency response implicit functions, see [17] in the context
of Eqs.(8) and [6] and references therein for a review of the applications of Eqs.(9), (10).

However, in simple cases such as the Duffing equation, the metamorphoses of ampli-
tude profiles, induced by a change of parameters, were predicted without invoking the
differential theory of implicit curves in pioneering papers [14–16,18].

For example, jumps were computed algebraically in [14] (in the framework of Catas-
trophe Theory) and in [19]. Moreover, a differential condition for jumps was obtained
in [15, 16]. Furthermore, the merging of two parts of the amplitude-frequency response
curve, equivalent to a singularity, was computed in [18] (see also [16] and references
therein).

While the changes in the differential properties of asymptotic solutions are important,
the stability of the solutions is another essential factor shaping the dynamics.

3 Singular Points

A solution of Eqs.(8) is a curve in the 3D space of state variables A0, A, Ω, with the
parameters h, c, f . Therefore, we shall look for the singular points of this curve in the
most general 3D setting. The physical solutions of Eqs.(8) are shown in Table 1,

Type I (small orbits) Type II (large orbits)

A0 =
√
15c
15c

√
11− 2Ω2 A0 = 0

A = 2
√
5c

15c

√
Ω2 + 2 ≤

√
2
3c A =

√
2
3c

h = 2
√
6

3

√
1− Ω2 h – arbitrary

f =
4(Ω2+2)

√
10c

45c

√
1− Ω2 f =

√
6c
6c

√
4Ω4 + 4 (h2 + 1)Ω2 + 1

c > 0 c > 0
|Ω| ≤ 1 Ω – arbitrary

Table 1: Singular points: physical solutions of Eqs.(8).

where inequality (7) was used in the second row of the first column. There are also other,
borderline physical solutions of Eqs.(8) with h = f = 0, see Table 2.

Type I (small orbits) Type II (large orbits)

A0 ̸= 0 A0 = 0

A = 2A0

√
2−Ω2

6Ω2+3 A = 2
√

Ω2+1
3c

h = 0 h = 0
f = 0 f = 0

c = 2Ω2+1
5A2

0
c ̸= 0

|Ω| ≤
√
2 Ω – arbitrary

Table 2: Borderline physical solutions of Eqs.(8).

Alternatively, we look for singular points in a simpler, less general 2D formulation (9).
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It turns out that there are physical singular points of the 2D implicit curve
L1 (A,Ω;h, c, f) = 0, equivalent to the solution in the first column shown in Table 1.
On the other hand, the implicit curve L2 (A,Ω;h, c, f) = 0 has no physical singular
points. There are, however, borderline singular points listed in Table 2, see Section 5.

It follows that the solutions displayed in the second column of Table 1 can be obtained
in the 3D formulation only. These solutions describe, as we shall show below, a transition
between small and large orbits. The bifurcation set, the set of parameters, for a given
value of Ω, for which there is a Type II solution displayed in Table 1,

4Ω4 + 4
(
h2 + 1

)
Ω2 + 1 = 6cf2, (12)

cf. the 4th row of the Table, is shown in Fig.1.

1 C
2

3

5
4

1h
3

4

2
00

5
0.0

0.5

Ω
1.0

1.5

2.0

Figure 1: The bifurcation set, 4Ω4 + 4
(
h2 + 1

)
Ω2 + 1 = 6C, C = cf2.

4 Jumps, Singular Points, and the Onset of Bistability

The jump equations (10) can be simplified. More precisely, we compute from (10) the
equation for the amplitude A only,

β
(i)
5 c3h2Z5 + β

(i)
4 c2h2Z4 + β

(i)
3 c2f2Z3 + β

(i)
2 ch2f2Z2 + 16f4 = 0,

β
(1)
5 = −3375, β

(1)
4 = 1800, β

(1)
3 = −900, β

(1)
2 = −120,

β
(2)
5 = 27, β

(2)
4 = −36, β

(2)
3 = −36, β

(2)
2 = 24,

 (13)

Z = A2, and, after a value of A is calculated, an equation for the frequency Ω is obtained:

γ
(i)
6 c2h2Z3 + γ

(i)
4 ch2Z2 + γ

(i)
2 cf2Z + 8γ

(i)
0 f2 + 8f2Ω2 = 0,

γ
(1)
3 = 225, γ

(1)
2 = −120, γ

(1)
1 = 90, γ

(1)
0 = h2 − 2,

γ
(2)
3 = 9, γ

(2)
2 = −12, γ

(2)
1 = −18, γ

(2)
0 = h2 + 1,

 (14)
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where i = 1 means that we solve Eqs.(10) for the function L1, while i = 2 means that
we solve Eqs.(10) for the function L2, with the functions L1, L2 defined in equations (6)
and (7), respectively.

The physical (A > 0, Ω > 0) single roots of Eqs.(10) describe jumps. We now consider
an important case of the double (multiple) roots of (10).

The multiple roots of Eqs.(13) occur at the parameter values for which the discrim-
inants Di of polynomials in Eqs.(13) vanish. The discriminant of a polynomial can be
computed as a determinant of the corresponding 9 × 9 Sylvester matrix, see [20] and
Eq.(13) in [6]. In the case of small orbits (i = 1), we have

D1 (h, c, f) = p1 (h, c, f) q1 (h, c, f) = 0, (15a)

p1 (h, c, f) = h6 − 16h4 + 64h2 − 240f2c, (15b)

q1 (h, c, f) =
(
12 960f2c− 8192

)
h6 + 25 920cf2h4 + 6075c2f4. (15c)

The singular points of small orbits are given by the equation p1(h, c, f) = 0, which
has the physical solutions listed in the first column of Table 1. The onset of bistability,
corresponding to a double root of Eq.(13), is given by the equation q1(h, c, f) = 0.

In the case of large orbits (i = 2), the determinant is

D2 (h, c, f) = p2 (h, c, f) q2 (h, c, f) = 0, (16a)

p2 (h, c, f) = h6 + 8h4 + 16h2 + 48f2c, (16b)

q2 (h, c, f) =
(
1024− 2592f2c

)
h6 + 2592cf2h4 + 243c2f4. (16c)

The singular points of the large orbit are given by the equation p2(h, c, f) = 0, which
has no real solutions for c > 0. Therefore, a large orbit has the singular points listed in
the second column of Table 1 only. Furthermore, the equation q2(h, c, f) = 0 determines
the onset of bistability.

5 Numerical Verification and Analysis of the Analytical Results

5.1 Small orbits: singular points and the onset of bistability

The formulas for the Type I singular points are listed in the first column of Table 1. We
choose c = 1, Ω = 0.8. Then the equations listed in the first column of Table 1 yield
h = 0.979 796, f = 0.445 249, and A0 = 0.804 984, A = 0.484 424.

Now, we plot the implicit function L1 (A,Ω) = 0, defined in Eq.(6), for h = 0.979 796,
c = 1, and three values of f : f = 0.44 (green), f = 0.445 249 (red, analytical critical),
f = 0.46 (blue), see Fig.2. The amplitude-frequency curve has a singular point – an
intersection. Therefore, we can expect a rupture of a stable branch of solution (4),
corresponding to the green line in Fig.2.

The corresponding bifurcation diagrams, computed from Eq.(3) for h = 0.979 796,
c = 1, and two values of f : f = 0.599 00 (below the numerical critical value), f = 0.599 14
(above the numerical critical value), are shown in Fig.3. Blue and green colors in Figure
3 correspond to blue and green branches in Fig.2.

Indeed, it follows that the upper blue branch in Fig.2 is continuous, see the upper blue
curve in Fig.3. On the other hand, after the metamorphosis, see the red curve, the upper
green curve in Fig.3 must be ruptured since the green branches in Fig.2 are disconnected.
Note that, while the gap in the green branch in Fig.3 occurs near the critical value
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Figure 2: Implicit functions L1 (A,Ω;h, c, f) = 0: h = 0.979 796, c = 1, f = 0.44 (green),
f = 0.445 249 (red), f = 0.46 (blue).
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Figure 3: Bifurcation diagrams y (Ω) for Eq.(3): h = 0.979 796, c = 1, f = 0.599 14 (blue), and
f = 0.599 00 (green).

Ω = 0.8, the numerical critical value of the parameter f , f ∈ (0.599 00, 0.599 14), is
quite far from the analytical value f = 0.445 249.

We now use equations (15) from Section 4 to study jump phenomena.
Let h = 0.1, c = 1. Then the equation p1 (h, c, f) = 0 yields the real solution
f = 0.051 575, corresponding to a singular point. On the other hand, the equation
q1 (h, c, f) = 0 has the real solution f = 0.031 088 which determines the onset of bista-
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bility. In the left Figure 4, the amplitude-frequency curves are shown and the right Figure
4 shows the bifurcation diagram computed for Eq.(3).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ω

A
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1.2

1.3

1.4 y

Ω

Figure 4: Functions L1 (A, Ω) = 0: h = 0.1, c = 1, f = 0.031 088 (magenta) and f = 0.51
(blue-green); bifurcation diagrams y (Ω): f = 0.037 (magenta) and f = 0.51 (blue-green).

5.2 Large orbits: singular points, jumps, and escape phenomena

The Type II singular points can be computed from the expressions listed in Table 1.

A
1.0

1.5

2.02Ω
4

6

0.0
0

A
1.0

0.5

0
1.5

0.5

0.02.0

Figure 5: Intersection of surfaces: K1 (A0, A) = 0 (green) and K2 (A0, A, Ω) = 0 (blue and
red), h = 0.5, c = 0.5, f = 10.
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The surfaces K1 (A0, A) = 0 (green) and K2 (A0, A, Ω) = 0 (blue and red) are
shown in Fig.5 for h = 0.5, c = 0.5, f = 10. For these parameter values, we compute,
from the formulas listed in Table 1, Ω = 2. 836, A = 1. 155. Therefore, the intersection
point of green (two patches) and blue and red surfaces has the coordinates (A0, A, Ω) =
(0, 1. 155, 2. 836) in Fig.5 and (A, Ω) = (1. 155, 2. 836) in Fig.6, see the red dot denoted
as ”1”. The black dashed line denotes the borderline solution of Table 2.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
0

1

2

3

4

5

6

Ω

2

1

3

4

A

Figure 6: Implicit functions: L1 (A, Ω; 0.5, 0.5, 10) = 0 (blue), L2 (A, Ω; 0.5, 0.5, 10) = 0
(green), L2 (A,Ω; 1. 446, 0.5, 10) = 0 (magenta), and L2 (A,Ω; 0, 0.5, 0) = 0 (black, dashed).
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2
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6 y

Ω

2
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Figure 7: Bifurcation diagram y (Ω), h = 0.5, c = 0.5, f = 10.

The bifurcation diagram computed for Eq.(3) is shown in Fig.7. The transition be-
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tween small and large orbits occurs indeed near the critical value Ω = 2. 836.

Moreover, we have used equations (10) and (16) to study jump phenomena. The
computed points of jumps (at vertical tangencies) and the corresponding points present
in the bifurcation diagram are denoted in Figs.6 and 7 as ”2” and ”3”.

We have also determined the onset of bistability for large orbits. In Figure 8 below,
we show the implicit functions L2 (A,Ω; 1. 446, 0.5, 10) = 0 (the onset of bistability,
magenta), L2 (A,Ω; 1. 20, 0.5, 10) = 0 (blue-green), as well as the bifurcation diagrams
computed for Eq.(3), the same color lines correspond to the same states.

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
0

1

2

3

4

A

Ω
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

1

0

1

2

3

4

5 y

Ω

Figure 8: Functions L2 (A,Ω) = 0: c = 0.5, f = 10, h = 1.446 (magenta), and h = 1.20
(blue-green); bifurcation diagrams y (Ω): h = 1.43 (magenta) and h = 1.20 (blue-green).

We can now describe a sequence of events, predicted by the form of the implicit
functions L1 = 0, L2 = 0, cf. Fig.6, and confirmed by the bifurcation diagram, Fig.7,
computed from Eq.(3).

Let h = 0.5, c = 0.5, f = 10, and Ω = 4.0. In this case, the dynamics settles on
either of two small orbits (blue), see Figs.6, 7. Then, for the decreasing values of Ω,
the small orbit transforms into a large orbit of small amplitude (green) at point ”1”
(singular point). This large orbit, upon further decreasing of Ω, jumps at point ”2”
(vertical tangency point) to the large orbit with large amplitude (green). If the value of
Ω is increased now, another vector tangency point (”3”) is reached and the large orbit
with large amplitude falls onto either of the small orbits (blue).

6 Conclusion

In this work, we have investigated several bifurcations present in the twin-well Duffing
equation (1). We based our approach on the known steady-state asymptotic solution of
the nondimensional Duffing equation (3) computed in implicit form, see Eqs.(4), (5a),
(5b), and (6), (7).

Working in the framework of the differential properties of implicit functions [11–13],
we have computed (i) singular points in the 3D formulation and (ii) 2D singular points in
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Sections 3, 4, (iii) the points of vertical tangencies, and (iv) the double points of vertical
tangencies in Section 4.

Case (i) corresponds to the small orbit – large orbit transition (escape phenomenon),
see point ”1” in Figs.6, 7. Case (ii) is a rupture of a stable branch of a small orbit
solution, see Figs.2, 3, while case (iii) corresponds to jumps, see for example points ”2”,
and ”3” in Figs.6, 7. Finally, case (iv) coincides with the onset of bistability, after which
jumps are possible, see Fig.4 and Figs.6, 8.

Our analytical predictions correlate well with the numerical computations carried out
for the Duffing equation (3) and are reported in Section 5, the agreement is very good in
the case of the large orbit and satisfactory for the small orbit (this shows that the large
orbit asymptotic solution 7 is definitely more exact than the small orbit one 6).
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Abstract: Fuzzy logic is a logic that has a value of fuzzyness between true or false.
This study discusses the application of the Mamdani fuzzy logic in solving production
planning problems based on demand, remains and stock shortages. The variables
used for the production of herbal soap are 4 variables, namely 3 input variables which
consist of the demand variable, residual variable and shortage variable, and 1 output
variable, the production variable. The demand variable consists of 3 fuzzy sets,
namely decreasing, fixed and increasing, residual and shortage variables consist of 3
fuzzy sets, namely little, moderate and many, while the production variable consists
of 3 fuzzy sets, namely reduced, fixed and added. Therefore, a system is needed to
determine the amount of herbal soap production so that there will be no problems.
The results of this study aim to apply the Mamdani fuzzy logic method in predicting
the amount of herbal soap production based on demand, remains and stock shortage
data. Based on the calculations carried out, there were only 8,333% of the data that
had actual results. At the same time, the remaining 91.667% are the data that have
planned results that are not in accordance with the actual data.
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1 Introduction

Bath soap products have developed into the primary needs of people of all social classes.
Soap can be used to treat diseases such as skin diseases caused by bacteria or fungi. In
other words, soap can be used as a medicine cleaning the body to minimize the possibility
of suffering from diseases. The advantages of herbal soap compared to common soaps
are: it is easy to carry, it is easy to store, it offers various uses and benefits, and it
has an exclusive packaging appearance. Based on the data obtained, the producers often
experienced either shortages of products or overproduction in their day to day production.

Determining the production target or the number of products by the application
of the method allows membership values between 0 and 1 [1]. Various theories in the
development of fuzzy logic show that basically, fuzzy logic can be used to model various
systems [2]. Fuzzy logic is believed to be very flexible and has tolerance for existing
data. Based on the fuzzy logic, a model of a system capable of estimating the number
of product units to be produced will be generated [3–6].

The previous research has been carried out using the same method, that is, the
Mamdani Fuzzy Method but with four variables, and each variable had only two sets.
The residual variable had only two sets, that is, few and many. The sales and demand
variable had two sets, that is, decreasing and increasing. And the order variable had two
sets, decreasing and increasing. And in this study, there are four variables, and each has
three sets [7–9].

Based on the description above, the researches in this paper are interested in carrying
out a study entitled ”The Application of the Fuzzy Mamdani Method in Herbal Soap
Production Planning”. The aim is to help determine the number of herbal soap product
units to be produced and to introduce the Fuzzy Mamdani method to solve the herbal
soap production problems.

2 Method

2.1 Research procedures

Software needs analysis is done to find out all the problems and requirements. The
analysis is done by finding and determining the problems encountered, as well as all the
requirements such as problem analysis, system analysis, system input and output, and
the functions required [10,11].

Based on the data obtained, the producer often experiences production shortages and
excesses in the day to day production as shown in Table 1.

In general, the system to be developed attempts to apply the Mamdani Fuzzy method
in the herbal soap production planning based on the demand for the product units, the
remaining product units, and the shortages. The testing has to be carried out by compar-
ing the number of product units at the shops to that of the production results planned.
As a result, the system provides the output in the form of herbal soap production using
the Fuzzy Mamdani method. The data used in this study are the production, demand,
and shortage data in January-February, 2019 as shown in Table 1. The data indicate the
remaining units of 29 out of 48 and the shortage of 19 out of 48.

2.2 Research Design

Context Diagram
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Table 1: Data of Production for the January-February period.

Dates Production Demand Remains Shortage

03-Jan 610 211 399 0

04-Jan 399 944 0 545

05-Jan 655 201 454 0

07-Jan 454 1208 0 754

08-Jan 946 218 728 0

09-Jan 728 658 70 0

10-Jan 870 988 0 118

11-Jan 882 249 633 0

12-Jan 633 431 202 0

14-Jan 802 388 414 0

15-Jan 414 857 0 443

16-Jan 857 410 447 0

17-Jan 447 945 0 498

18-Jan 902 369 533 0

19-Jan 533 867 0 334

21-Jan 866 188 678 0

22-Jan 678 256 422 0

23-Jan 422 966 0 544

24-Jan 856 402 454 0

25-Jan 454 1157 0 703

26-Jan 997 310 687 0

28-Jan 657 1525 0 868

29-Jan 962 297 665 0

30-Jan 665 981 0 316

31-Jan 984 220 764 0

01-Feb 764 228 536 0

02-Feb 536 101 435 0

04-Feb 435 1139 0 704

06-Feb 896 1822 0 926

07-Feb 1074 454 620 0

08-Feb 620 198 422 0

09-Feb 422 603 0 181

11-Feb 819 336 483 0

12-Feb 483 1175 0 692

13-Feb 818 193 625 0

14-Feb 625 165 460 0

15-Feb 460 720 0 260

16-Feb 740 211 529 0

18-Feb 529 765 0 236

19-Feb 764 415 349 0

20-Feb 349 1408 0 1059

21-Feb 1141 299 842 0

22-Feb 842 180 662 0

23-Feb 662 218 444 0

25-Feb 444 910 0 466

26-Feb 734 154 580 0

27-Feb 580 206 374 0

28-Feb 374 897 0 523
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Context diagram is an overview of the interactions occurring between the system and
the user. The user enters the input variables, that is, the demand, the remains and the
shortage for further processing. After the processing, the system produces the output in
the form of the number of herbal soap units to be produced.

Figure 1: Context Diagram.

Interface Design.
We present the interface design for the production planning system into which the

user enters the variables: the number of product units demanded, the number of the
remaining product units and the number of shortages. The results of the calculations or
the output for the production are immediately displayed in the form below.

Figure 2: Production Planning Form.

In the input column, there is the column matrix to be filled, that is, the first column for
the demand variable value, the second column for the remains variable value, and the
third column for the shortage variable value.

Data Analysis.
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1. Determine the variables related to the process and the appropriate fuzzification
function. There are 4 variables in the model, that is,

• The demand variable consists of 3 fuzzy sets, that is, Decreasing, Fixed and
Increasing.
The function of the demand variable membership is

Figure 3: Demand Variable.

µdecreasing demand =


1 ;w ≤ 101

961.5−w
961.5−101 ; 101 ≤ w ≤ 961.5

0 ;w ≥ 961.5

µfixed demand =


0 ;w = 961.5

w−101
961.5−101 ; 101 ≤ w ≤ 961.5
1822−w

1822−961.5 ; 961.5 ≤ w ≤ 1822

1 ;w ≤ 101, w ≥ 1822

µincreasing demand =


0 ;w ≤ 961.5

w−961.5
1822−961.5 ; 961.5 ≤ w ≤ 1822

1 ;w ≥ 961.5

• The remains variable consists of 3 fuzzy sets, that is, Few, Fair and Many.
The function of the remains variable membership is

µfew remaining =


1 ;x ≤ 0

421−x
421−0 ; 0 ≤ x ≤ 421

0 ;x ≥ 421

µfair remaining =


0 ;x = 421

x−0
421−0 ; 0 ≤ x ≤ 421
842−x

842−421 ; 421 ≤ x ≤ 842

1 ;x ≤ 0, x ≥ 842

µmany remaining =


0 ;x ≤ 421

x−421
842−421 ; 421 ≤ x ≤ 842

1 ;x ≥ 421
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Figure 4: Remains Variable.

• The shortage variable consists of 3 fuzzy sets, that is, Few, Fair and Many.

Figure 5: Shortage Variable.

The function of the shortage variable membership is

µfew shortage =


1 ; y ≤ 0

529.5−y
529.5−0 ; 0 ≤ y ≤ 529.5

0 ; y ≥ 529.5

µfair shortage =


0 ; y = 529.5

y−0
529.5−0 ; 0 ≤ y ≤ 529.5
1059−y

1059−529.5 ; 529.5 ≤ y ≤ 1059

1 ; y ≤ 0, y ≥ 1059
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µmany shortage =


0 ; y ≤ 529.5

y−529.5
1059−529.5 ; 529.5 ≤ y ≤ 1059

1 ; y ≥ 529.5

• The production variable consists of 3 fuzzy sets, that is, Reduced, Fixed
and Added.

Figure 6: Production Variable.

The function of the production variable membership is

µreduced production =


1 ; z ≤ 349

745−z
745−349 ; 349 ≤ z ≤ 745

0 ; z ≥ 745

µfixed production =


0 ; z = 745

z−349
745−349 ; 349 ≤ z ≤ 745
1141−z

1141−745 ; 745 ≤ z ≤ 1141

1 ; z ≤ 349, z ≥ 1141

µadded production =


0 ; z ≤ 745

z−745
1141−745 ; 745 ≤ z ≤ 1141

1 ; z ≥ 745

Take the data on January 3, 2019, the value of the demand variable is 211, and the
remains is 399. If the remains is known, the deficiency is automatically equal to 0
and vice versa. Fuzzification of the demand variable with the demand value 211 is

µdecreasing demand(211) =
961.5− 211

961.5− 101
= 0.872,

µfixed demand(211) =
211− 101

961.5− 101
= 0.128.

Fuzzification of the remains variable with the remains value 399 is

µfew remaining(399) =
421− 399

421− 0
= 0.052,
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µfair remaining(399) =
399− 0

421− 0
= 0.948.

Based on the data analysis on the limits of each Fuzzy set of each variable, the
fuzzy rules formed are as follows:
[R1] If (Demand is Decreased) And (Remains is Few) Then (Production is Fixed)
[R2] If (Demand is in Decreased) And (Remains is Fair) Then (Production is
Reduced)
[R3] If (Demand is Decreased) And (Remains is Many) Then (Production is
Reduced)
[R4] If (Demand is Fixed) And (Remains is Few) Then (Production is Added)
[R5] If (Demand is Fixed) And (Remains is Fair) Then (Production is Fixed)
[R6] If (Demand is Fixed) And (Remains is Many) Then (Production is Reduced)
[R7] If (Demand is Increasing) And (Remains is Few) Then (Production is Added)
[R8] If (Demand is Increasing) And (Remains is Fair) Then (Production is Added)
[R9] If (Demand is Increasing) And (Remains is Many) Then (Production is Fixed)
[R10] If (Demand is Decreased) And (Shortage is Few) Then (Production is Fixed)
[R11] If (Demand is Decreased) And (Shortage is Fair) Then (Production is
Reduced)
[R12] If (Demand is Decreased) And (Shortage is Many) Then (Production is
Reduced)
[R13] If (Demand is Fixed) And (Shortage is Few) Then (Production is Fixed)
[R14] If (Demand is Fixed) And (Shortage is Fair) Then (Production is Fixed)
[R15] If (Demand is Fixed) And (Shortage is Many) Then (Production is Added)
[R16] If (Demand is Increasing) And (Shortage is Few) Then (Production is Fixed)
[R17] If (Demand is Increasing) And (Shortage is Fair) Then (Production is
Added)
[R18] If (Demand is Increasing) And (Shortage is Many) Then (Production is
Added)

2. Implication Function Application.
The function application we use is Minus function application:
[R1] If (Demand is Decreased) And (Remains is Few) Then (Production is Fixed)

α1 = min(0.872; 0.052) = 0.052

[R2] If (Demand is in Decreased) And (Remains is Fair) Then (Production is Re-
duced)

α1 = min(0.872; 0.948) = 0.872

[R4] If (Demand is Fixed) And (Remains is Few) Then (Production is Added)

α2 = min(0.128; 0.052) = 0.052

[R5] If (Demand is Fixed) And (Remains is Fair) Then (Production is Fixed)

α3 = min(0.128; 0.948) = 0.128

3. Rules of Composition.
The MAX method is used to produce composition between all rules. µz =
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max(0.052; 0.128) = 0.128. It is known that the degree of the membership function
for production is

µfixed production(z) =


0 ; z = 745,

z−349
745−349 ; 349 ≤ z ≤ 745,
1141−z

1141−745 ; 745 ≤ z ≤ 1141,

1 ; z ≤ 349, z ≥ 1141,

µz =
z − 349

745− 349
= 0.128,

z − 349 = 0.128× 396,

z − 349 = 50.688,

z = 399.688,

µz =
1141− z

1141− 745
= 0.128,

1141− z = 0.128× 396,

1141− z = 50.688,

z = 1090.321.

4. Defuzzification.
The input of the defuzzification process is a fuzzy set obtained from the composition
of the fuzzy rules, while the resulting output is a number in the domain of the fuzzy
set. The method used for defuzzification is centroid.
The calculation of Moment 1

M1 =

∫ 399.688

349

µa1zdz

=

∫ 399.688

349

z − 349

745− 349
zdz

=
1

396

∫ 399.688

349

z2 − 349dz

= 1241.7896439.

The calculation of Moment 2

M2 =

∫ 1090.312

399.688

µa2zdz

=

∫ 1090.312

399.688

0.128zdz

= 0.128
1

2

[
z2
]1090.312
399.688

dz

= 65857.904637.

Thus, the value of each moment is

• M1 = 1241.7896439,

• M2 = 65857.904637.
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3 Results and Discussion

3.1 Research Measurement

The pre-test and post-test are used in the measurement of this study. It aims to find out
the difference test between the grouping of production ranges done manually based on
the actual data and that of the prediction developed using the Mamdani fuzzy method.

Below is the percentage of the comparison between the manual grouping and the
planning system developed:

1. The Results of the Comparison of the Groups under the Reduced category within
the Range of 349-547.
The results obtained from the Groups under the Reduced category indicate no data
in conformance to those by manual grouping.
Based on Table 2, out of 16 existing data, there is 1 planning result in conformance

Table 2: Comparison of Groups under the Reduced category within the Range of 349-547.
No Dates Produc- Demand Remains Short- Actual Mamdani Remark

tion age Group Fuzzy
Group

1 4 Jan 399 944 0 545 Reduced Fixed Not
match

2 7 Jan 454 1208 0 754 Reduced Fixed Not
match

3 15 Jan 414 857 0 443 Reduced Fixed Not
match

4 17 Jan 447 945 0 498 Reduced Fixed Not
match

5 19 Jan 533 867 0 334 Reduced Fixed Not
match

6 23 Jan 422 966 0 544 Reduced Fixed Not
match

7 25 Jan 454 1157 0 703 Reduced Fixed Not
match

8 2 Feb 536 101 435 0 Reduced Reduced Match

9 4 Feb 435 1139 0 704 Reduced Fixed Not
match

10 9 Feb 422 603 0 181 Reduced Fixed Not
match

11 12 Feb 483 1175 0 692 Reduced Fixed Not
match

12 15 Feb 460 720 0 260 Reduced Fixed Not
match

13 18 Feb 529 765 0 236 Reduced Fixed Not
match

14 20 Feb 349 1408 0 1059 Reduced Added Not
match

15 25 Feb 444 910 0 466 Reduced Fixed Not
match

16 28 Feb 374 897 0 523 Reduced Fixed Not
match

to the actual data, and the rest of 15 planning results do not conform to the actual
data. It can be seen that the data in conformance is 6.25% and those which do not
conform are 93.75%.

2. The Results of the Comparison of the Groups under the Fixed category within the
Range of 547-943.
The results obtained for the groups under the Fixed category indicate three of the
data are in conformance to those by manual grouping. Based on Table 3, of 26
existing data, there are 3 planning results in accordance with the actual data, and
23 other data have the planning results which do not conform to the actual data.
It can be seen that the data in conformance is 11.538%, those not in conformance
are 88.462%.

3. The Results of the Comparison of the Groups under the Added category within
the Range of 943-1141.
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Table 3: Comparison of the groups under the Fixed category within the Range of 547-943.
No Dates Produc- Demand Remains Short- Actual Mamdani Remark

tion age Group Fuzzy
Group

1 3 Jan 610 211 399 0 Fixed Reduced Not
match

2 5 Jan 655 201 454 0 Fixed Reduced Not
match

3 9 Jan 728 658 70 0 Fixed Reduced Not
match

4 10 Jan 870 988 0 118 Fixed Fixed Sesuai

5 11 Jan 882 249 633 0 Fixed Reduced Not
match

6 12 Jan 633 431 202 0 Fixed Fixed Sesuai

7 14 Jan 802 388 414 0 Fixed Reduced Not
match

8 16 Jan 857 410 447 0 Fixed Reduced Not
match

9 18 Jan 902 369 533 0 Fixed Reduced Not
match

10 21 Jan 866 188 678 0 Fixed Reduced Not
match

11 22 Jan 678 256 422 0 Fixed Reduced Not
match

12 24 Jan 856 40 454 0 Fixed Reduced Not
match

13 28 Jan 657 1525 0 868 Fixed Added Not
match

14 30 Jan 665 981 0 316 Fixed Fixed Match

15 1 Feb 764 228 536 0 Fixed Reduced Not
match

16 6 Feb 896 1822 0 926 Fixed Added Not
match

17 8 Feb 620 198 422 0 Fixed Reduced Not
match

18 11 Feb 819 336 483 0 Fixed Reduced Not
match

19 13 Jan 818 193 625 0 Fixed Reduced Not
match

20 14 Feb 625 165 460 0 Fixed Reduced Not
match

21 16 Feb 740 211 529 0 Fixed Reduced Not
match

22 19 Jan 764 415 349 0 Fixed Reduced Not
match

23 22 Feb 842 180 662 0 Fixed Reduced Not
match

24 23 Feb 662 218 444 0 Fixed Reduced Not
match

25 26 Feb 734 154 580 0 Fixed Reduced Not
match

26 27 Feb 580 206 374 0 Fixed Reduced Not
match

The results obtained for the groups under the Added category indicate no confor-
mance to those by manual grouping at all. Based on Table 4, out of 6 existing data
all have planning results not in accordance with those of the actual data. It can be
seen that the data in conformance is 100%.

Table 4: Comparison of the Groups under the Fixed category within the Range of 943-1141.
No Dates Produc- Demand Remains Short- Actual Mamdani Remarks

tion age Group Fuzzy
Group

1 8 Jan 964 218 728 0 Added Reduced Not
match

2 26 Jan 997 310 687 0 Added Reduced Not
match

3 29 Jan 962 297 665 0 Added Reduced Not
match

4 31 Jan 984 220 764 0 Added Reduced Not
match

5 7 Feb 1074 454 620 0 Added Reduced Not
match

6 21 Feb 1141 299 842 0 Added Reduced Not
match
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4 Conclusion

Based on the results above, we can see that only 8.333% of the data have the planning
results matching the actual results. At the same time, the remaining 91.667% are the
data having the planning results not in accordance with the actual ones. The presentage
of the data having the planning results not in accordance with the actual results shows
that before applying the Mamdani fuzzy method, the production planning resulted in
a large number of the remaining product units unsold or shortages of herbal products.
The contribution of the Mamdani fuzzy method is to minimize the remains and shortage
of stocks, and its implementation helps to optimize capital, customer satisfaction is
improved, and much more. And the producers can easily take advantage of this method
to expand their business.
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Abstract: In this paper, we investigate a fully implicit finite scheme approxima-
tion equation (IFSAE) of the 1-D linear variable-order time-fractional diffusion equa-
tion (VOTFDE). The numerical method of solving differential equations by approxi-
mating them with difference equations is called the implicit finite difference method
(IFDM). The first-order numerical scheme, stability, consistency and convergence of
the method are proven. Moreover, the scheme is implemented on two test problems
and some graphical results are offered to verify the theoretical analysis of the above
scheme and illustrate the effectiveness of the suggested schemes.
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1 Introduction

Applied mathematics is the application of mathematical methods in various fields such
as physics, engineering, medicine, biology, finance, economics, computer science and in-
dustry. Thus, applied mathematics is a combination of mathematics and engineering.
Operational calculus, also called operational analysis, is a technique used to transform
analytical problems, especially differential equations, into algebraic problems, usually the
problem of solving a polynomial equation. Numerical analysis is the study of algorithms
that use numerical approximation (as opposed to symbolic manipulations) to the prob-
lems of mathematical analysis (as distinct from discrete mathematics). This is the study
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of numerical methods that attempt to find approximate solutions rather than exact so-
lutions to problems. Numerical analysis is used in all areas of engineering and natural
sciences and, in the 21st century, also in life and social sciences, medicine, economics and
even in the arts.

Nonlinear dynamics is a hot topic in physics, complexity science, and theoretical bi-
ology. Nonlinear dynamics offers new ways of studying the numerical solution of the
variable-order time-fractional reaction-diffusion equation (VOTFRDE), namely implicit
and explicit finite difference methods. Motivated by the above facts and the literature
[3–8], namely in this work, we consider the numerical solution of the variable-order time-
fractional reaction-diffusion equation (VOTFRDE) in one-dimensional space, where the
parameter alpha is a function depending on x and t. A numerical scheme was given
in [5]– [12] for approximating the variable-order time-fractional reaction-diffusion equa-
tion (VOTFRDE). An Implicit Finite Difference Scheme method was applied for the
variable-order time-fractional reaction-diffusion equation (VOTFRDE) with the Coim-
bra derivative. Moreover, the scheme is implemented on two test problems and some
graphical results are offered to verify the theoretical analysis of the above scheme and
illustrate the effectiveness of the suggested schemes.

The paper is organized in a clear and comprehensive manner, as follows. The con-
struction of our mathematical model with boundary conditions is presented in Section
2. Section 3 develops the implicit finite difference scheme, which utilizes forward finite
difference approximations for space derivatives and Caputo’s concept for time-fractional
derivatives. In Section 4, we study the stability of the approximate scheme by using the
method of Fourier. Next, in Section 5, we prove the convergence of the approximate
scheme obtained in Section 3. The final Section 6 completes and summarizes several
numerical problems addressed using the method developed in Section 2. The numeri-
cal solutions are obtained using MATLAB and graphically visualized to provide a clear
understanding of the results.

2 Implicit Finite Difference Scheme

For the numerical solution of the space fractional diffusion equations, implicit and explicit
finite difference methods have been proposed in the literature [7], [8], [11], [16], [18]
and [20] for the numerical solution of the time-fractional diffusion equation. We augment
the implicit numerical scheme in this section. Let us take a variable-order time-fractional
diffusion equation as an example

∂βu
∂tβ

+ c∂u∂x = 0 0 < x < L, 0 < t < T, 0 < β < 1,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x).

(1)

3 Discretization and Development of the Scheme

Let [0, L] be the clomain of inerest, we discretise the domain first.We define

xi = ih, where i = 0,M, and tj = jk, where j = 0, N,

where k represents the time step size and h represents the space step length.
Let us assume that

u(xi, tj) = uj
i ,
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note that uj
i is the numerical approximation of u(xi, tj). Next, we consider the fractional-

order diffusion Equation (1), where β is the fractional order. The variable-order fractional
derivative of order β(x, t) is defined by the Coimbra derivative and is written as

∂β(x,t)u(x, t)

∂tβ(x,t)
=

{
1

Γ(1−β(x,t))

∫ t

0
uξ(x,ξ)

(t−ξ)β(x,t) dξ if 0 < β < 1,

ut(x, t) if β(x, t) = 1.
(2)

Initially, as the boundary value problem needs to be discretized to be able to solve
(1), it is first necessary to discretize the variable-order time-fractional derivative (2) as
follows:

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

1

Γ(1− β(xi, tj+1))

∫ tj+1

0

uξ(xi, ξ)

(tj+1 − ξ)β(xi,tj+1)
dξ

=
1

Γ(1− β(xi, tj+1))

j∑
s=0

∫ (s+1)k

sk

uξ(xi, ξ)

(tj+1 − ξ)β(xi,tj+1)
dξ,

then we obtain

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

1

Γ(1− β(xi, tj+1))

j∑
s=0

∫ (s+1)k

sk

(
∂u

∂ξ

)s+1

i

dξ

(tj+1 − ξ)β(xi,tj+1)
.

The first-order spatial derivative can be approximated by the following expression:(
∂u

∂ξ

)s+1

i

=
us+1
i − us

i

k
+∆(k). (3)

Adopting the discrete scheme given in (7), we discretize the variable-order time-
fractional derivative as

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

1

Γ(1− β(xi, tj+1))

j∑
s=0

us+1
i − us

i

k

∫ (j−s+1)k

(j−s)k

dy

yβ(xi,tj+1)

=
1

Γ(1− β(xi, tj+1))

j∑
n=0

uj−n+1
i − uj−n

i

k

∫ (n+1)k

nk

dy

yβ(xi,tj+1)

=
k−β(xi,tj+1)

(1−β(xi, tj+1))Γ(1−β(xi, tj+1))

j∑
n=0

(uj−n+1
i −uj−n

i )[(n+1)1−β(xi,tj+1)−n1−β(xi,tj+1)].

Let y = tj+1−ξ. We have Γ(1+β) = βΓ(β), and expanding the summation for n = 0,
we reach

∂β(xi,tj+1)u(xi, tj+1)

∂tβ(xi,tj+1)
=

k−β(xi,tj+1)

Γ(2− β(xi, tj+1))

[
uj+1
i − uj

i +

j∑
n=1

(uj−n+1
i − uj−n

i )

[(n+ 1)1−β(xi,tj+1) − n1−β(xi,tj+1)]

]
, (4)

where bj+1
i (n) = (n+ 1)1−β(xi,tj+1) − n1−β(xi,tj+1), ∀j = 0, N − 1.



208 A. ZAROUR AND M.DALAH

We will use the forward difference approximation of space derivative as follows:

∂u(xi, tj+1)

∂x
=

uj+1
i+1 − uj+1

i

h
+∆(h). (5)

Using approximations (3) and (5), the semi-linear diffusion equation (1), we obtain

k−β(xi,tj+1)

Γ(2− β(xi, tj+1))

[
uj+1
i −uj

i +

j∑
n=1

(uj−n+1
i −uj−n

i )bj+1
i (n)]

]
+c

uj+1
i+1 − uj+1

i

h
= 0, (6)

∀i = 1,M and ∀j = 1, N, where

aj+1
i =

c.kβ(xi,tj+1).Γ(2− β(xi, tj+1))

h
.

The initial and boundary conditions are

u0(xi) = u0
i , ∀i = 0,M,

uj+1
0 = uj+1

M = 0, ∀j = 0, N − 1.

We obtain the following approximate scheme for equation (1):
aj+1
i uj+1

i+1 + (1− aj+1
i )uj+1

i = uj
i −

∑j
n=1(u

j−n+1
i+1 − uj−n

i )bj+1
i (n),

∀i = 1,M − 1, ∀j = 1, N − 1,

uj+1
0 = uj+1

M = 0, ∀j = 0, N − 1,

u0
i = u0(xi), ∀i = 0,M.

(7)

3.1 Properties

The coefficients bj+1
i (n) for all i = 0,M and j = 0, N − 1, satisfy

• P1: bj+1
i (0) = 1.

• P2: 0 < bj+1
i (0) < 1.

4 Stability of the Approximate Scheme

In this section, we use the method of the Fourier analysis to discuss the stability of the
approximate scheme (7). Consider the following equation:

aj+1
i uj+1

i+1 + (1− aj+1
i )uj+1

i = uj
i −

j∑
n=1

(uj−n+1
i+1 − uj−n

i )bj+1
i (n), (8)

∀i = 1,M − 1, ∀j = 1, N − 1.

Now, we define the following function:{
uj(x) = uj

i , if xi− 1
2
< x < xi+ 1

2
, ∀i = 1,M − 1,

0, otherwise,
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where uj(x) has the Fourier series expansion

uj(x) =

+∞∑
m=−∞

ξj(m)e
2πm
L x, ∀j = 1, N − 1,

where

ξj(m) =
1

L

∫ L

0

uj(x)e−
2πm
L xdx.

After that, using Parseval’s theorem, we get∫ L

0

|uj(x)|2dx =

+∞∑
m=−∞

|ξj(m)|2, ∀j = 1, N − 1.

Then, we obtain the following expression:∫ L

0

|uj(x)|2dx =

M−1∑
i=1

|huj
i |
2, ∀j = 0, N,

and

∥uj∥22 =

M−1∑
i=1

|huj
i |
2 =

+∞∑
m=−∞

|ξj(m)|2, ∀j = 0, N.

Now, assume that the solution of the equation (8) has the form

uj
i = ξje

ντhi, (9)

where τ = 2πm
L and ν2 = −1. Next, we replace (9) in equation (8), then we have

ξj+1(1 + aj+1
i (eντh − 1)) = ξj −

j∑
n=1

(ξj−n+1 − ξj−n)b
j+1
i (n). (10)

Equation (10) can be rewritten as

ξj+1 =
ξj −

∑j
n=1(ξj−n+1 − ξj−n)b

j+1
i (n)

(1 + aj+1
i (eντh − 1))

, ∀j = 0, N − 1. (11)

We have the following first result.

Theorem 4.1 The implicit finite difference scheme (7) is unconditionally stable for
0 < β < 1 if

∃C > 0, ∥uj∥2 = |ξj | ≤ C∥u0∥2 = C|ξ0|, ∀j = 0, N − 1.

Proof. We use the proof by recurrence for j = 1, in view of (11), we obtain the
following majoration:

|ξ1| =
∣∣∣∣ ξ0

(1 + aj+1
i (eντh − 1))

∣∣∣∣= |ξ0|√
[1 + a1i (cos(τh)− 1)]2 + (a1i sin(τh))

2

=
|ξ0|

|1− 2a1i sin(
τh
2 )|

≤ C|ξ0|.
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Now, let C0 be given by

C0 = C =
1

|1− 2a1 sin( τh2 )|
such that a1 = min

0≤i≤M
(−a1i ).

We assume that the statement defined in (12) is true,

|ξj | ≤ C|ξ0|, ∀j = 1, N, (12)

and we prove that the statement defined by (13) is true,

|ξj+1| ≤ C|ξ0|, ∀j = 1, N. (13)

|ξj+1| =
∣∣∣∣ ξj −∑j

n=1(ξj−n+1 − ξj−n)b
j+1
i (n)

(1 + aj+1
i (eντh − 1))

∣∣∣∣
=

|ξj −
∑j

n=1(ξj−n+1 − ξj−n)b
j+1
i (n)|√

[1 + aj+1
i (cos(τh)− 1)]2 + (aj+1

i sin(τh))2

≤
|ξj |+

∑j
n=1 |ξj−n+1 − ξj−n||bj+1

i (n)|√
[1 + aj+1

i (cos(τh)− 1)]2 + (aj+1
i sin(τh))2

=
|ξj |+

∑j
n=1(|ξj−n+1|+ |ξj−n|)√

[1 + aj+1
i (cos(τh)− 1)]2 + (aj+1

i sin(τh))2

=
2N − 1

|1− 2aj+1
i sin( τh2 )|

|ξ0|

≤ (2N − 1)Cj |ξ0| ≤ [(2N − 1) max
0≤j≤N−1

Cj ]|ξ0|

= C|ξ0|,

where

Cj =
1

|1 + 2aj+1 sin( τh2 )|
such that aj+1 = min

0≤i≤M
(−aj+1

i ), ∀j = 0, N − 1,

then we obtain C = (2N − 1) max
0≤j≤N−1

Cj . Finally, we get

|ξj+1| ≤ C|ξ0|, ∀j = 0, N − 1,

and the approximate scheme (7) is unconditionally stable, which concludes the proof of
Theorem 4.1.

5 Convergence of the Approximate Scheme

In this section, we use the method of the Fourier analysis to discuss the convergence of
the error eji , which is given by

eji = u(xi, tj)− uj
i . (14)
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Replacing (14) in equation (8), we obtain

aj+1
i ej+1

i+1 + (1− aj+1
i )ej+1

i = eji −
j∑

n=1

(ej−n+1
i+1 − ej−n

i )bj+1
i (n) + rji (15)

∀i = 1,M − 1 and ∀j = 1, N − 1. Then we obtain

rji = kβ(xi,tj+1)Γ(2− β(xi, tj+1))[∆(k) + ∆(h)].

Next, we define the following grid functions as follows:

ej(x) =

{
eji , if xi− 1

2
< x < xi+ 1

2
, ∀i = 1,M − 1,

0, otherwise,

and

rj(x) =

{
rji , if xi− 1

2
< x < xi+ 1

2
, ∀i = 1,M − 1,

0, otherwise.

Then en(x) and rn(x) have the Fourier series expansions as follows:

ej(x) =

+∞∑
m=−∞

γj(m)e
2πm
L x, rj(x) =

+∞∑
m=−∞

λj(mp)e
2πm
L x, ∀j = 0, N, (16)

and

γj(m) =
1

L

∫ L

0

ej(x)e−
2πm
L xdx, , λj(m) =

1

L

∫ L

0

rj(x)e−
2πm
L xdx. (17)

After that, using Parseval’s thorem, we obtain∫ L

0

|ej(x)|2dx =

+∞∑
m=−∞

|γj(m)|2,
∫ L

0

|rj(x)|2dx =

+∞∑
m=−∞

|γj(m)|2, ∀j = 0, N,

then the errors ej and rj take the following form:

∥ej∥22 =

M−1∑
i=1

|heji |
2 =

+∞∑
m=−∞

|γj(m)|2, ∀j = 0, N, (18)

and

∥rj∥22 =

M−1∑
i=1

|hrji |
2 =

+∞∑
m=−∞

|λj(m)|2, ∀j = 0, N. (19)

Next, we suppose that
eji = γje

ντhi , rji = λje
ντhi, (20)

we replace (20) in equation (15), then we get

γj+1(1 + aj+1
i (eντh − 1)) = γj −

j∑
n=1

(γj−n+1 − γj−n)b
j+1
i (n) + λj ,

then

γj+1 =
γj −

∑j
n=1(γj−n+1 − γj−n)b

j+1
i (n) + λj

(1 + aj+1
i (eντh − 1))

, ∀j = 0, N − 1. (21)

We get the following result.
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Theorem 5.1 The implicit finite difference scheme (7) is convergent for 0 < β < 1
if

∥ej∥2 = |γj | ≤ C1(k + h), ∀j = 1, N.

Proof. We use the proof by recurrence for j = 1, we have

|γ1| =
∣∣∣∣ γ0 + λ0

(1 + a1i (e
ντh − 1))

∣∣∣∣≤ |γ0|+ |λ0|
|1− 2a1i sin(

τh
2 )|

≤ |λ0|
|1− 2a1i sin(

τh
2 )|

,

where γ0 = e0i = u(xi, 0)− u0
i = 0.

By the convergence of the series on the right-hand side of (19), there is a positive
constant C2 such that

∃C2 > 0, |r0i | ≤ C2(k + h), ∀i = 0,M,

then we obtain
∃C2 > 0, ∥r0∥2 = |λ0| ≤ C2

√
L(k + h),

so

|γ1| ≤
C2

√
L(k + h)

|1− 2a1i sin(
τh
2 )|

≤ C2

√
L(k + h)

|1− 2a1 sin( τh2 )|
= C1(k + h)

such that
a1 = min

0≤i≤M
(−a1i ),

and

C0 =
1

|1− 2a1 sin( τh2 )|
such that C1 = C0C2

√
L,

then we obtain
|γ1| ≤ C1(k + h).

We assume that the following statement is true:

∥ej∥2 = |γj | ≤ C1(k + h), j = 1, N, (22)

and we prove that the following statement is true:

∥ej+1∥2 = |γj+1| ≤ C1(k + h), j = 0, N − 1. (23)

One can see that |γj+1| satisfies

|γj+1| =
∣∣∣∣ γj −∑j

n=1(γj−n+1 − γj−n)b
j+1
i (n) + λj

(1 + aj+1
i (eντh − 1))

∣∣∣∣
=

∣∣∣∣ γj −∑j
n=1(γj−n+1 − γj−n)b

j+1
i (n) + λj

1− 2aj+1
i sin( τh2 )

∣∣∣∣
≤

|γj |+
∑j

n=1(|γj−n+1|+ |γj−n|)|bj+1
i (n)|+ |λj |

|1− 2aj+1
i sin( τh2 )|

≤ 2N − 1

|1− 2aj+1
i sin( τh2 )|

C1(k + h) +
|λj |

|1− 2aj+1
i sin( τh2 )|

.
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By the convergence of the series on the right-hand side of (19), there is a positive
constant C2 such that

∃C2 > 0, |rji | ≤ C2(k + h), i = 0,M, ∀j = 0, N.

Thereafter, we obtain

∃C2 > 0, ∥rj∥2 = |λj | ≤ C2

√
L(k + h), ∀j = 0, N,

then |γj+1| becomes as follows:

|γj+1| ≤
2N − 1

|1− 2aj+1
i sin( τh2 )|

C1(k + h) +
1

|1− 2aj+1
i sin( τh2 )|

C2

√
L(k + h)

≤ CC1(k + h) +
CC2

√
L

2N − 1
(k + h)

such that C = (2N − 1)max0≤j≤N−1 C
j , where Cj is given by

Cj =
1

|1 + 2aj+1 sin( τh2 )|
such that aj+1 = min

0≤i≤M
(−aj+1

i ), j = 0, N − 1.

Let

L =

(
C1(1− C)(2N − 1)

CC2

)2

.

Subsequently, we can obtain

|γj+1| ≤ CC1(k + h) +
CC2

√
L

2N − 1
(k + h) = C1(k + h).

Finally, we obtain
∥ej∥2 ≤ C1(k + h), ∀j = 0, N − 1.

So the implicit finite difference scheme (7) is convergent, which concludes the proof
of Theorem 5.1.

5.1 Solvability of the approximate scheme

Theorem 5.2 The approximate scheme (24) is uniquely solvable.

It can be seen that the corresponding homogeneous linear algebraic equations for the
approximate scheme (24) are

aj+1
i uj+1

i+1 + (1− aj+1
i )uj+1

i = uj
i −

∑j
n=1(u

j−n+1
i+1 − uj−n

i )bj+1
i (n),

∀i = 1,M − 1 and ∀j = 1, N − 1,

uj+1
0 = uj+1

M = 0, ∀i = 0,M and ∀j = 0, N − 1,

u0
i = 0, for all i = 0,M.

(24)

Proof. Similar to the proof of Theorem 4.1, we can also verify the solutions of
the equations (24) satisfy ∥uj∥2 ≤ C∥u0∥, for all j = 1, N, we have u0 = 0, so we get
uj = 0 for all j = 1, N.

This indicates that the equations (24) have only zero solutions, the approximate
scheme (24) is uniquely solvable. We now easily conclude the proof of Theorem 5.2.



214 A. ZAROUR AND M.DALAH

6 Numerical Experiments

In this section, two numerical examples are discussed to confirm the effectiveness of the
developed implicit difference scheme (IFDS).

Example 1. This first example is concerned with the numerical solution of the linear
variable-order time-fractional diffusion equation with initial and boundary conditions,
where the first order derivative is substituted by a Caputo fractional derivative of order
β (0 < β < 1). Consider the 1-D linear variable-order time-fractional diffusion equation
with initial and boundary conditions:

∂βu
∂tβ

+ c∂u∂x = 0 0 < x < L, 0 < t < T, 0 < β < 1,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x).

(25)

Specifically, we consider the model problem in (25) over x ∈ [0; 1], t ∈ [0; 1], L = 1,
T = 1, β = e−x−t, c = 0.5, N = M = 50, 100, 150, 200 and u0(x) = 1−0.3∗cos(pi∗x). We
present several numerical experiments to support the theoretical and numerical analyses
of the previous sections.

Example 2. We first fix in the mathematical model defined by (26), the values
of x ∈ [0; 1], t ∈ [0; 1], L = 1, T = 1, β = e−x∗t, c = 0.75, N = M = 20, 30, 40, 50
and u0(x) = 1 − 0.5 ∗ pi ∗ x. We present several numerical experiments to support the
theoretical and numerical analyses of the previous sections.

∂βu
∂tβ

+ c∂u∂x = 0 0 < x < L, 0 < t < T, 0 < β < 1,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x).

(26)

In this example, we present different numerical experiments to support the theoretical
and numerical analyses of the previous sections.
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Figure 2. Example 2: Plot of LVTFDE: β = e−x∗t, c = 0.75, u0(x) = 1 − 0.5 ∗ pi ∗ x,
N = M = 20, 30, 40, 50, L = T = 1, 0 < β < 1.

Conclusion

In this paper, we consider a numerical approximation method to solve a fractional model
for the advection-reaction-diffusion equation with the Coimbra derivative. By using
finite difference schemes and obtaining the operational matrix, all that remains is to
solve fractional partial differential equations. Some examples are given to illustrate the
effectiveness of the proposed numerical algorithm. In several cases, the capabilities of
the program developed with MATLAB were reached in terms of meshes and calculation
times.
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