
Nonlinear Dynamics and Systems Theory, 24 (3) (2024) 236–245

Numerical Solution of Neutral Double Delay Volterra

Integral Equations Using Taylor Collocation Method

H. Bouzeraieb, H. Laib ∗ and A. Boulmerka

Laboratory of Mathematics and Their Interactions,
University Center Abdelhafid Boussouf, Mila, Algeria.

Received: October 16 , 2023; Revised: April 26, 2024

Abstract: In this paper, we employ a direct collocation method using Taylor poly-
nomials to estimate the solution of linear Volterra integral equations with two con-
stant delays within the polynomial spline S

(−1)
m−1(ΠN ). This approach is well-suited

for capturing the dynamics inherent in age and size-structured population models
(Gurtin–MacCamy model), epidemiological models, chemical engineering processes
(heat equation with delay in control and in state) and control theory (Roesser model).
We derive an iterative formula to compute the approximate solution and prove its
convergence. We confirm the validity and efficacy of this convergent algorithm by
presenting numerical results.
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1 Introduction

Delay Volterra integral equations pose a significant mathematical challenge across various
scientific and engineering domains, encompassing biology [1], epidemiology [2,3], chemical
engineering [4], control theory [5], physics [6] and social sciences [7]. In [8,9], double delay
Volterra integral equations (DDVIEs), which incorporate memory and delayed effects,
apply to model age-structured populations, where two distinct age groups within a single
population are considered. The dual delays in equation (1) correspond to the time
required for maturation and reaching the maximum age, rendering analytical solutions
impractical for many problems. As a result, developing efficient and precise numerical
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methods for solving such equations has become a significant area of research in recent
years.

The study of DDVIEs is driven by their widespread applicability, addressing prob-
lems that involve multiple delays and intricate memory effects. Including two distinct
delays introduces additional complexity to the equations, making their numerical analysis
intellectually stimulating and practically crucial.

The numerical investigation of equation (1) has only recently garnered attention, and
the existing specialized literature on this subject still needs to be expanded. A numerical
method developed to resolve equation (1) is elaborated in [10].

This research explores the Taylor collocation method [11] applied to the solution of
linear DDVIEs. The method leverages the versatility of Taylor polynomials and the
precision of collocation schemes, providing an advantageous approach for addressing the
challenges posed by this class of integral equations.

We consider the linear Volterra integral equation with two constant delays τ1, τ2 of
the form

x(t) = g(t) + x(t− τ1) + x(t− τ2) +

∫ t−τ1

t−τ2

K(t, s)x(s)ds (1)

for t ∈ [τ2, T ] and x(t) = ϕ(t) for t ∈ [0, τ2]. In the following, we assume that the given
functions g,K and ϕ are sufficiently smooth. Furthermore, we suppose that

ϕ(τ2) = g(τ2) + ϕ(τ2 − τ1) + ϕ(0) +

∫ τ2−τ1

0

K(τ2, s)ϕ(s)ds.

Bellour et al. [12] provide a proof regarding the existence and uniqueness of results for
equation (1).

The structure of this paper is as follows. Section 2 presents a description of the Taylor
collocation method for our problem (1). Section 3 introduces the analysis of convergence.
Subsequently, in Section 4, we present the results obtained using our proposed approach.
Finally, in Section 5, we discuss the implications of our work and suggest potential
avenues for the future.

2 Description of the Method

We suppose that T = (r + 1)τ2, where r ∈ {1, 2, 3, ...}. Let ΠN be a uniform partition
of the interval I = [τ2, T ] defined by tin = (i+ 1)τ2 + nh, n = 0, 1, .., N, i = 0, 1, .., r− 1,
where the step size is given by h = tin+1 − tin, and assume that h = τ1

N1
= τ2

N with

N and N1 being positive and integer. Define the subintervals σi
n = [tin; t

i
n+1), n =

0, 1, .., N − 1, i = 0, 1, .., r− 2 and σr−1
N−1 = [tr−1

N−1, t
r−1
N ]. Moreover, denote by πm the set

of all real polynomials of degree not exceeding m. We define the real polynomial spline
space of degree m− 1 as follows:

S
(−1)
m−1(ΠN ) = {u(I,R) : ui

n = u|σi
n
∈ πm−1, n = 0, ..., N − 1, i = 0, 1, .., r − 1}.

This is the space of piecewise polynomials of degree (at most) m − 1. Its dimension is
rNm, i.e., the same as the total number of the coefficients of the polynomials ui

n, n =
0, ..., N − 1, i = 0, 1, .., r − 1. To find these coefficients, we use the Taylor polynomial on
each subinterval.
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First, to approximate x by u0
n (n ∈ {0, 1, ..., N − 1}) on the interval σ0

n, x must be
approximated by u0

k (0 ≤ k < n) on each interval σ0
k so that

u0
n(t) =

m−1∑
j=0

û
(j)
n,0(t

0
n)

j!
(t− t0n)

j ; t ∈ σ0
n, (2)

where û0,0(τ2) = x(τ2) and ûn,0 is the exact solution of the integral equations

ûn,0(t) = g(t) + ϕ(t− τ1) + ϕ(t− τ2) +

∫ t−τ1

t−τ2

K(t, s)ϕ(s)ds, n ∈ {0, ..., N1 − 1}, (3)

and

ûn,0(t) = g(t) + u0
n−N1

(t− τ1) + ϕ(t− τ2) +

∫ τ2

t−τ2

K(t, s)ϕ(s)ds

+

n−N1−1∑
i=0

∫ t0i+1

t0i

K(t, s)u0
i (s)ds+

∫ t−τ1

t0n−τ1

K(t, s)u0
n−N1

(s)ds, n ∈ {N1, ..., N − 1}.
(4)

Now, for all j = 1, ...,m − 1, the formula for computing the values of the coefficients

û
(j)
n,0(t

0
n) can be obtained by differentiating (3) and (4), respectively, we get the following

formulas:

û
(j)
n,0(t

0
n) = g(j)(t0n) + ϕ(j)(t0n − τ1) + ϕ(j)(t0n − τ2)

+

(∫ t−τ1

t−τ2

K(t, s)ϕ(s)ds

)(j)

(t0n), n ∈ {0, ..., N1 − 1},

and

û
(j)
n,0(t

0
n) = g(j)(t0n) + û

(j)
n−N1,0

(t0n−N1
) + ϕ(j)(t0n − τ2) +

(∫ τ2

t−τ2

K(t, s)ϕ(s)ds

)(j)

(t0n)

+

n−N1−1∑
i=0

m−1∑
l=0

û
(l)
i,0(t

0
i )

l!

∫ t0i+1

t0i

∂
(j)
1 K(t0n, s)(s− t0i )

lds

+

j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n−N1,0

(t0n−N1
)[∂

(j−1−i)
1 K(t, t− τ1)]

(i−l)(t0n), n ∈ {N1, ..., N − 1}.

Second, for x to be approximated by up
n (n ∈ {0, 1, ..., N − 1} and p ∈ {1, 2, ..., r − 1} )

on the interval σp
n, x must be approximated by uj

k (0 ≤ k < n and 0 ≤ j ≤ p) on each

interval σj
k so that

up
n(t) =

m−1∑
j=0

û
(j)
n,p(tpn)

j!
(t− tpn)

j ; t ∈ σp
n, (5)

where ûn,p is the exact solution of the integral equations

ûn,p(t) = g(t) + up−1
N−N1+n(t− τ1) + up−1

n (t− τ2)

+

∫ tp−1
n+1

t−τ2

K(t, s)up−1
n (s)ds+

N−N1+n−1∑
d=n+1

∫ tp−1
d+1

tp−1
d

K(t, s)up−1
d (s)ds

+

∫ t−τ1

tpn−τ1

K(t, s)up−1
N−N1+n(s)ds, n ∈ {0, ..., N1 − 1},

(6)
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and

ûn,p(t) = g(t) + up
n−N1

(t− τ1) + up−1
n (t− τ2) +

∫ tp−1
n+1

t−τ2

K(t, s)up−1
n (s)ds

+

N−1∑
d=n+1

∫ tp−1
d+1

tp−1
d

K(t, s)up−1
d (s)ds+

n−N1−1∑
i=0

∫ tpi+1

tpi

K(t, s)up
i (s)ds

+

∫ t−τ1

tpn−τ1

K(t, s)up
n−N1

(s)ds, n ∈ {N1, ..., N − 1}.

(7)

The coefficients û
(j)
n,p(tpn) are given by the following formulas. For n ∈ {0, ..., N1 − 1},

û(j)
n,p(t

p
n) = g(j)(tpn) + û

(j)
N−N1+n,p−1(t

p−1
N−N1+n) + û

(j)
n,p−1(t

p−1
n )

−
j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n,p−1(t

p−1
n )[∂

(j−1−i)
1 K(t, t− τ2)]

(i−l)(tpn)

+

m−1∑
l=0

û
(l)
n,p−1(t

p−1
n )

l!

∫ tp−1
n+1

tpn−τ2

∂
(j)
1 K(tpn, s)(s− tp−1

n )lds

+

N−N1+n−1∑
d=n+1

m−1∑
l=0

û
(l)
d,p−1(t

p−1
d )

l!

∫ tp−1
d+1

tp−1
d

∂
(j)
1 K(tpn, s)(s− tp−1

d )lds

+

j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
N−N1+n,p−1(t

p−1
N−N1+n)[∂

(j−1−i)
1 K(t, t− τ1)]

(i−l)(tpn),

and for n ∈ {N1, ..., N − 1},

û(j)
n,p(t

p
n) = g(j)(tpn) + û

(j)
n−N1,p

(tpn−N1
) + û

(j)
n,p−1(t

p−1
n )

−
j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n,p−1(t

p−1
n )[∂

(j−1−i)
1 K(t, t− τ2)]

(i−l)(tpn)

+

m−1∑
l=0

û
(l)
n,p−1(t

p−1
n )

l!

∫ tp−1
n+1

tpn−τ2

∂
(j)
1 K(tpn, s)(s− tp−1

n )lds

+

N−1∑
d=n+1

m−1∑
l=0

û
(l)
d,p−1(t

p−1
d )

l!

∫ tp−1
d+1

tp−1
d

∂
(j)
1 K(tpn, s)(s− tp−1

d )lds

+

n−N1−1∑
i=0

m−1∑
l=0

û
(l)
i,p(t

p
i )

l!

∫ tpi+1

tpi

∂
(j)
1 K(tpn, s)(s− tpi )

lds

+

j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n−N1,p

(tpn−N1
)[∂

(j−1−i)
1 K(t, t− τ1)]

(i−l)(tpn).

3 Analysis of Convergence

The following lemmas will be used in this section.
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Lemma 3.1 (Discrete Gronwall-type inequality [13]) Let {kj}nj=0 be a given nonneg-

ative sequence, and the sequence {εn} satisfy εn ≤ p0 +
∑n−1

i=0 kiεi, n ≥ 0,

with p0 ≥ 0. Then εn can be bounded by εn ≤ p0exp
(∑n−1

j=0 kj

)
, n ≥ 0.

Lemma 3.2 Let g and K be m times continuously differentiable on their respective
domains. Then there exists a positive number α(m) such that for all n = 0, 1, ..., N − 1,

p = 0, 1, ..., r − 1, and j = 0, ...,m, we have ∥ û
(j)
n,p ∥L∞(σp

n)≤ α(m), where û0,0(t) = x(t)
for t ∈ σ0

0.

Proof. The proof is split into two steps.

Claim 1. There exists a positive constant α1(m) such that ∥ û
(j)
n,0 ∥L∞(σp

n)≤ α1(m) for

all n = 0, 1, ..., N − 1, j = 0, ...,m. Let ajn =∥ û
(j)
n,0 ∥L∞(σ0

n)
, then, for j = 0, ...,m,

aj0 ≤ max
{
∥ x(j) ∥L∞(σ0

0)
, j = 0, ...,m

}
= α1

1(m). (8)

Now, for all n = 1, 2, ..., N − 1 and j = 1, ...,m, by differentiating (3) and (4) j times, we
obtain

ajn ≤ c+ d21h

m−1∑
l=j

aln−N1
+ hd11

n−N1∑
i=0

m−1∑
l=0

ali +m2hd21

m−1∑
l=0

aln−1−N1
+ hd11

m−1∑
l=0

aln−N1

≤ c+
(
d21(1 +m2) + d11

)︸ ︷︷ ︸
d1

h

m−1∑
l=0

aln−N1
+ hd11

n−1∑
i=0

m−1∑
l=0

ali,

(9)

where the constants c, d11 and d21 are positive and independent of N .
On the other hand, if j = 0, then, from (3) and (4), we have

a0n ≤ c+ (d11 + d21)h

m−1∑
l=0

aln−N1
+ hd11

n−1∑
i=0

m−1∑
l=0

ali. (10)

From (9) and (10), for each fixed n ≥ 1, we consider the sequence ajn for j = 0, ....,m,

ajn ≤ c+ 2hd1

n−1∑
i=0

m−1∑
l=0

ali. (11)

Consider the sequence zn =
∑m

j=0 a
j
n for n ≥ 0. Then, from (11), we have

zn ≤ (m+ 1)c︸ ︷︷ ︸
c1

+h 2(m+ 1)d1︸ ︷︷ ︸
d2

n−1∑
i=0

zi. (12)

Moreover, from (8), we obtain

z0 ≤ (m+ 1)α1
1(m) = c2. (13)

Then, from (12) and (13), we have for all n = 0, 1, ..., N − 1,

zn ≤ c3 + hd2

n−1∑
i=0

zi



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (3) (2024) 236–245 241

such that c3 = max(c1, c2). Using Lemma 3.1, for all n = 0, 1, ..., N − 1, we obtain

zn ≤ c3exp(τ2d2)︸ ︷︷ ︸
α1(m)

.

Hence, the first claim is true.

Claim 2. There exists a positive constant α2(m) such that ∥ û
(j)
n,p ∥L∞(σp

n)≤ α2(m) for
all n = 0, 1, ..., N − 1, j = 0, ...,m and p = 1, 2, ..., r − 1.

Let a
(j)
n,p =∥ û

(j)
n,p ∥L∞(σp

n) and εp = max
{
aji,p, j = 0, ..,m, i = 0, ..., N − 1

}
for p =

1, ..., r − 1. Similarly to Claim 1, by differentiating (6) and (7) j times, we obtain for
all n = 1, ..., N − 1,

ajn,p ≤ c4 + b1εp−1 + d3h

n−1∑
i=0

m−1∑
l=0

ali,p,

where c4, b1, and d3 are positive numbers. Consider the sequence yn =
∑m

j=0 a
j
n,p,

n = 0, 1, ..., N − 1, using Lemma 3.1, for all n = 0, ..., N − 1, we obtain

yn ≤ ((m+ 1)c4 + (m+ 1)b1εp−1) exp

n−1∑
i=0

(m+ 1)d4h︸ ︷︷ ︸
d4

≤ (m+ 1)c4exp (d4)︸ ︷︷ ︸
c5

+(m+ 1)b1exp (d4)︸ ︷︷ ︸
b2

εp−1

≤ c6 + b3α1(m)︸ ︷︷ ︸
α2(m)

,

where c6 and b3 are positive numbers.
Hence, the proof of Lemma 3.2 is completed by setting α(m) = max{α1(m), α2(m)}.

The following theorem gives the convergence of the presented method.

Theorem 3.1 Let g and K be m times continuously differentiable on their respective

domains. Then (2) and (5) define a unique approximation u ∈ S
(−1)
m−1(ΠN ), and the

resulting error function e = x−u satisfies ∥ e ∥L(l)∞≤ Chm, provided that h is sufficiently
small, where C is a finite constant independent of h.

Proof. The proof is split into two steps.
Claim 1. There exists a constant C1 independent of h such that ∥ e0 ∥L∞(σ0)≤ C1h

m,
where the error e0 = e |σ0 is defined on σ0

n by e0(t) = e0n(t) =| x(t) − u0
n(t) | for all

n = 0, 1, ..., N − 1. Let t ∈ σ0
0 . Then we have for sufficiently small h,

| e00(t) |=| x(t)− u0
0(t) |≤

∥ xm ∥L∞(σ0
0)

m!
hm ≤ α(m)

m!
hm.

From (3) and (4), for n = 1, ..., N − 1, we have

∥ x− ûn,0 ∥L∞(σ0
n)
≤ hk

n−1∑
i=0

∥ e0i ∥L∞(σ0
i )

+ ∥ e0n−N1
∥L∞(σ0

n−N1
),
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where k =∥ k ∥L∞(I), therefore, by Lemma 3.2,

∥ e0n ∥L∞(σ0
n)

≤∥ x− ûn,0 ∥L∞(σ0
n)

+ ∥ ûn,0 − u0
n ∥L∞(σ0

n)

≤ hk

n−1∑
i=0

∥ e0i ∥L∞(σ0
i )

+ ∥ e0n−N1
∥L∞(σ0

n−N1
) +

α(m)

m!
hm

≤ hk

n−1∑
i=0

∥ e0i ∥L∞(σ0
i )

+2
α(m)

m!
hm.

Hence, by Lemma 3.1, for all n = 1, ..., N1 − 1,

∥ e0n ∥L∞(σ0
n)

≤
(
2α(m)

m!
exp (τ2k)

)
︸ ︷︷ ︸

C1
1

hm,

by taking C1 = max{α(m)
m! , C1

1}, Claim 1 is true.
Claim 2. There exists a constant C2 independent of h such that ∥ e ∥L∞(l)≤ C2h

m.
Define the error ep(t) on σp by ep(t) = x(t) − up(t) and on σp

n by ep(t) = epn(t) =
x(t)− up

n(t) for all n = 0, ..., N − 1 and p = 1, ..., r − 1.
Let t ∈ σp

n for n = 0, 2, ..., N − 1 . Then we have from (6) and (7),

∥ x− ûn,p ∥L∞(σp
n) ≤∥ ep−1

N−N1+n ∥L∞(σp−1
N−N1+n)

+ ∥ ep−1
n ∥L∞(σp−1

n ) + ∥ epn−N1
∥L∞(σp

n−N1
)

+ 2hk

N−1∑
i=0

∥ ep−1
i ∥L∞(σp−1

d ) +hk

n−1∑
i=0

∥ epi ∥L∞(σp
i )
,

hence,

∥ x− ûn,p ∥L∞(σp
n) ≤ 2(1 + τ2k) ∥ ep−1 ∥L∞(σp−1) + ∥ epn−N1

∥L∞(σp
n−N1

)

+ hk

n−1∑
i=0

∥ epi ∥L∞(σp
i )

.

Therefore, by Theorem 3.2, for n = 1, 2, ..., N − 1,

∥ epn ∥L∞(σp
n) ≤∥ x− ûn,p ∥L∞(σp

n) + ∥ ûn,p − up
n ∥L∞(σp

n)

≤∥ x− ûn,p ∥L∞(σp
n) +

α(m)

m!
hm.

Then we repeat the next step a times for n = 1, 2, ..., aN1 − 1, a = {1, 2, .., τ2
τ1
},

∥ epn ∥L∞(σp
n) ≤ 2(1 + τ2k) ∥ ep−1 ∥L∞(σp−1) +hk

n−1∑
i=0

∥ epi ∥L∞(σp
i )

+ ∥ epn−N1
∥L∞(σp

n−N1
) +

α(m)

m!
hm,

hence, by Lemma 3.1, for all n = 0, 1, ..., N − 1,

∥ epn ∥L∞(σp
n) ≤

α(m)C1exp(τ2k)

m!
hm + 2(1 + τ2k)exp(τ2k) ∥ ep−1 ∥L∞(σp−1),

then, for all p = 1, ..., r − 1, ∥ epn ∥L∞(σp
n)≤ C2h

m.
Thus, the proof is completed by taking C = max{C1, C2}.
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4 Numerical Illustrations

In this section, we present numerical experiments that evaluate the effectiveness of the
Taylor collocation method (TCM) in solving problems described by (1). We demonstrate
convergence of order m by providing numerical examples that exhibit convergence rates
of up to m when applying this method. Additionally, we record the computational time
(in CPU time/s) for each example. Our numerical experiments were conducted using
Maple version 17 on a personal computer equipped with an Intel Core i7-1165G7 CPU
@ 2.80GHz and 16 GB of RAM, running the MS Windows 7 operating system. As the
values of both n andm increase, the absolute error function decreases, thereby confirming
the theoretical estimates outlined in Section 3.

Example 4.1 Consider the neutral double delay Volterra integral equation

x(t) = g(t) + x(t− 1

2
) + x(t− 1) +

∫ t− 1
2

t−1

(ts+ cos(t+ s))x(s)ds

for t ∈ [1, 5], and g is chosen so that the exact solution x(t) = cos(t) + 1, x(t) =
Φ(t) for t ∈ [0, 1]. The absolute errors and computational time for (N,m) =
{(2, 2), (4, 4), (6, 6), (8, 8)} are presented in Table 1. The exact and approximate solu-
tions for N = m = 8 are shown in Figure 1(a).

t N = m = 2 N = m = 4 N = m = 6 N = m = 8
1.00 0.0 0.0 0.0 0.0
2.00 1.58e− 02 1.02e− 5 1.29e− 9 7.08e− 11
3.00 1.27e− 02 2.89e− 6 2.52e− 9 9.70e− 10
4.00 4.45e− 02 2.53e− 4 1.17e− 7 2.53e− 08
5.00 1.44e− 01 7.31e− 3 3.81e− 6 8.50e− 07
CPU 1.79 s 1.95 s 3.18 s 5.29 s

Table 1: Absolute errors for Example 4.1.

Example 4.2 Consider the neutral double delay Volterra integral equation

x(t) = g(t) + x(t− 0.4) + x(t− 0.8) +

∫ t−0.4

t−0.8

(t− s)et−sx(s)ds

for t ∈ [1, 8], and g is chosen so that the exact solution x(t) = e−t sin(t), Φ(t) =
x(t) for t ∈ [0, 0.8]. The absolute errors and computational time for (N,m) =
{(2, 6), (2, 8), (2, 10), (4, 4), (4, 6), (4, 8)} are presented in Table 2. Figure 1(b) displays
the exact and approximate solutions for N = 4,m = 8.
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N = 2 N = 4
t m = 6 m = 8 m = 10 m = 4 m = 6 m = 8
0.8 0 0 0 0 0 0
1.6 5.22e− 07 2.26e− 09 2.82e− 10 6.28e− 06 9.24e− 09 2.81e− 10
2.4 1.57e− 06 9.66e− 09 1.05e− 09 2.59e− 05 2.64e− 08 1.08e− 09
3.2 5.31e− 06 3.57e− 08 3.53e− 09 9.19e− 05 8.57e− 08 3.75e− 09
4.0 1.88e− 05 1.30e− 07 1.18e− 08 3.21e− 04 2.95e− 07 1.29e− 08
4.8 6.69e− 05 4.67e− 07 3.97e− 08 1.12e− 03 1.02e− 06 4.46e− 08
5.6 3.65e− 04 1.66e− 06 1.34e− 07 3.91e− 03 3.55e− 06 1.54e− 07
6.4 8.30e− 04 5.86e− 06 4.56e− 07 1.35e− 02 1.23e− 05 5.32e− 07
7.2 2.90e− 03 2.06e− 05 1.55e− 06 4.71e− 02 4.25e− 05 1.83e− 06
8.0 1.07e− 02 7.81e− 05 4.98e− 06 1.65e− 01 1.49e− 04 6.28e− 06
CPU 1.57 s 1.90 s 3.85 s 1.75 s 2.56 s 3.82 s

Table 2: Absolute errors of Example 4.2.

(a) Example 1 (N = m = 8) (b) Example 2 (N = 4,m = 8)

Figure 1: The exact and approximate solutions.

5 Conclusion

In the concluding remarks of our study, we have addressed the reviewer’s suggestion to
bolster the description of the novelty arising from our results. Our exploration of the
Taylor collocation method for approximating the solution of linear DDVIEs has yielded
noteworthy outcomes. Our findings underscore this method’s effectiveness and ease of
implementation, emphasizing its reliability in generating approximate solutions through
iterative formulas without necessitating the resolution of algebraic equation systems.
The numerical examples presented in this paper demonstrate the method’s convergence
with high accuracy. The results obtained from these examples validate our theoretical
estimates and highlight the proposed approach’s practical applicability. It is worth noting
that the numerical outcomes consistently align with the expected convergence patterns,
affirming the reliability of the Taylor collocation method in the context of linear DDVIEs.
Our future research endeavors will extend beyond the scope of this paper. We plan
to generalize the proposed method to tackle DDVIEs in two dimensions and a system
of DDVIEs, further expanding its applicability to a broader class of problems. This
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extension is anticipated to contribute to the method’s versatility and potential to address
complex systems exhibiting intricate temporal dependencies.
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