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Abstract: In this paper, we study the linear and the nonlinear forms of two–
dimensional Lane–Emden type equations by proving and applying new product and
quotient properties for different differential transform methods (RDTM and MDTM),
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solutions without linearization, discretization or perturbation, even with less compu-
tation.
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1 Introduction

The linear and nonlinear two-dimensional Lane-Emden type equations are first intro-
duced by Wazwaz, Rach and Duan in [8], as follows:

uxx +
α

x
ux + uyy +

β

y
uy + g(x, y)f(u) = 0, (1)

x > 0, y > 0, α > 0, β > 0,

u(x, 0) = h(x), uy(x, 0) = 0, (2)

where g(x, y)f(u) is a linear or nonlinear term.
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In this paper, we apply reduced and modified differential transform methods for
solving this kind of elliptic problems, with singularities in both x and y, for obtaining
exact solutions, not by multiplying singular equation by xyun, n∈ N, as we have done
in other paper, but by proving new product and quotient properties for the RDTM and
MDTM, which implies a minimum of computation.

L. Maia, G. Nornberg and F. Pacella in [7], introduce a dynamical system approach
for second-order Lane–Emden type problems by defining some new variables that allow us
to transform the radial fully nonlinear Lane-Emden equations into a quadratic dynamical
system. For the one-dimension Lane-Emden equation, the original formal conservation
of specific entropy along streamlines was given by a PDE in the function of t (time) and
r (radius).

2 Definition and Properties of Reduced Differential Transform Method
(RDTM)

We introduce the basic definitions of the reduced differential transform method as follows.

Definition 2.1 If the function u(x, y) is analytic and differentiated continuously with
respect to x and y, in the domain of interest, then let

Uk(x) =
1

k!

(
∂k

∂yk
u(x, y)

)
y=0

, k∈ N, (3)

where the y-dimensional spectrum function Uk(x) is the reduced transformed function.
In this paper, the lowercase u(x, y) represents the original function, while the uppercase
Uk(x) stands for the transformed function.

Definition 2.2 The reduced differential inverse transform Uk(x) of u(x, y) is defined
as follows:

u(x, y) =

∞∑
k=0

Uk(x)y
k. (4)

Then, combining equation (3)and (4), we write

u(x, y) =

∞∑
k=0

1

k!

(
∂k

∂yk
u(x, y)

)
y=0

yk.

Some important properties of RDTM used in this paper, can be readily obtained and are
listed in Table 1.

3 Definition and Properties of Modified Differential Transform Method
(MDTM)

We introduce the basic definitions of the modified differential transform method as follows

Definition 3.1 The modified differential transform of u(x, y) with respect to the
variable y at y0 is defined as

U(x, h) =
1

h!

(
∂h

∂xh
u(x, y)

)
y=y0

, k∈ N, (5)

where u(x, y) is the original function and U(x, h) is the transformed function.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (3) (2024) 309–320 311

Original functions Transformed functions
w(x, y) = αu(x, y)± βv(x, y) Wk(x) = αUk(x)± βVk(x)

w(x, y) = xmyn Wk(x) = xmδ(k − n)
w(x, y) = xmynu(x, y) Wk(x) = xmUk−n(x)

w(x, y) = u(x, y)v(x, y) Wk(x) =

k∑
r=0

Ur(x)Uk−r(x)

w(x, y) = [u(x, y)]
3

Wk(x) =

k∑
r=0

r∑
s=0

Uk−r(x)Us(x)Ur−s(x)

w(x, y) =
∂u(x, y)

∂x
Wk(x) =

∂

∂x
Uk(x)

w(x, y) =
∂2u(x, y)

∂x2
Wk(x) =

∂2

∂x2
Uk(x)

w(x, y) =
∂ru(x, y)

∂yr
Wk(x) =

(k + r)!

k!
Uk+r(x)

w(x, y) = eau(x,y) Wk(x) =


eaU0(x) k = 0

a

k−1∑
r=0

r + 1

k
Ur+1(x)Wk−r−1(x) k ≥ 1

Table 1: Fundamental properties of the RDTM.

Definition 3.2 The modified inverse differential transform U(x, h) of u(x, y) is de-
fined as

u(x, y) =

∞∑
h=0

U(x, h)(y − y0)
h
. (6)

Then, combining equations (5) and (7), we write

u(x, y) =

∞∑
h=0

1

h!

(
∂h

∂xh
u(x, y)

)
y=y0

(y − y0)
h
. (7)

When (x, y0) is taken as (x, 0), then (6) can be expressed as

u(x, y) =

∞∑
h=0

U(x, h)yh.

Some important properties of MDTM used in this paper, are listed in Table 2.

4 Theorems and Corollaries

Theorem 4.1

w(x, y) =
u(x, y)

v(x, y)

and V (x, 0) ̸= 0, then the modified differential transform version is

W (x, h) =


U(x, 0)

V (x, 0)
, h = 0,

U(x, h)−
∑h−1

i=0 W (x, i)V (x, h− i)

V (x, 0)
h ≥ 1.
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Original functions Transformed functions
w(x, y) = αu(x, y)± βv(x, y) W (x, h) = αU(x, h) + βV (x, h)

w(x, y) = xmyn W (x, h) = xmδ(h− n)
w(x, y) = xmynu(x, y) W (x, h) = xmU(x, h− n)

w(x, y) = u(x, y)v(x, y) W (x, h) =

k∑
s=0

U(x, s)V (x, h− s)

w(x, y) = [u(x, y)]
3

W (x, h) =

h∑
r=0

r∑
s=0

U(x, h− r)U(x, s)U(x, r − s)

w(x, y) =
∂u(x, y)

∂x
W (x, h) =

∂U(x, h)

∂x

w(x, y) =
∂2u(x, y)

∂x2
W (x, h) =

∂2U(x, h)

∂x2

w(x, y) =
∂u(x, y)

∂y
W (x, h) = (h+ 1)U(x, h+ 1)

w(x, y) =
∂2u(x, y)

∂y2
W (x, h) = (h+ 1)(h+ 2)U(x, h+ 2)

w(x, y)=eau(x,y) W (x, h) =


eaU(x,0) h = 0

a

h−1∑
s=0

s+1

h
U(x, s+1)W (x, h−s−1), h ≥ 1

Table 2: Fundamental properties of the MDTM.

Proof.
v(x, y)w(x, y) = u(x, y).

So, by applying the modified differential transform, we get

k∑
r=0

h∑
s=0

V (x, s)W (x, h− s) = U(x, h).

For h = 0, V (x, 0)W (x, 0) = U(x, 0) gives W (x, 0) =
U(x, 0)

V (x, 0)
.

For h = 1, V (x, 1)W (x, 0) + V (x, 0)W (x, 1) = U(x, 1) .
Then

W (x, 1) =
U(x, 1)− V (x, 1)W (x, 0)

V (x, 0)
.

For h = 2,

W (x, 2) =
U(x, 2)− V (x, 2)W (x, 0)− V (x, 1)W (x, 1)

V (0, 0)
.

Finally,

W (x, h) =
U(x, h)−

∑h−1
i=0 W (x, i)V (x, h− i)

V (x, 0)
, h ≥ 1.
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Corollary 4.1 (MDTM) If

w(x, y) =
xmyn

v(x, y)

and V (x, 0) ̸= 0, then the modified differential transform version is

W (x, h) =


xmδ(n)

V (x, 0)
, h = 0,

xmδ(h− n)−
∑h−1

i=0 W (x, i)V (x, h− i)

V (x, 0)
, h ≥ 1.

Corollary 4.2 (MDTM) If

w(x, y) =
1

v(x, y)

and V (x, 0) ̸= 0, then the modified differential transform version is

W (x, h) =


1

V (x, 0)
, h = 0,

−
∑h−1

i=0 W (x, i)V (x, h− i)

V (x, 0)
, h ≥ 1.

Theorem 4.2 (MDTM) If

w(x, y) =
u(x, y)

xmyn
, (x, y) ̸= (0, 0),

then the modified differential transform version of w(x, y) is

W (x, h) =
U(x, h+ n)

xm
.

Proof. We have

xmynw(x, y) = u(x, y), (x, y) ̸= (0, 0).

From Table 2, we get xmW (x, h− n) = U(x, h). Then

W (x, h) =
U(x, h+ n)

xm
.

Corollary 4.3 (MDTM) If

w(x, y) =
u(x, y)

x
, x ̸= 0,

then the modified differential transform version is

W (x, h) =
U(x, h)

x
.
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Corollary 4.4 (MDTM) If

w(x, y) =
u(x, y)

y
, y ̸= 0.

then the modified differential transform version is

W (x, h) = U(x, h+ 1).

Theorem 4.3

w(x, y) =
u(x, y)

v(x, y)
.

Then the reduced differential transform version is

Wk(x) =


U0(x)

V0(x))
, k = 0,

Uk(x)−
∑k−1

i=0 Wi(x)Vk−i(x)

V0(x))
, k ≥ 1.

Proof. The proof is similar to the previous one (Theorem 4.2).

Corollary 4.5 (MDTM) If

w(x, y) =
xmyn

v(x, y)

and V0(x) ̸= 0, then the reduced differential transform version is

Wk(x) =


xmδ(n)

V0(x)
, k = 0,

xmδ(k − n)−
∑k−1

i=0 Wi(x)Vk−i(x)

V0(x))
, k ≥ 1.

Corollary 4.6 (MDTM) If

w(x, y) =
1

v(x, y)

and V0(x) ̸= 0, then the reduced differential transform version is

Wk(x) =


1

V0(x)
, k = 0,

−
∑k−1

i=0 Wi(x)Vk−i(x)

V0(x))
k ≥ 1.

Theorem 4.4 If

w(x, y) =
u(x, y)

xmyn
, (x, y) ̸= (0, 0),

then the reduced differential transform version of w(x, y) is

Wk(x) =
Uk+n(x)

xm
.
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Proof. We have

xmynw(x, y) = u(x, y), (x, y) ̸= (0, 0).

From Table 3, we get xmWk−n(x) = Uk(x).
Then

Wk(x) =
Uk+n(x)

xm
.

Corollary 4.7 (MDTM) If

w(x, y) =
u(x, y)

x
, x ̸= 0,

then the reduced differential transform version is

Wk(x) =
Uk(x)

x
.

Corollary 4.8 (MDTM) If

w(x, y) =
u(x, y)

y
, y ̸= 0,

then the reduced differential transform version is

Wk(x) =
Uk+1(x)

x
.

5 Applications

5.1 Modified differential transform method

Example 5.1 First, we consider the nonlinear Lane-Emden equation

uxx +
3

x
ux + uyy +

4

y
uy − 14e−u = 0 (8)

subject to the initial conditions

u(x, 0) = 2lnx, uy(x, 0) = 0. (9)

From Table 2 and Corollaries 4.7, 4.8, the modified differential transform version of (8)
is

U(x, h+ 2) =
−1

(h+ 5)(h+ 2)

[
∂2U(x, h)

∂x2 +
3

x

∂U(x, h)

∂x
− 14W (x, h)

]
,

where W (x, h) is the modified differential transform version of e−u (Table 2) such that

W (x, h) =


e−U(x,0) = 1

x2 , h = 0,

−
h−1∑
s=0

s+ 1

h
U(x, s+ 1)W (x, h− s− 1), h ≥ 1.
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Also, the modified differential transform version of initial conditions (9) is

U(x, 0) = 2lnx , U(x, 1) = 0,

then, for h = 0,

U(x, 2) =
−1

10x

[
∂2U(x, 0)

∂x2 +
3

x

∂U(x, 0)

∂x
− 14W (x, 0)

]
=

1

x2
.

For h = 1 (W (x, 1) = 0),

U(x, 3) =
−1

18x

[
∂2U(x, 1)

∂x2 +
3

x

∂U(x, 1)

∂x
− 14W (x, 1)

]
= 0.

For h = 2,

U(x, 4) =
−1

28

[
∂2U(x, 2)

∂x2 +
3

x

∂U(x, 2)

∂x
− 14W (x, 2)

]
=

−1

2x4 ,

where W (x, 2) =
−1

x4
.

For h = 3,

U(x, 5) =
−1

40

[
∂2U(x, 3)

∂x2 +
3

x

∂U(x, 3)

∂x
− 14W (x, 3)

]
= 0.

For h = 4,

U(x, 6) =
−1

54

[
∂2U(x, 4)

∂x2 +
3

x

∂U(x, 4)

∂x
− 14W (x, 4)

]
=

1

3x6
.

Then, by substituting the quantities U(x, h) in Eq.(7), we get the series solution

u(x, y) = 2lnx+
(y
x

)2

− 1

2

(y
x

)4

+
1

3

(y
x

)6

+ . . . (10)

and the exact solution is
u(x, y) = ln

(
x2 + y2

)
. (11)

The solution is also obtained by the Adomian decomposition method in [8].

Example 5.2 Second, we consider the nonlinear Lane-Emden equation

uxx +
3

x
ux + uyy +

3

y
uy − 7u−1 = 0 (12)

subject to the initial conditions

u(x, 0) = x , uy(x, 0) = 0. (13)

From Table 2 and Corollaries 4.7, 4.8, the modified differential transform version of (12)
is

∂2U(x, h)

∂x2 +
3

x

∂U(x, h)

∂x
+ (h+ 4)(h+ 2)U(x, h+ 2)− 7W (x, h) = 0.
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where W (x, h) is the modified differential transform version of u−1 (Corollary 4.2)
such that

W (x, h) =


1

x
, h = 0,

−
∑h−1

i=0 W (x, i)U(x, h− i)

x
, h ≥ 1.

From (13), we get U(x, 0) = x, U(x, 1) = 0, then W (x, 1) = 0.

U(x, h+ 2) =
−1

(h+ 4)(h+ 2)

[
∂2U(x, h)

∂x2 +
3

x

∂U(x, h)

∂x
− 7W (x, h)

]
.

For h=0, we get

U(x, 2) =
−1

8

[
∂2U(x, 0)

∂x2 +
3

x

∂U(x, 0)

∂x
− 7

x

]
=

4

8x
=

1

2x
.

For h = 1, because U(x, 1) = 0, we have W (x, 1) = 0, so

U(x, 3) =
−1

15

[
∂2U(x, 1)

∂x2 +
3

x

∂U(x, 1)

∂x
− 7W (x, 1)

]
= 0.

For h = 2, we have W(x, 2) = −1
2x3 , so

U(x, 4) =
−1

24

[
∂2U(x, 2)

∂x2 +
3

x

∂U(x, 2)

∂x
− 7W (x, 2)

]
=

−3

24x3
=

−1

8x3
.

And

U(x, 5) = 0, U(x, 6) =
1

16x5
.

Then, by substituting the quantities U(x, h) in (7), we get the following series solution:

u(x, y) = x+
1

2

(
y2

x

)
− 1

8

(
y4

x3

)
+

1

16

(
y6

x5

)
+ . . . (14)

And the exact solution is
u(x, y) =

√
x2 + y2. (15)

Example 5.3 We consider now the nonlinear Lane-Emden equation

uxx +
4

x
ux + uyy +

4

y
uy −

(
5 + 4x2y2

) (
x2 + y2

)
u−3 = 0 (16)

subject to the initial conditions

u(x, 0) = 1 , uy(x, 0) = 0. (17)

From (17), we get
U(x, 0) = 1 U(x, 1) = 0.

From Table 2 and Corollaries 4.7, 4.8, the modified differential transform version of (16)
gives

U(x, h+ 2) =
1

(h+ 5)(h+ 2)

[
∂2U(x, h)

∂x2 +
4

x

∂U(x, h)

∂x
− (5x2W (x, h) + 5W (x, h− 2)

+4x4W (x, h− 2) + 4x2W (x, h− 4)

]
,
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where W (x, h) is the modified differential transform version of u−3 (Table 2 ) such that

W (x, h)=


1

U3(x, 0)
= 1, h = 0,

−
h−1∑
i=0

W (x, i)U1(x, h− i), h ≥ 1

U1(x, h)=

h∑
r=0

r∑
s=0

U(x, h− r)U(x, s)U(x, r − s).

Then

W (x, h) =


1

U3(x, 0)
= 1, h = 0,

−
h−1∑
i=0

W (x, i)

h−i∑
r=0

r∑
s=0

U(x, h− i− r)U(x, s)U(x, r − s), h ≥ 1.

For h = 0, we get

∂2U(x, 0)

∂x2 +
4

x

∂U(x, 0)

∂x
+ 10U(x, 2)− 5x2W (x, 0) = 0.

Then

U(x, 2) =
5x2

10
=

x2

2
.

For h = 1,
∂2U(x, 1)

∂x2 +
4

x

∂U(x, 1)

∂x
+ 18U(x, 3)− 5x2W (x, 1) = 0,

where

W (x, 1) = −
0∑

i=0

W (x, i)

1−i∑
r=0

r∑
s=0

U(x, 1− i− r)U(x, s)U(x, r − s)

= −W (x, 0) [U(x, 1)U(x, 0)U(x, 0) + U(x, 0)U(x, 0)U(x, 1) + U(x, 0)U(x, 1)U(x, 0)] = 0

Then 18U(x, 3) = 0. So, U(x, 3) = 0.
For h = 2,

∂2U(x, 2)

∂x2 +
4

x

∂U(x, 2)

∂x
+ 28U(x, 4)− 5x2W (x, 2)− 5W (x, 0)− 4x4W (x, 0) = 0. (18)

We first calculate

W (x, 2) = −
1∑

i=0

W (x, i)

2−i∑
r=0

r∑
s=0

U(x, 2− i− r)U(x, s)U(x, r − s)

= −W (x, 0) [U(x, 2)U(x, 0)U(x, 0) + U(x, 1)U(x, 0)U(x, 1) + U(x, 0)U(x, 0)U(x, 2)

+U(x, 0)U(x, 1)U(x, 1) + U(x, 0)U(x, 2)U(x, 0)] = −
(
x2

2
+

x2

2
+

x2

2

)
=

−3x2

2
.
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Then Eq.(18) becomes

1 + 4 + 28U(x, 4) + 5x2

(
3x2

2

)
− 5− 4x4 = 0.

So,

28U(x, 4) =
−7x4

2
⇒ U(x, 4) =

−x4

8
.

And

U(x, 5) = 0, U(x, 6) =
x6

16
, U(x, 7) = 0, U(x, 8) =

−5x8

128
, . . .

Then, by substituting the quantities U(x, h) in Eq.(7), we get the following series solution:

u(x, y) = 1 +
x2y2

2
− x4y4

8
+

x6y6

16
− 5x8y8

128
+ . . . .

And the exact solution is
u(x, y) =

√
1 + x2y2.

The exact solution is not obtained by the Adomian method in [8], only the approximate
solution is mentioned.

Remark 5.1 The application of the reduced differential transform method gives the
same coefficients of power series and same steps of computation.

Remark 5.2 The nonlinear two-dimensional Lane–Emden system of equations can
be introduced and solved by the RDTM and MDTM using the same computation steps.

uxx +
α

x
ux + uyy +

β

y
uy + f(x, y, v) = 0,

vxx +
γ

x
vx + vyy +

θ

y
vy + g(x, y, u) = 0,

x > 0, y > 0, α > 0, β > 0, γ > 0, θ > 0,

u(x, 0) = h(x), uy(x, 0) = 0, v(x, 0) = k(x), vy(x, 0) = 0.

6 Conclusion

In this paper, the Reduced Differential Transform Method (RDTM) and Modified Dif-
ferential Transformation Method (MDTM) have been successfully applied for obtaining
exact solutions to the nonlinear forms of two–dimensional Lane–Emden type equations,
by proving and applying new product and quotient properties for different differential
transform methods (RDTM and MDTM). This paper is the first to provide an exact
solution by the DTM (Differential transform method) in the case, where the Adomian
method gives an approximative solution. We also introduce the two–dimensional Lane–
Emden system of equations and obtain exact analytic solutions.
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