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Abstract: In this research, a numerical solution to the Benjamin-Bona-Mahony-
Burger (BBMB) equation utilizing septic B-spline Galerkin method has been pro-
posed. The accuracy of the method has been tested by evaluating L2 and L∞error
norms. Furthermore, the obtained numerical results are compared with those avail-
able in the literature. Finally, some graphical representations have been presented to
show the method efficiency.
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1 Introduction

Many phenomena in applied sciences such as engineering, physics, and chemistry can
be described through mathematical models. Partial differential equations (PDEs) can
be considered one of the most important of these models [1], [2]. The Benjamin-Bona-
Mahoney-Berger (BBMB) equation is one of the fundamental types of nonlinear disper-
sive equations that has occurred in various areas of applied mathematics [3], [4]. The
BBMB equation is a mathematical model proposed in [5] to study the unidirectional long
wave motion with small amplitudes. The BBMB equation represents the mathematical
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model of propagation of small amplitude long waves in the nonlinear dispersive media
along with the dissipation, which is alternate to the Korteweg-de Vries equation [6]. This
equation incorporates nonlinearity as well as the dispersive and the dissipative effects.
The terms uxx and uxxt represent the dissipative and the dispersive effects of the equation,
respectively. This equation is used in a number of branches of science and engineering.
Many studies have been conducted to find the exact solution to the BBMB equation,
such as, the homotropy analysis method [7], the exp-function method [8], the multipliers
method [9], (see also [10], [11], [12], [13], [14]). In this research paper, the septic B-spline
Galerkin method is used to solve the one-dimensional BBMB equation numerically. Sev-
eral authors have investigated the numerical solution of the BBMB equation, for example,
finite difference method [15, 16], domain decomposition technique [17], [18], [19], cubic
spline collocation method [20], finite element method [21], [22], [23], Crank–Nicolson-
type finite difference methods [24], [25], [26], [27], and B-spline quadratic finite element
method [28]. In this research paper, in Section 2, the septic B-spline Galerkin method
has been applied to the BBMB equation. In Section 3, two examples are solved using
the proposed method, and the accuracy of the method has been tested by comparing the
obtained numerical solutions with the exact solutions and with the methods existing in
the literature. Finally, a summary of the main conclusions is presented in Section 4.

2 Septic B-spline Galerkin Method

The BBMB equation is defined as

vt − vxxt − αvxx + βvx + vvx = 0, c ≤ x ≤ d, t > 0. (1)

The boundary conditions are given as

v(c, t) = v(d, t) = 0, vx(c, t) = vx(d, t) = 0,
vxx(c, t) = vxx(d, t) = 0, vxxx(c, t) = vxxx(d, t) = 0, t > 0.

(2)

and the initial condition is

v(x, 0) = f(x), x ∈ [c, d]. (3)

Applying the Galerkin technique to (1) with the test functions ψ yields∫ h

0

ψ(ut − uxxt − αuxx + βux + uux)dx = 0 . (4)

Therefore, we have∫ h

0

(ψut + ψxuxt + αψxux + βψux + ψuux)dx = 0 . (5)

The approximating solution is defined as follows:

un(x, t) =
∑n+3

p=−3 δp(t)Hp(x),

ψ(x) = Hp(x), p = −3, ..., n+ 3 ,
(6)
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where Hp is the septic B-spline function:

Hp(z) =
1

h7



(z − zp−4)
7 z ∈ [zp−4, zp−3]

(z − zp−4)
7 − 8(z − zp−3)

7 z ∈ [zp−3, zp−2]
(z − zp−4)

7 − 8(z − zp−3)
7 + 28(z − zp−2)

7 z ∈ [zp−2, zp−1]
(z − zp−4)

7 − 8(z − zp−3)
7 + 28(z − zp−2)

7 − 56(z − zp−1)
7 z ∈ [zp−1, zp]

(zp+4 − z)7 − 8(zp+3 − z)7 + 28(zp+2 − z)7 − 56(zp+1 − z)7 z ∈ [zp, zp+1]
(zp+4 − z)7 − 8(zp+3 − z)7 + 28(zp+2 − z)7 z ∈ [zp+1, zp+2]
(zp+4 − z)7 − 8(zp+3 − z)7 z ∈ [zp+2, zp+3]
(zp+4 − z)7 z ∈ [zp+2, zp+3]
0 otherwise.

(7)
When using the equation as hµ = z− zp, the septic B-splines (7) in terms of the variable µ over
[0, 1] can be given as follows:

Hp−3(z) = 1− 7µ+ 21µ2 − 35µ3 + 35µ4 − 21µ5 + 7µ6 − µ7,
Hp−2(z) = 120− 392µ+ 504µ2 − 280µ3 + 84µ5 − 42µ6 + 7µ7,
Hp−1(z) = 1191− 1715µ+ 315µ2 + 665µ3 − 315µ4 − 105µ5 + 105µ6 − 21µ7,
Hp(z) = 2416− 1680µ+ 560µ4 − 140µ6 + 35µ7,
Hp+1(z) = 1191 + 1715µ+ 315µ2 − 665µ3 − 315µ4 + 105µ5 + 105µ6 − 35µ7,
Hp+2(z) = 120 + 392µ+ 504µ2 + 280µ3 − 84µ5 − 42µ6 + 21µ7,
Hp+3(z) = 1 + 7µ+ 21µ2 + 35µ3 + 35µ4 + 21µ5 + 7µ6 − 7µ7,
Hp+4(z) = µ7.

(8)

Therefore, the approximate solution (6) is reduced over the element [xp, xp+1] to the following
form:

ven =

p+4∑
i=p−3

δi(t)Hi(x) . (9)

Substituting Eq.(9) into (5), we obtain∑p+4
j=p−3

∫ 1

0
HiHj

•
δjdµ+

∑p+4
j=p−3

∫ 1

0
H ′

iH
′
j

•
δjdµ+ α

∑p+4
j=p−3

∫ 1

0
H ′

iH
′
jδjdµ+

β
∑p+4

j=p−3

∫ 1

0
HiH

′
jδjdµ+

∑p+4
j=p−3

∑p+4
k=p−3

∫ 1

0
HiHjH

′
kδkδjdµ = 0, p = 0, 1, ...n− 1.

(10)

Here, ”•” refers to the derivative with respect to time. Rewrite (10) in a matrix form

Ae
•
δe +Be

•
δe + αBeδe + βCeδe +De(δe)T δe = 0, (11)

where

Ae
i,j =

∫ 1

0

HiHjdµ, Be
i,j =

∫ 1

0

H ′
iH

′
jdµ, Ce

i,j =

∫ 1

0

HiH
′
jdµ, De

i,j,k =

∫ 1

0

HiHjH
′
kdµ.

The matrices Ae
ij , B

e
ij , C

e
ij are matrices of 8× 8, and the matrix D is 8× 8× 8. The matrix D

is designed to be in the form of 8× 8 as

Ee
i,j =

p+4∑
k=p−3

Dijkδk. (12)

Thus Eq.(11) becomes

(Ae +Be
•
)δe + (αBe + βCe + Ee)δe = 0. (13)

Assembling the element matrix (13), we get

(A+B
•
)δ + (αB + βC + E)δ = 0, (14)
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where A,B,C,E are obtained from the element matrices Ae, Be, Ce, Ee, respectively. Applying

the forward finite difference formula,
•
δ = δn+1−δn

∆t
, with the Crank-Nicolson scheme δ = δn+1+δn

2

to Eq.(14), we obtain

[2A+ (2 + α∆t)B +∆t(βC + E)] δn+1 = [2A+ (2− α∆t)B −∆t(βC + E)] δn. (15)

3 Numerical Examples

In this section, we explain the effectiveness of the proposed method through two examples. The
results have been tested using the error norms

L2 =
∥∥vexact − vnum

∥∥
2
=

√√√√h

N∑
j=0

∣∣vexactj − vnum
j

∣∣2 , L∞ = max
j

∣∣∣vexact

j − vnum
j

∣∣∣ .
Example 1

Take equation (1) at α = β = 1, with the following initial condition:

v(x, 0) = sin(x) .

The exact solution is given by

v(x, t) = e−t sin(x) .

The boundary conditions are chosen from the exact solution. The obtained results are com-
pared with the exact solution by evaluating L2 and L∞error norms at different values of time.
Moreover, the results are compared with the results in [15] [23], which are shown in Table 1. In
Figures 1 and 2, we plotted the exact and numerical solutions of Example 1, and it turns out
that the two plots are very close to each other.

T L2 L∞

The proposed method 1 3.02235× 10−7 1.811223× 10−10

2 5.9976× 10−7 4.55663× 10−10

5 9.5589× 10−7 2.996753× 10−9

10 1.86532× 10−6 8.76521× 10−9

[15] 1 2.976712× 10−6 1.906127× 10−9

2 4.675453× 10−6 3.745931× 10−9

5 1.876409× 10−5 2.996753× 10−8

10 2.318245× 10−5 4.906127× 10−8

[23] 1 4.238861× 10−3 8.732152× 10−4

2 2.74893× 10−3 4.720312× 10−4

5 1.009326× 10−2 3.258217× 10−3

10 3.112871× 10−2 2.531897× 10−3

Table 1: Errors between the numerical and exact solutions in Example 1, at different times.
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,

Figure 1: Numerical and exact solutions in Example 1 at −20 ≤ x ≤ 20, and 0 ≤ t ≤ 1 . Left:
Exact solution; right: Numerical solution.

,

Figure 2: Comparison between the exact and approximate solution in Example 1 at t = 1.

Example 2

Take equation (1) at α = 0, β = 1, the initial condition is given by

v(x, 0) = sech2(
x

4
) .

The exact solution is

v(x, t) = e−t sin(
x

4
− t

3
) .

In Figure 3, the numerical and exact solutions are plotted. The obtained numerical results
for Example 2 are compared with the exact solution at different values of h, k and t and are
presented in Table 2. Again, it turns out that the results obtained using the proposed method
are more accurate when compared with the results in [13], [15], [22].
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h k t Absolute error

The proposed method 0.1 0.1 1 3.78786× 10−9

0.1 0.1 5 9.746302× 10−9

0.05 0.1 1 3.911113× 10−11

0.05 0.1 5 7.55322× 10−10

[15] 0.1 0.1 1 1.906512× 10−8

0.1 0.1 5 6.746302× 10−8

0.05 0.1 1 5.650921× 10−10

0.05 0.1 5 1.0774219× 10−9

[22] 0.1 0.1 1 6.479231× 10−2

0.1 0.1 5 4.209547× 10−2

0.05 0.1 1 1.226197× 10−3

0.05 0.1 5 2.626195× 10−3

[13] 0.1 0.1 1 4.783312× 10−4

0.1 0.1 5 1.622166× 10−4

0.05 0.1 1 2.040573× 10−6

0.05 0.1 5 1.192831× 10−6

Table 2: Absolute errors between the numerical and exact solutions in Example 2 at different
values for h, k and t.

,

Figure 3: Numerical and exact solutions in Example 2 at −20 ≤ x ≤ 40, and 0 ≤ t ≤ 1 . Left:
Exact solution; right: Numerical solution.
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4 Conclusions

In this research paper, the BBMB equation has been solved successfully by using the septic
B-spline Galerkin method. From Tables 1 and 2, the obtained numerical results show that
the results are more accurate and close to the exact solutions. The results achieved from the
numerical approach show that proposed technique is better than the methods used in [13], [15],
[22], [23]. Thus, the results illustrated that the proposed method is novel, powerful and efficient.
So, we advise to utilize the method to solve several types of partial differential equations.
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