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1 Introduction

Contact mechanics is the study of the deformation of solids that are in contact with
each other at one or more points. Antiplane shear deformations are one of the simplest
classes of deformations that solids can undergo. The antiplane shear deformation is the
deformation that we expect to appear after loading a long cylinder in the direction of its
generators so that the displacement field is parallel to the generators of the cylinder and
independent of the axial coordinate.

The piezoelectric effect results from the coupling between electrical and mechanical
properties, in which the body has the ability to produce an electrical field when a me-
chanical stress is present and, conversely, under the action of an electric field the body
undergoes a mechanical stress. The models for piezoelectric materials can be found
in [1], [2] and [3].

In this paper, we study an antiplane contact problem for electro-viscoelastic materials
with the slip rate–dependent friction law, in the framework of the Mathematical Theory
of Contact Mechanics, when the foundation is electrically conductive. We consider the
case of antiplane shear deformation, i.e., the displacement is parallel to the generators
of the cylinder and independent of the axial coordinate (see [5], [6] and the references
therein). Such kind of problems was studied in a number of papers in the context of
various constitutive laws and contact conditions (see, e.g. [12], [13] and [14]).

Our paper is structured as follows. In Section 2, we present the mechanical model
for the quasistatic antiplane contact problem. In Section 3, we introduce the notation,
list the assumption on problem’s data, derive the variational formulation of the problem.
Finally, in Section 4, we state our main existence and uniqueness result, i.e., Theorems
4.1-4.2. The proof of this result is carried out in several steps and is based on the
arguments of evolutionary inequalities.

2 The Mathematical Model

We consider a piezoelectric body B identified with a region in R3 it occupies in a fixed and
undistorted reference configuration. We assume that B = Ω × (−∞,+∞) is a cylinder
with generators parallel to the x3-axis with a cross-section which is a regular region Ω
in the x1, x2-plane, Ox1x2x3 being a Cartesian coordinate system. The cylinder is acted
upon by body forces of density f0 and has volume free electric charges of density q0.
It is also constrained mechanically and electrically on the boundary. To describe the
boundary conditions, we denote by ∂Ω=Γ the boundary of Ω and we assume a partition
of Γ into three open disjoint parts Γ1, Γ2 and Γ3, on the one hand, and a partition of
Γ1 ∪ Γ2 into two open parts Γa and Γb. On the other hand, we assume that the one-
dimensional measures of Γ1 and Γa, denoted meas Γ1 and meas Γa, are positive. Let
T > 0 and let [0, T ] be the time interval of interest.

The cylinder is clamped on Γ1 × (−∞,+∞) and therefore the displacement field
vanishes there, surface tractions of density f2 act on Γ2 × (−∞,+∞). We also assume
that the electrical potential vanishes on Γa × (−∞,+∞) and a surface electrical
charge of density q2 is prescribed on Γb × (−∞,+∞). The cylinder is in contact over
Γ3 × (−∞,+∞) with a conductive obstacle, the so-called foundation. The contact is
frictional and is modeled by Tresca’s law.

We denote by S3 the space of the second-order symmetric tensors on R3, and we
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define the inner products and the corresponding norms on R3 and S3 by

u.v = uivi, ∥v∥ = (v.v)
1
2 for all u = (ui), v = (vi) ∈ R3, 1 ≤ i, j ≤ 3,

σ.τ = σi,jτi,j , ∥τ∥ = (τ.τ)
1
2 for all σ = (σi,j), τ = τi,j ∈ S3, 1 ≤ i, j ≤ 3.

We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω× [0, T ] −→ R, (1)

and
f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ] −→ R. (2)

The body forces (1) and the surface tractions (2) would be expected to give rise to a
deformation of the elastic cylinder whose displacement, denoted by u, is of the form

u = (0, 0, u), with q0 : Ω× [0, T ] −→ R. (3)

Such kind of deformation, associated to a displacement field of the form (3), is called
an antiplane shear. We assume also that

q0 = q0(x1, x2, t) with u = u(x1, x2, t) : Ω× [0, T ] −→ R, (4)

q2 = q2(x1, x2, t) with q2 : Γb × [0, T ] −→ R. (5)

The electric charges (4), (5) would be expected to give rise to deformations and to
the electric charges of the piezoelectric cylinder corresponding to an electric potential
field φ which is independent of x3 and has the form

φ = φ(x1, x2, t) : Ω× [0, T ] −→ R. (6)

The infinitesimal strain tensor, denoted by ε(u) = (εi,j(u)), is defined by

εi,j(u) =
1

2
(ui,j + uj,i), 1 ≤ i, j ≤ 3, (7)

where the index that follows the comma indicates a partial derivative with respect to the
corresponding component of the spatial variable. Moreover, in the sequel, the convention
of summation upon a repeated index is used. From (3) and (7), it follows that, in the
case of the antiplane problem, the infinitesimal strain tensor becomes

ε(u) =

 0 0 1
2u,1

0 0 1
2u,2

1
2u,1

1
2u,2 0

 . (8)

We also denote by E(φ) = (Ei(φ)) the electric field and by D=(Di) the electric
displacement field, where

εi,j(u) =
1

2
(ui,j + uj,i), (9)

Ei(φ) = −φ,i. (10)

Let σ = (σij) denote the stress field. We suppose that the material’s behavior is
modelled by an electro-viscoelastic constitutive law of the form

σ = 2θε(u̇) + ζtrε(u̇)I + 2µε(u) + λtrε(u)I − E∗E(φ), (11)

D = E∗ε(u) + βE(φ), (12)
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where ζ and θ are viscosity coefficients, λ and µ are the Lame coefficients, tr ε(u) = εii(u),
I is the unit tensor in R3, α is the electric permittivity constant, E represents the third-
order piezoelectric tensor and E∗ is its transpose. We assume that

Eε =

e(ε13 + ε31)
e(ε23 + ε32)
e(ε33)

 , ∀ε = (εi,j) ∈ S3, (13)

where e is a piezoelectric coefficient. We also assume that the coefficients θ, µ, β and e
depend of the spatial variables x1, x2, but are independent on the spatial variable x3.
Since Eε.v = ε.E∗v for all ε ∈ S3, v ∈ R3, it follows from (13) that

E∗v =

 0 0 ev1
0 0 ev2
ev1 ev2 ev3

 , ∀ v = (vi) ∈ R3. (14)

Here and below the dot above represents the derivative with respect to the time
variable. The stress field is given by the matrix

σ =

 0 0 σ13
0 0 σ23
σ31 σ32 0

 . (15)

In the antiplane context (3), (6), when using the constitutive equations (11)-(12) and
equalities (13)-(14), it follows that the stress field and the electric displacement field are
given by

σ =

 0 0 θu̇,1 + µu,1 + eφ,1

0 0 θu̇,2 + µu,2 + eφ,2

θu̇,1 + µu,1 + eφ,1 θu̇,2 + µu,2 + eφ,2 0

 , (16)

D =

eu,1 − βφ,1

eu,2 − βφ,2

0

 . (17)

We assume that the process is mechanically quasistatic and electrically static and
therefore is governed by the equilibrium equations

Divσ + f0 = 0, (18)

Di,i − q0 = 0 in B × (0, T ), (19)

where Divσ = (σij,j) represents the divergence of the tensor field σ. Thus, keeping in
mind (1), (3), (4), (6), (16) and (17), the equilibrium equations above are reduced to the
following scalar equations :

div(θ∇u̇+ µ∇u) + div(e∇φ) + f0 = 0, in Ω× (0, T ), (20)

div(e∇u)− div(β∇φ) = q0, in Ω× (0, T ). (21)

Here and below we use the notation

divτ = τ1,2 + τ1,2 for τ = (τ1(x1, x2, t), τ(x1, x2, t)),
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∇v = (v,1, v,2), ∂νv = v,1ν1 + v,2ν2 for v = v(x1, x2, t).

Recall that since the cylinder is clamped on Γ1 × (−∞,+∞), the displacement field
vanishes there. Thus (3) implies

u = 0 on Γ1 × (0, T ), (22)

the electrical potential vanishes too on Γa × (−∞,+∞), thus (4) implies that

φ = 0 on Γa × (0, T ). (23)

Let ν denote the unit normal on Γ× (−∞,+∞). We have

ν = (ν1, ν2, 0) (24)

with νi = νi(x1, x2) : Γ −→ R, i = 1, 2. For a vector v we denote by vν and vτ its normal
and tangential components on the boundary which are given by

vν = v.ν, vτ = v − vνν, (25)

respectively. In (25), and everywhere in this paper, ”.” represents the inner product on
the space R3(d = 2, 3). Moreover, for a given stress field σ, we denote by σν and στ the
normal and tangential components on the boundary, respectively, i.e.,

σν = (σν).ν, στ = σν − σνν. (26)

From (16), (17) and (24), we deduce that the Cauchy stress vector and the normal
component of the electric displacement field are given by

σν = (0, 0, θ∂ν u̇+ µ∂νu+ ∂νφ), D.ν = e∂νu− β∂νφ. (27)

Here and subsequently we use the notations ∂νu = u,1ν1 + u,2ν2 and ∂νφ = φ,1ν1 +
φ,2ν2. When keeping in mind the traction boundary condition σν = f2 on Γ2×(−∞,+∞)
and the electric condition D.ν = q2 on Γb × (−∞,+∞), it follows from (2), (5) and (27)
that

θ∂ν u̇+ µ∂νu+ ∂νφ = f2 on Γ2 × (0, T ), (28)

e∂νu− β∂νφ = q2 on Γb × (0, T ). (29)

We now describe the frictional contact condition on Γ3 × (−∞,+∞). First, we note
that from (3), (24) and (25), we find uν = 0, which shows that the contact is bilateral,
that is, the contact is kept during all the process. Using now (3), (24)-(27), we conclude
that

uτ = (0, 0, u), (30)

στ = (0, 0, στ ), (31)

where
στ = θ∂ν u̇+ µ∂νu+ ∂νφ. (32)

We assume that the friction is invariant with respect to the x3-axis and for all t ∈
[0, T ], it is modelled by the following conditions on Γ3:{

|στ | ≤ g(|u̇τ |) on Γ3 × [0, T ],

στ = −g(|u̇|) u̇τ

|u̇τ | , on Γ3 × [0, T ].
(33)
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Here g : Γ3 ×R −→ R3 is a given function, the friction bound, and u̇τ represents the
tangential velocity on the contact boundary. In (33), the strict inequality holds in the
stick zone and the equality is true in the slip zone.

Using now (30), (32), it is straightforward to see that the conditions (33) imply{
|θ∂ν u̇+ µ∂νu+ e∂νφ| ≤ g(|u̇|),
θ∂ν u̇+ µ∂νu+ e∂νφ = −g(|u̇|) u̇

|u̇| , on Γ3 × [0, T ].
(34)

Finally, we prescribe the initial displacement

u(0) = u0, in Ω, (35)

where u0 is a given function on Ω.

Problem 2.1 Find a displacement field u : Ω× [0, T ] → R and the electric potential
field φ : Ω× [0, T ] → R such that

div(θ∇u̇+ µ∇u) + div(e∇φ) + f0 = 0, in Ω× (0, T ), (36)

div(e∇u)− div(β∇φ) = q0, in Ω× (0, T ), (37)

u = 0 , on Γ1 × (0, T ), (38)

θ∂ν u̇+ µ∂νu+ e∂νφ = f2, on Γ2 × (0, T ), (39){
|θ∂ν u̇+ µ∂νu+ e∂νφ| ≤ g(|u̇|),
θ∂ν u̇+ µ∂νu+ e∂νφ = −g(|u̇|) u̇

|u̇| , on Γ3 × (0, T ),
(40)

φ = 0, on Γa × (0, T ), (41)

e∂νu− β∂νφ = q2, on Γb × (0, T ), (42)

u(0) = u0, in Ω× (0, T ). (43)

3 Assumptions and Varitional Formulation

To obtain a variational formulation for the mechanical problem (36)-(43), we introduce
the function spaces V = {v ∈ H1(Ω) : v = 0 onΓ1} and W = {ψ ∈ H1(Ω) : ψ =
0 onΓ1}, and here and below, we write w for the trace γw of a function w ∈ H1 on Γ1.

Since measΓ1 > 0 and measΓa > 0, it is well known that V and W are the real
Hilbert spaces with the inner products

(u, v)V =

∫
Ω

∇u.∇vdx,∀u, v ∈ V,

and

(φ,ψ)W =

∫
Ω

∇φ.∇ψdx,∀φ,ψ ∈W.

Moreover, the associated norms

∥v∥V = ∥∇v∥L2(Ω)2 ,∀v ∈ V, (44)

∥ψ∥W = ∥∇ψ∥L2(Ω)2 ,∀ψ ∈W, (45)
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are equivalent on V and W , respectively, with the usual norm ∥.∥H1(Ω). By Sobolev’s
trace theorem, we deduce that there exist two positive constants cV > 0 and cW > 0
such that

∥v∥L2(Γ3) ≤ cV ∥v∥V ,∀v ∈ V, (46)

∥v∥L2(Γ3) ≤ cW ∥ψ∥W ,∀ψ ∈W. (47)

For a real Banach space (X, ∥.∥X), we use the usual notation for the spaces Lp(0, T,X)
and W k,p(0, T,X), where 1 ≤ p ≤ ∞, k = 1, 2...; we also denote by C(0, T,X) and
C1(0, T,X) the spaces of continuous and continuously differentiable functions on [0, T ]
with values in X, with the respective norms

∥x∥C(0,T,X) = max
t∈[0,T ]

∥x∥X ,

and
∥x∥C1(0,T,X) = max

t∈[0,T ]
∥x∥X + max

t∈[0,T ]
∥ẋ∥X ,

and we use the standard notations for the Lebesgue space L2(0, T,X) as well as the
Sobolev spaceW 1,2(0, T,X). In particular, recall that the norm on the space L2(0, T,X)
is given by the formula

∥u∥2L2(0,T,X) =

∫ T

0

∥u(t)∥2Xdt,

and the norm on the space W 1,2(0, T,X) is defined by the formula

∥u∥2W 1,2(0,T,X) =

∫ T

0

∥u(t)∥2Xdt+
∫ T

0

∥u̇(t)∥2Xdt.

In the study of Problem 2.1, we assume that the viscosity coefficient and the electric
permittivity coefficient satisfy

θ ∈ L∞(Ω) and there θ∗ > 0 such that θ(x) ≥ θ∗ a.e x ∈ Ω, (48)

β ∈ L∞(Ω) and there β∗ > 0 such thatβ(x) ≥ β∗ a.e x ∈ Ω. (49)

We also assume that the Lame coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞ and µ(x) > 0, a.e x ∈ Ω, (50)

e ∈ L∞. (51)

The forces, tractions, volume and surface free charge densities have the regularity

f0 ∈W 1,2(0, T, L2(Ω)); f2 ∈W 1,2(0, T, L2(Γ2)), (52)

q0 ∈W 1,2(0, T, L2(Ω)), (53)

q2 ∈W 1,2(0, T, L2(Γb)), q2 = 0 a.e x ∈ Γb. (54)

The friction bound satisfies
a) g : Γ3 × R −→ R+

b) ∃ Lg > 0 such that |g(x, r1)− g(x, r2)| ≤ Lg|r1 − r2|
c) x −→ g(x, r) is Lebesgue mesurable on Γ3 ∀r ∈ R
d) the mapping x −→ g(x, 0) belongs to L2(Γ3),

(55)
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the functional j : v × v −→ R is given by

j(u̇, v) =

∫
Γ3

g(|u̇|)|v|da,∀v ∈ V. (56)

Let η1, η2, v1, v2 ∈ V , by using (55)-(56), we find that

j(η1, v2)− j(η1, v1) + j(η2, v1)− j(η2, v2)| ≤ Lg∥η1 − η2∥L2(Γ3)∥v1 − v2∥L2(Γ3),

and, keeping in mind (46), we obtain

j(η1, v2)− j(η1, v1) + j(η2, v1)− j(η2, v2) ≤ c2V Lg∥η1 − η2∥V ∥v1 − v2∥V , (57)

the initial displacement is such that

u0 ∈ V. (58)

We will use the functions f : [0, T ] −→ V and q : [0, T ] −→W by

(f, v)V =

∫
Ω

f0vdx+

∫
Γ2

f2vda, ∀v ∈ V, (59)

(q, ψ)V =

∫
Γb

q2ψdx+

∫
Ω

q0ψda, ∀ψ ∈W. (60)

The defnition of f and q are based on Riesz’s representation theorem, moreover, it
follows from assumptions (59)-(60) that the integrals above are well defined and

f ∈W 1,2(0, T, V ), (61)

q ∈W 1,2(0, T,W ). (62)

Next, we define the bilinear forms aθ : V ×V −→ R, aµ : V ×V −→ R, ae : V ×W −→
R, ae :W × V −→ R, aβ :W ×W −→ R by the equalities

aθ(u, v) =

∫
Ω

θ∇u.∇vdx, (63)

aµ(u, v) =

∫
Ω

µ∇u.∇vdx, (64)

ae(u, φ) =

∫
Ω

e∇φ.∇vdx = ae(φ, v), (65)

aβ(φ,ψ) =

∫
Ω

β∇φ.∇ψdx. (66)

(67)

Assumptions (48)-(51) imply that the integrals above are well defned and, when using
(44)-(47), it follows that the forms aθ, aµ, ae and aβ are continuous, moreover, the forms
aθ, aµ and aβ are symmetric and, in addition, the form aθ is V-elliptic since

aθ(u, v) ≤ ∥θ∥L∞(Ω)∥u∥V ∥v∥V ∀u, v ∈ V, (68)

aθ(v, v) ≥ θ∗∥v∥2V ∀v ∈ V. (69)

The variational formulation of our problem is based on the following result.
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Lemma 3.1 If (u, φ) is a smooth solution to Problem 2.1, then (u(t), φ(t)) ∈ X and

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + ae(φ(t), v − u̇(t)) + j(u̇(t), v)−
j(u̇(t), u̇(t)) ≥ (f, v − u̇)V ,∀v ∈ V, t ∈ [0, T ], (70)

aβ(φ,ψ)− ae(u, ψ) = (q, ψ)W ,∀ψ ∈W, (71)

u(0) = u0. (72)

Proof. Let (u, φ) denote a smooth solution to Problem 2.1, we have u(t) ∈ V , u̇ ∈ V
and φ ∈ W a.e. t ∈ [0, T ] and let v ∈ V , ψ ∈ W , we multiply equations (36)-(37) by
(v− u̇(t)), ψ, integrate the result on Ω, and use Green’s formula (36), and from (38)-(40),
we get∫

Ω

θ∇u̇(t).∇(v − u̇(t))dx+

∫
Ω

µ∇u(t).∇(v − u̇(t))dx+

∫
Ω

e∇φ.∇(v − u̇(t))dx+∫
Γ3

g(|u̇(t)|)|u̇(t)|da−
∫
Γ3

g(|u̇(t)|)|v|da =

∫
Ω

f0(v − u̇(t))dx+∫
Γ2

f2(v − u̇(t))da∀v ∈ V, t ∈ (0, T ). (73)

Now, using (43),(59) and (63)-(65), we obtain (70) and (72), and from (41)-(42), we
get∫

Ω

β∇φ(t).∇ψdx−
∫
Ω

e∇u(t).∇ψdx =

∫
Ω

q0(t)ψdx−∫
Γb

q2(t)ψda,∀ψ ∈W, ∀t ∈ [0, T ]. (74)

Using (60) and (66)-(68), we find (71). ■
Finally, the variational formulation of Problem (70)–(72) is given as follows.

Problem 3.1 Find a displacement field u : [0, T ] −→ V and an electric potential
field φ : [0, T ] −→W such that

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + ae(φ(t), v − u̇(t)) + j(u̇(t), v)− j(u̇(t), u̇(t)) ≥
(f, v − u̇)V ,∀v ∈ V, t ∈ [0, T ], (75)

aβ(φ,ψ)− ae(u, ψ) = (q, ψ)W ,∀ψ ∈W, (76)

u(0) = u0. (77)

We notice that the varitional problem (75)–(77) is formulated in terms of a displace-
ment field and electrical potential field. The existence of the unique solution to (75)–(77)
is stated and proved in the next section.
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4 Existence and Uniqueness of a Weak Solution

Theorem 4.1 Assume (48)–(62), then there exists L0, which depends on
Ω,Γ1,Γ2,Γ3, and if Lg < L0, there exists a unique solution u to Problem 3.1 satisfy-
ing

u ∈W 2,2(0, T, V ). (78)

Proof of Theorem 4.1. The proof of Theorem 4.1 will be carried out in several steps.

First Step : We consider the following problem.

Problem 4.1 Find a displacement field u : [0, T ] −→ V such that

a(u(t), v − u̇(t)) + b(u̇(t), v − u̇(t)) + j(u̇(t), v)− j(u̇(t), u̇(t)) ≥ (F (t), v − u̇(t))V ,

∀v ∈ V, t ∈ [0, T ], (79)

u(0) = u0. (80)

In the study of the Cauchy problem (79)-(80), we assume that{
a : V × V −→ R is a bilinear form and there exists M > 0 such that

|a(u, v)| ≤M∥u∥V |v∥V , ∀u, v ∈ V.
(81)


b : V × V −→ is a bilinear symmetric form and

(a) there exists M ′ > 0 such that |b(u, v)| ≤ M ′∥u∥V ∥v∥V , ∀u, v ∈ X,

(b) there exists m′ > 0 such that b(v, v) ≥ m′∥v∥2V ∀v ∈ V,

(82)


j : V × V −→ R and

a) for all η ∈ V, j(η, .) is convex and I.S.C. on V,

b) there exists α ≥ 0 such that

|j(η1, v2)− j(η1, v1) + j(η2, v1)− j(η2, v2)| ≤ α∥η1 − η2∥V ∥v1 − v2∥V ,

(83)

∀η1, η2, v1, v2 ∈ V,

u0 ∈ V, (84)

F ∈W 1,2(0, T, V ). (85)

Under assumptions (81)–(85), we have the following result.

Lemma 4.1 Assume that (81)-(85) hold, then if m′ > α, there exists a unique solu-
tion u ∈W 1,2(0, T, V ) to problem (79)-(80).

Proof. For any t1, t2 ∈ [0, T ], we use (79) and get

a(u(t1), v − u̇(t1)) + b(u̇(t1), v − u̇(t1)) + j(u̇(t1), v)− j(u̇(t1), u̇(t1)) ≥
(F (t1), v − u̇(t1))V ,∀v ∈ V, (86)

a(u(t2), v − u̇(t2)) + b(u̇(t2), v − u̇(t2)) + j(u̇(t2), v)− j(u̇(t2), u̇(t2)) ≥
(F (t2), v − u̇(t2))V ,∀v ∈ V. (87)
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We take v = u̇(t2) in the first inequality, and v = u̇(t1) in the second one, and add
the results to obtain

b(u̇(t1)− u̇(t2), u̇(t1)− u̇(t2)) + j(u̇(t1), u̇(t2))− j(u̇(t1), u̇(t2)) + j(u̇(t2), u̇(t1))−
j(u̇(t2), u̇(t2)) ≤ a(u(t1)− u(t2), u̇(t2)− u̇(t1)) + (F (t1)− F (t2), u̇(t2)− u̇(t1)). (88)

We use now assumptions (81)-(83) to find

∥u̇(t1)− u̇(t2)∥V ≤ C(∥u(t1)− u(t2)∥V + ∥F (t1)− F (t2)∥V ), (89)

where C = max{ M
m′−α ,

1
m′−α}. This inequality combined with the reguarlarity u ∈

C1(0, t, V ) shows that u̇ : [0, T ] −→ V is an absolutely contunuous function and, more-
over,

∥u̇̇(t)∥V ≤ C(∥u̇(t)∥V + ∥F (t)∥V ) a.e t ∈ [0, T ].

Finally, we conclude that u ∈W 2,2(0, T, V ).

Second Step : Now, we prove the first inequality of Theorem 4.1.

Proof. From (76) we have

(βφ, ψ)W − (eu, φ)W = (q, ψ)W , (90)

the use of (90) gives that
βφ(t) = eu(t) + q,

hence
φ(t) =

e

β
u(t) +

q

β
. (91)

Now, we take (91) and substitute in (75), we get

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + ae(
e

β
u(t), v − u̇(t)) + j(u̇(t), v)− j(u̇(t), u̇(t))

≥ (f(t)− β−1q, v − u̇)V ,∀v ∈ V, t ∈ [0, T ], (92)

u(0) = u0. (93)

Next, we define the bilinear forms a : V × V −→ R, b : V × V −→ R by

a(u(t), v − u̇(t)) = aµ(u(t), v − u̇(t)) + ae(
e

β
u(t), v − u̇(t)), (94)

b(u̇(t), v − u̇(t)) = aθ(u̇(t), v − u̇(t)), (95)

and define the function F : [0, T ] −→ V by

(F (t), v − u̇)V = (f(t)− β−1q, v − u̇)V . (96)

The bilinear form a(., .) and the initial data u0 satisfy conditions (81) and (84). The
regularity f ∈W 1,2(0, T, V ) and q ∈W 1,2(0, T,W ) combined with the definition of F (.)
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in (96), satisfy (85).

Now, for all η ∈ V , the functional j(η, .) : V −→ R is a continuous seminorm on V
and therefore it satisfies condition (83)(a). Recall also that j satisfies inequality (57),
which shows that condition (83)(b) holds with α = cV Lg.

From (68), the bilinear form b satisfies condition (83) with m′ = θ∗.

Choose L0 =
θ∗

c2V
, which depends on Ω,Γ1,Γ2,Γ3, and θ. Then, if Lg < L0, we have

m′ > α, and therefore the first inequality in Theorem 4.1 is a direct consequence of
Lemma 3.1.

Theorem 4.2 Asume (48)-(62) and if Lg < L0, there exists a unique solution (u, φ)
to Problem 3.1 satisfying

φ ∈W 1,2(0, T,W ). (97)

In this step, we prove the second inequality cited in Theorem 4.2.
Proof. Let u ∈ W 2,2(0, T, V ) be the solution of problem (77)-(97) and let φ :

[0, T ] −→ W be the electrical potential field defined by (91). Notice that the regularity
u ∈W 2,2(0, T, V ) and q ∈W 1,2(0, T,W ) imply that φ ∈W 1,2(0, T,W ).

Conclusion

We presented a model for an antiplane contact problem for electro-viscoelastic materials
with two variables, i.e., a time-dependent variational equation for the potential field,
where the time t is in [0, T ]. The problem was set as a variational inequality for the
displacements and a variational equality for the electric potential. The existence of
a unique weak solution for the problem was established by using arguments from the
theory of evolutionary variational inequalities and a fixed-point theorem.
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