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Abstract: A supply chain is a network of interconnected organizations, people,
activities, information, and resources involved in the creation and distribution of
products or services from the raw material stage to the end consumer. It encom-
passes the entire process of transforming raw materials into finished products and
delivering them to customers. In this paper, we have proposed a new mathematical
model for the chaotic supply chain with one absolute nonlinearity and one quadratic
function. Furthermore, we have validated stability analysis and dynamical analysis
using numerical MATLAB simulation. Our finding system exhibits the index-1 spi-
ral saddle and index-2 spiral saddle. We show that the new chaotic supply chain
model exhibits multistability with coexisting chaotic attractors for different initial
states. Finally, as a control application, active backstepping control has been applied
to achieve complete synchronization of a pair of new chaotic supply chain models
taken as the master and slave systems. The Lyapunov stability theory has been used
to achieve the control result using active backstepping control.
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1 Introduction

The development of chaotic systems in supply chain management related to the study and
application of chaos theory to understand and manage the complex and unpredictable
behaviors that can emerge within supply chains [1]. Chaos theory is a branch of mathe-
matics that deals with complex, non-linear systems that exhibit sensitive dependence on
initial conditions [2]. In the context of supply chain management, chaotic behavior can
lead to unexpected fluctuations, delays, and disruptions, which can significantly impact
the efficiency and effectiveness of the supply chain [3].

Supply chains are inherently complex systems involving various interconnected enti-
ties such as suppliers, manufacturers, distributors, retailers, and customers [4–6]. The
interactions among these entities can lead to non-linear and unpredictable behaviors [7].
Furthermore, chaotic behavior challenges traditional demand forecasting methods that
assume linear relationships and steady-state conditions [8]. Instead, chaotic systems re-
quire more sophisticated approaches that account for sudden shifts and fluctuations in
demand patterns [9, 10].

Chaos theory has also found applications in the field of economics, particularly in
understanding complex and non-linear dynamics within economic systems such as fi-
nancial markets [11] and bitcoin market [12], business cycles [13], decision making [14]
and policy analysis [15]. Yingjin et al. [16] conducted research on the intricacies of the
bullwhip effect within supply chains. The Bullwhip Effect, characterized by internal non-
linearity, was explored to comprehend its intricacies in the context of order processing
under demand signals. Their aim was to establish a mathematical correlation connecting
the bullwhip effect in the supply chain network with fractal and chaotic dynamics. Lei
et al. [17] constructed a three-tier network for a supply chain using the dynamic and
chaotic Lorenz model. They examined a nonlinear model for a three-level supply chain,
which, under specific circumstances, can manifest as a set of chaotic Lorenz equations.
They introduced the concept of synchronizing a chaotic supply chain network through
the application of the RBF neural network technique. Additionally, the influence of ex-
ternal perturbations on this model was explored. Xu et al. [18] proposed an adaptive
super-twisting (STW) sliding mode control (SMC) algorithm to manage the chaotic sup-
ply chain system, they demonstrated that the provided control creation combined with
dynamic analysis is crucial for strategic decision-makers in contemporary supply chain
management.

The main contribition of this work is assessing the stability and dynamic behavior
of a new chaotic supply chain model featuring an absolute nonlinearity and a quadratic
function. This analysis encompassed the use of phase portraits, Poincaré maps, Lyapunov
exponents, and bifurcation diagrams.

Multistability is a complex phenomenon typically observed for chaotic nonlinear dy-
namical systems with the coexistence of different periodic or chaotic attractors for the
same set of system parameters but different values of the initial states [19,20]. In this re-
search work, we also show that the new chaotic supply chain model exhibits multistability
with coexisting chaotic attractors for different initial states.

Finally, as a control application, active backstepping control has been applied to
achieve the complete synchronization of a pair of new chaotic supply chain models taken
as the master and slave systems. The Lyapunov stability theory has been used to achieve
the control result using active backstepping control. MATLAB simulations have been
shown to illustrate the results presented in this research work.
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2 A New Chaotic Supply Chain Model

In 2022, Hamidzadeh et al. [21] defined a chaotic supply chain model as follows:
ẏ1 = y2,

ẏ2 = y3,

ẏ3 = ay1 − by2 − y3 − y21 ,

(1)

where y1 is retailers, y2 is distributors, and y3 is manufacturers, system (1) exhibits
chaotic behavior with the parameter a = 7.5; b = 3.8 and the initial conditions are
y1(0) = 1, y2(0) = 1, y3(0) = 1.

In this work, we propose a chaotic supply chain with an absolute nonlinearity and a
quadratic function, which is modelled as follows:

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = ay1 − by2 − y3 − |y1| − y21 .

(2)

System (2) exhibits chaotic behavior with the parameter a = 8.5; b = 3.8 and the
initial conditions are y1(0) = 0.1, y2(0) = 0.1, y3(0) = 0.1. Using the Wolf algorithm, the
Lyapunov characteristic exponents of the model (2) are LE1 = 0.18109, LE2 = 0.11839
and LE3 = −1.1929. The Kaplan-Yorke dimension of the model (2) is derived as

DKY = 2 +
LE1 + LE2

|LE3|
= 2.251. (3)

Subsequently, we compute the equilibrium positions of the recently introduced chaotic
supply chain model (2). To achieve this, we address the resolution of the subsequent
system of equations 

0 = y2,

0 = y3,

0 = ay1 − by2 − y3 − |y1| − y21 .

(4)

It is a simple calculation to verify that the revised system of the chaotic supply chain
model (2) is found to possess a pair of equilibrium points, specifically determined by

E0 =

00
0

 =

7.50
0

 . (5)

The matrix provided below represents the Jacobian matrix associated with the chaotic
supply chain model (2):

JEi =

 0 0 0
0 0 1

8.5− sign(x)− 2x −3.8 −1

 . (6)

We find that

E0 =

 0 0 0
0 0 1
7.5 −3.8 −1

 , (7)
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which has the characteristics equation as follows:

λ3 + λ2 + 3.8λ− 7.5. (8)

The Jacobian matrix JE0 has the eigenvalues 1.1781, -1.0891±2.2759i. The system
(2) exhibits the Index-1 spiral saddle point, which is unstable. The Jacobian matrix of
the system (2) at E1 = (7.5, 0, 0) is obtained as follows:

E0 =

 0 1 0
0 0 1

−7.5 −3.8 −1

 , (9)

which has the characteristics equation as follows

λ3 + λ2 + 3.8λ+ 7.5 = 0. (10)

The Jacobian matrix JE1 has the eigenvalues -1.5858, 0.2929± 2.1548i. The system
(2) exhibits the Index-2 spiral saddle point, which is unstable.

The Runge-Kutta 4th-order method is a type of the numerical integration technique
that allows one to approximate the solution of an ODE by iteratively stepping through
the independent variable [22]. It is particularly useful when there is no analytical solution
available or when the ODE is too complex to solve directly. By using this method, in
Figure 1, the MATLAB plots are displayed for the chaotic supply chain (2) with (a, b) =
(8.5, 3.8), with the initial conditions Y (0) = (0.1, 0.1, 0.1).

3 Dynamical Analysis of the New Chaotic Supply Chain Model

A bifurcation diagram is a graphical representation used in the field of dynamical systems
and nonlinear mathematics to visualize the behavior of a system as a parameter changes
[23]. It helps to illustrate how the qualitative behavior of a system changes as a parameter
varies, particularly when the system undergoes bifurcations. Meanhwile, the Lyapunov
exponent is a concept from the field of chaos theory and dynamical systems that quantifies
the rate of exponential divergence or convergence of nearby trajectories in a nonlinear
system [24]. It is used to characterize the sensitivity of a system to initial conditions,
which is a fundamental aspect of chaotic behavior.

The behavior of the supply chain system (2) was explored by varying the bifurcation
parameter a within the range of 6 to 9.5. The bifurcation diagram and Lyapunov ex-
ponent diagram of the chaotic supply chain system model (2) are presented in Figures
2(a) and 2(b), respectively. It is evident from these figures that the system (2) showcases
both limit cycles and demonstrates chaotic patterns. Meanwhile, confirming the exis-
tence of a path to chaos through period doubling is straightforward when the parameter
a is increased.

By altering the parameter b within the range of [3.8, 4.8], the behavior of the supply
chain system (2) is explored. Figure 3(a) exhibits the bifurcation diagram, while Figure
3(b) presents the associated Lyapunov exponent spectrum of system (2). These figures
illustrate the system’s capacity to transition from chaotic to periodic behavior. The
presence of a route from chaos to period doubling becomes apparent upon increasing the
value of the parameter b.

A Poincaré map, also known as a Poincaré section or Poincaré surface of section,
is a graphical tool used to study the behavior of chaotic systems and to analyze the
dynamics of a system in a reduced-dimensional space. In addition, the Poincaré map of
supply chain system (2) in Figure 4 exhibits chaotic characteristics.
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(a) (y1, y2) plane (b) (y2, y3) plane

(c) (y1, y3) plane (d) The 3-D space

Figure 1: Chaotic attractors supply chain model (2) using MATLAB in (a) y1 - y2 plane
(b) y2 - y3 plane, (c) y1 - y3 plane and (d) 3D plane.

4 Multistability of the New Chaotic Supply Chain Model

Multistability is a complex phenomenon typically observed for chaotic nonlinear dynam-
ical systems with the coexistence of different periodic or chaotic attractors for the same
set of system parameters but different values of the initial states [19,20]. In this research
work, we also exhibit that the new chaotic supply chain model (2) exhibits multistability
with coexisting chaotic attractors for different initial states.

We fix the parametric values as in the chaotic case, viz. a = 8.5 and b = 3.8. We
choose two initial states as Y0 = (0.1, 0.1, 0.1) and Z0 = (0.5, 0.2, 0.5), and we denote
the corresponding state flows of the new chaotic supply chain model (2) as Y (t) (in blue
color) and Z(t) (in red color), respectively.

Figure 5 shows the multistability with coexiting chaotic attractors of the new chaotic
supply chain model (2), where the blue orbit corresponds to the chaotic attractor for
Y0 = (0.1, 0.1, 0.1) and the red orbit corresponds to the chaotic attractor for Z0 =
(0.5, 0.2, 0.5). In this figure, the parametric values are kept fixed at a = 8.5 and b = 3.8.
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(a) Bifurcation plot (b) LE diagram

Figure 2: (a) Bifurcation plot and (b) Lyapunov exponents diagram of supply chain
model (2) with variation of the parameter a.

(a) Bifurcation plot (b) LE diagram

Figure 3: (a) Bifurcation plot and (b) Lyapunov exponents diagram of supply chain
model (2) with variation of the parameter b.

5 Complete Synchronization of the New Chaotic Supply Chain Models

In this section, we use the active backstepping control method [25] to solve the design
problem of achieving the complete chaos synchronization of a pair of new chaotic supply
chain models taken as the master and slave systems.

As the master system, we take the new chaotic supply chain model given by the jerk
dynamics

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = ay1 − by2 − y3 − |y1| − y21 .

(11)

As the slave system, we consider the new chaotic supply chain model given by the
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Figure 4: Poincaré section of the chaotic supply chain model (2).

(a) (y1, y2) plane (b) (y1, y3) plane

Figure 5: Multistability of the new chaotic supply chain model (2).

jerk dynamics

ż1 = z2,

ż2 = z3,

ż3 = az1 − bz2 − z3 − |z1| − z21 + v.

(12)

In Eq.(12), v is an active backstepping control, which is to be designed in this section.

The error between the chaotic supply chain models (11) and (12) can be defined as
follows:

µ1 = z1 − y1,

µ2 = z2 − y2,

µ3 = z3 − y3.

(13)
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Using the dynamics of the systems (11) and (12), we can compute the error dynamics
as follows:

µ̇1 = µ2,

µ̇2 = µ3,

µ̇3 = aµ1 − bµ2 − µ3 − |z1|+ |y1| − z21 + y21 + v.

(14)

Theorem 5.1 The new chaotic supply chain models (11) and (12) are completely
synchronized for all initial values and in R3 when the active control law v is chosen as

v = −(3 + a)µ1 − (5− b)µ2 − 2µ3 + |z1| − |y1|+ z21 − y21 − kw3, (15)

where k > 0 is a gain constant and w3 = 2µ1 + 2µ2 + µ3.

Proof. We use the active backstepping control method [26] to establish the result in
Theorem 5.1. First, we begin with the Lyapunov function given by

P1(w1) =
1

2
w2

1, (16)

where
w1 = µ1. (17)

Then we get
Ṗ1 = µ1µ̇1 = µ1µ2 = −w2

1 + w1(µ1 + µ2). (18)

In order to simplify our calculations, we define

w2 = µ1 + µ2. (19)

Using (19), we can simplify Eq.(18) as follows:

Ṗ1 = −w2
1 + w1w2. (20)

Next, we define the Lyapunov function given by

P2(w1, w2) = P1(w1) +
1

2
w2

2 =
1

2
w2

1 +
1

2
w2

2. (21)

Then it is easy to show that

Ṗ2 = −w2
1 − w2

2 + w2 (2µ1 + 2µ2 + µ3) . (22)

In order to simplify our calculations, we define

w3 = 2µ1 + 2µ2 + µ3. (23)

Using (23), we can simplify Eq.(22) as follows:

Ṗ2 = −w2
1 − w2

2 + w2w3. (24)

Finally, we define the Lyapunov function given by

P (w1, w2, w3) = P2(w1, w2) +
1

2
w2

3 =
1

2
w2

1 +
1

2
w2

2 +
1

2
w2

3. (25)
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Then we calculate the derivative of P along the error dynamics (14) as follows:

Ṗ = −w2
1 − w2

2 + w2w3 + w3ẇ3 = −w2
1 − w2

2 − w2
3 + w3Z. (26)

A standard calculation yields the following:

Z = (3 + a)µ1 + (5− b)µ2 + 2µ3 − |z1|+ |y1| − z21 + y21 + v. (27)

Substituting the formula given in Eq.(15) for v into Eq.(28), we get Z = −kw3. Then
Eq.(26) can be simplified as follows:

Ṗ = −w2
1 − w2

2 − (1 + k)w2
3. (28)

Hence, we have shown that Ṗ is a quadratic and negative definite function on R3.
Using the Lyapunov stability theory, we conclude that the error dynamics (14) is

globally asymptotically stable.
Hence, the error variables µ1(t), µ2(t), and µ3(t) converge to zero asymptotically as

t → ∞ for all initial error conditions. This completes the proof.

Figure 6: Convergence of the synchronization errors µ1 (t) , µ2 (t) , µ3 (t).

For MATLAB values, we take the values of a and b as in the chaotic case studied in
Section 2, viz. a = 7.5 and b = 3.8. We pick the control gain constant k as k = 20.

The initial values of the master and slave chaotic supply chain systems given in the
equations (11) and (12) are taken as y (0) = (1.7, 5.4, 2.8) and z (0) = (3.6, 1.1, 6.2),
respectively.

Figure 6 shows the convergence of the synchronization errors between the master and
slave chaotic supply chain systems given in the equations (11) and (12), respectively.

6 Conclusions

This study presents a new chaotic supply chain system featuring two unstable equilibrium
points, which are saddle points. The main contribition of this work is assessed stability



284 M. D. JOHANSYAH et al.

and dynamic behavior for a new chaotic supply chain model featuring an absolute non-
linearity and a quadratic function. The fundamental dynamic properties of the system
are explored using phase portraits, equilibrium analysis, the Kaplan–Yorke dimension,
Lyapunov exponents, and bifurcation analysis. Our investigations reveal that the new
chaotic supply chain system demonstrates both periodic and chaotic behaviors. Using
the active backstepping control method, we derived a new control law for achieving the
complete synchronization between the new chaotic supply chain models taken as the mas-
ter and slave chaotic systems. In the future research, we will investigate the robustness of
the proposed control method under various disturbances and uncertainties in the supply
chain system. This could involve analyzing the performance of the control method in the
presence of external factors that may affect the stability and synchronization.
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