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Abstract: In this paper, we consider some sufficient conditions to guarantee the
unique solvability of the new general absolute value equations (NGAVE), Ax−|Bx| =
b, (A, B ∈ Rn×n, b ∈ Rn). Besides Picard’s iterative method for solving the NGAVE,
a generalized Newton method is also proposed for solving the NGAVE. Moreover,
under suitable assumptions, we show that the proposed methods are globally linearly
convergent. We also report some numerical results of the proposed method for solving
the NGAVE, which show the efficiency of our proposed methods.
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1 Introduction

In this paper, we consider new general absolute value equations (abbreviated as NGAVE)
of the type

Ax− |Bx| = b, (1)

where A,B ∈ Rn×n are given matrices, b ∈ Rn, and |Bx| is a vector whose i-th entry
is the absolute value of the i-th entry of Bx. If B = I is the identity matrix, then the
NGAVE (1) can be reduced to the type

Ax− |x| = b. (2)
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Moreover, the system (2) is a special case of the generalized absolute value equation
(GAVE) of the following form:

Ax−B |x| = b, (3)

where B ∈ Rn×n, the last one was introduced by Rohn [14] and investigated in a more
general context by Mangasarian and Meyer (see [9]). Other studies for the AVE can be
found in [1,5,6,11,13,16]. The AVE (2), GAVE (3) and NGAVE (1) have received much
attention from the optimization community. It is currently an active research topic due
to its broad application in many areas of scientific computing and engineering. For in-
stance, linear complementarity, linear programming, convex quadratic programming and
bi-matrix games can be equivalent to the NGAVE(1). The research effort can be summa-
rized to the following two aspects. One is purely theoretical analysis. Authors focus on
the reformulations of AVE (2), GAVE (3) and NGAVE (1) as different equivalent prob-
lems because determining the existence and uniqueness of a solution of the NGAVE (1)
is an NP-hard problem because of the nonlinear and non-differentiable term |Bx| in the
NGAVE (1). For the unique solution of NGAVE (1), some necessary and sufficient condi-
tions were presented in [17]. The other one is the numerical solvability of AVEs. Recently,
several algorithms have been designed to solve the AVE and GAVE, see e.g., [4,7,12] and
the references therein. For example, Mangasarian in [10] proposed a semi-smooth New-
ton method for solving the AVE, and under suitable conditions, he showed the finite and
linear convergence to a solution of the AVE. However, other numerical approaches focus
on reformulating the AVE as a horizontal linear complementarity problems (HLCP) (see
Achache [3]), where they introduce an infeasible path-following interior-point method for
solving the AVE by using equivalent reformulations as an HLCP. Recently, Achache and
Anane [2] have presented Picard’s iterative fixed point method for getting the solution
of the uniquely solvable GAVE. Under some suitable conditions, they showed that the
proposed method is globally linearly convergent.

The goal of this paper is twofold. First, we present some weaker sufficient conditions
that guarantee the unique solvability of the NGAVE (1). Second, for its numerical solu-
tion, we propose a generalized Newton method. In particular, under a mild assumption,
we show that this method is always well-defined and the generated sequence converges
globally and linearly to the unique solution of the NGAVE from any starting initial
point. Finally, numerical results are provided to illustrate the efficiency of our proposed
algorithm for solving the NGAVE. In addition, a numerical comparison is made with an
available method.

The outline of this paper is as follows. The main results of the unique solvability of
the NGAVE are stated in Section 2. In Section 3, Picard’s iterative method for solving
the NGAVE is presented. In Section 4, a generalized Newton method is proposed for
solving the NGAVE. Moreover, under suitable conditions, the global convergence to the
unique solution is proved. In Section 5, some numerical results are provided to show the
efficiency of the proposed algorithm. Finally, a conclusion and some remarks are drawn
in the last section of the paper.

At the end of this section, some notations are presented. Let Rn×n be the set of all
n×n real matrices. The scalar product and the Euclidean norm are denoted, respectively,
by xT y, x, y ∈ Rn and ∥x∥ =

√
xTx. Recall that a subordinate matrix norm for A ∈

Rn×nis defined as follows: ∥A∥ := max {∥Ax∥ : x ∈ Rn, ∥x∥ = 1} , this definition implies

∥Ax∥ ≤ ∥A∥ ∥x∥ , ∥AB∥ ≤ ∥A∥ ∥B∥ , ∀A,B ∈ Rn×n andx ∈ Rn.

The sign(x) denotes a vector with the components equal to -1, 0 or 1 depending on
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whether the corresponding component is negative, zero or positive. In addition, D(x) :=
Diag(sign(x)) will denote a diagonal matrix corresponding to sign(x). The absolute
value of a matrix A = (aij) ∈ Rn×n and the vector of all ones are denoted by |A| =
(|aij |) ∈ Rn×n and e ∈ Rn, respectively. σmin(A), σmax(A) represent, respectively, the
smallest and the largest singular value of the matrix A. As is well known, σ2

min(A) =
min∥x∥=1 x

TATAx, and σ2
max(A) = max∥x∥=1 x

TATAx. Finally, a matrix A ∈ Rn×n is
positive definite if for a nonzero vector x, xTAx > 0, and the inverse of a non singular
matrix A is denoted by A−1.

2 The Main Results

In this section, some conditions to guarantee the unique solution of the NGAVE (1) are
presented. First, for given matrices A,B ∈ Rn×n and for any diagonal matrix D ∈ Rn×n

whose diagonal elements are ±1 and 0, we define the matrix (A −DB) ∈ Rn×n. Then
to achieve our main results, the following lemma is required.

Lemma 2.1 Each of three conditions below implies the non singularity of (A−DB).
1. σmin(A) > σmax(B),
2.

∥∥A−1
∥∥ ∥B∥ < 1, provided A is non singular,

3. the matrix ATA− ∥B∥2 I is positive definite.

Proof. For the first claim, assume that (A−DB) is singular, then

(A−DB)x = 0, for somex ̸= 0.

We then have

σ2
min(A) = min

∥y∥=1
yTATAy ≤ xTATAx = xTBTDDBx

≤ max
∥z∥=1

zTBTDDBz = ∥DB∥2

≤ ∥D∥2 ∥B∥2 ≤ ∥B∥2 = max
∥z∥=1

zTBTBz

= σ2
max(B),

which contradicts the first condition. Hence (A − DB) is non singular. Next, by the
same argument, assume that A is non singular and let a nonzero vector x with ∥x∥ = 1
be such that

(A−DB)x = 0.

Next, because x = A−1DBx, we then have

1 = ∥x∥ =
∥∥A−1DBx

∥∥
≤

∥∥A−1
∥∥ ∥D∥ ∥B∥ ∥x∥

≤
∥∥A−1

∥∥ ∥B∥ ,

which leads to a contradiction and hence (A−DB) is non singular. For the last claim,
assume on the contrary that (A − DB) is singular, then for a nonzero vector x with
∥x∥ = 1, we have

(A−DB)x = 0.
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As Ax = DBx, we then have

xTATAx− ∥B∥2xTx = xT (DB)TDBx− ∥B∥2xTx

= ∥DBx∥2 − ∥B∥2xTx

≤ ∥D∥2 ∥B∥2 ∥x∥2 − ∥B∥2xTx

≤ ∥B∥2 − ∥B∥2 = 0,

and consequently,
xTATAx− ∥B∥2xTx ≤ 0.

This contradicts the fact that the matrix ATA − ∥B∥2I is positive definite. Hence
(A − DB) is non singular for any diagonal matrix D whose elements are ±1 and 0.
This completes the proof.

The following result guarantees the unique solvability of the NGAVE.

Theorem 2.1 The matrices A and B satisfy
1. σmin(A) > σmax(B),
2.

∥∥A−1
∥∥ ∥B∥ < 1, provided A is non singular,

3. The matrix ATA − ∥B∥2 I is positive definite, then the NGAVE (1) is uniquely
solvable for any b.

Proof. Let y = Bx, then the equation NGAVE (1) is equivalent to{
Ax+ |y| = b,
−Bx+ y = 0.

(4)

The latter system can be expressed as(
A −D (y)
−B I

)(
x
y

)
=

(
b
0

)
, (5)

where D (y) := diag (sign (y)) , y ∈ Rn. Once we find the unique solution of the two-by-
two linear Eq.(5), naturally, the unique solution of NGAVE (1) is obtained as well. To
show that the equation admits a unique solution, it suffices to show that the application
of

F (x, y) =

(
A −D
−B I

)(
x
y

)
is one-to-one for any diagonal matrix D whose elements are ±1 and 0. To do so, we

prove only that the Null F = {0}. For that, let
(
uT , vT

)T ∈ R2n, we have

F (u, v) = 0 ⇒
(

A D
−B I

)(
u
v

)
=

(
0
0

)
⇒

{
Au−Dv = 0,

v = Bu,

⇒
{

(A−DB)u = 0,
v = Bu.

Based on Lemma 2.1, the matrix (A − DB) is non singular for any diagonal matrix D
whose elements are ±1 and 0, then u = 0, and consequently, v = 0. Thus, Null F = {0}
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and so F is one-to-one. Hence, the NGAVE (1) is uniquely solvable for any b. This
completes the proof.

Then it is clear that the NGAVE (1) is uniquely solvable for any b if the matrix of co-
efficients (A−DB) is non singular for any diagonal matrix D whose elements are ±1 or 0.

3 Picard’s Fixed Point Method of NGAVE

In this section, we provide Picard’s fixed point iteration method for computing an approx-
imated solution of the uniquely solvable NGAVE. The principal feature of the method is
the use of the following equivalent scheme for NGAVE (1):

xk+1 = A−1|Bxk|+A−1b, k = 0, 1, 2, · · ·

to find an approximated solution. The details of Picard’s iterative algorithm for solving
the NGAVE (1) are described in Figure 1.

Algorithm 3.1
Input
An accuracy parameter ϵ > 0;
an initial starting point x0 ∈ Rn;
two matrices A and B and a vector b;
set k:=0;

while ∥Axk − |Bxk| − b∥ > ϵ do
begin
compute xk+1 from the linear system xk+1 = A−1(|Bxk|+ b);
k := k + 1;

end;
end.

Figure 1: Picard’s algorithm for the NGAVE.

The convergence of Picard’s fixed point scheme is based on the Banach fixed point the-
orem (see [8]).

Theorem 3.1 Let A be a non singular matrix and if∥∥A−1
∥∥ ∥B∥ < 1,

then the sequence {xk} converges to the unique solution x⋆ of the NGAVE (1) for any
arbitrary x0 ∈ Rn. In this case, the error bound is given by

∥xk+1 − x⋆∥ ≤
∥∥A−1

∥∥ ∥B∥
1− ∥A−1∥ ∥B∥

∥xk+1 − xk∥ , k = 0, 1, 2, · · ·

Moreover, the sequence {xk} converges to the unique solution x⋆ as follows:

∥xk+1 − x⋆∥ ≤
∥∥A−1

∥∥ ∥B∥ ∥xk − x⋆∥ , k = 0, 1, 2, · · ·

Proof. The proof is similar to the one given in [2].
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4 The Proposed Generalized Newton Method for the NGAVE

In this section, we propose a generalized Newton method for solving the NGAVE (1) and
we show its convergence.

Let the function F : Rn −→ Rn be defined as

F (x) = Ax+ |Bx| − b. (6)

The generalized Jacobian ∂F (x) of F (x) is given by

∂F (x) = A−D(Bx)B, (7)

where D (Bx) := diag (sign (Bx)) , x ∈ Rn. The generalized Newton method for finding
a zero of the equation F (x) = 0 after some simplifications consists then of the following
iteration:

(A−D(Bxk)B)xk+1 = b, k = 0, 1, · · ·

The details of the algorithm for solving the NGAVE (1) are described in Figure 2.

Algorithm 4.1
Input
An accuracy parameter ϵ > 0;
an initial starting point x0 ∈ Rn;
two matrices A and B and a vector b;
set k:=0;

while ∥Axk − |Bxk| − b∥ > ϵ do
begin
compute xk from the linear system (A−D (Bxk)B)xk+1 = b;
k := k + 1;

end;
end.

Figure 2: A generalized Newton algorithm for the NGAVE.

Next, following Achache [1, 10], we will study the global convergence of the generalized
Newton method, first, we give the following lemma.

Lemma 4.1 For all x ∈ Rn and y ∈ Rn, we obtain the following results:

∥|x| − |y|∥ ≤ ∥x− y∥ .

Proof. For a detailed proof, see Lemma 5 [10].

Lemma 4.2 Suppose that
∥∥∥(A−DB)

−1
∥∥∥ ≤ 1

2∥B∥ , when ∥B∥ ≠ 0, for any diagonal

matrix D with diagonal elements of ±1or 0. Then the generalized Newton iteration
converges linearly from any starting point to a solution x∗ of the NGAVE (1).

Proof. Let x∗ be a solution of the NGAVE (1), then (A−D (Bx∗)B)x∗ =
b. Note that |Bx∗| = D (Bx∗)Bx∗and |Bxk| = D (Bxk)Bxk. Now, subtracting
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(A−D (Bx∗)B)x∗ = b from (A−D (Bxk)B)xk = b, we obtain

A (xk+1 − x∗) = D (Bxk)Bxk+1 −D (Bx∗)Bx∗ = 0

= D (Bxk) (xk+1 + xk − xk)−D (Bx∗)Bx∗

= |Bxk| − |Bx∗|+D (Bxk)B (xk+1 − x∗ + x∗ − xk)

= |Bxk| − |Bx∗| −D (Bxk)B (xk − x∗) +D (Bxk)B (xk+1 − x∗) .

Hence

(A−D (Bxk)B) (xk+1 − x∗) = |Bxk| − |Bx∗| −D (Bxk)B (xk − x∗) .

Consequently,

(xk+1 − x∗) = (A−D (Bxk)B)
−1

(|Bxk| − |Bx∗|)−D (Bxk)B (xk − x∗) .

By Lemma 4.1, we have

∥xk+1 − x∗∥ = ∥(A−D (Bxk)B)∥−1 ∥B∥ ∥(xk − x∗)∥ − ∥B∥ ∥(xk − x∗)∥ .

Hence,
∥xk+1 − x∗∥ ≤ 2 ∥A−D (Bxk)B∥−1 ∥B∥ ∥(xk − x∗)∥ .

So by the condition ∥∥∥(A−DB)
−1

∥∥∥ ≤ 1

2 ∥B∥
,

it follows that ∥xk+1 − x∗∥ < ∥xk − x∗∥ . Hence the sequence
{
xk

}
converges linearly to

x∗. This completes the proof.
We are now ready to prove our main result of the global convergence. We quote first

the following lemma.

Lemma 4.3 If assumption
∥∥A−1

∥∥ ≤ 1
∥B∥ , when ∥B∥ ≠ 0, holds, then (A−DB) is

nonsingular and ∥∥∥(A−DB)
−1

∥∥∥ ≤
∥∥A−1

∥∥
1− ∥A−1B∥

.

Proof. The first part follows directly from Lemma 2.1. For the proof of the second
part, we have (A−DB)

−1
can be written in the from

(A−DB)
−1

=
(
I −A−1DB

)−1
A−1.

But since
(
I −A−1DB

)−1 (
I −A−1DB

)
= I, it follows that(

I −A−1DB
)−1

= I +
(
I −A−1DB

)−1
A−1DB.

By introducing an induced matrix norm, we get∥∥∥(I −A−1DB
)−1

∥∥∥ ≤ 1

1− ∥A−1∥ ∥D∥ ∥B∥
≤ 1

1− ∥A−1∥ ∥B∥
.

Because ∥∥∥(A−DB)
−1

∥∥∥ =
∥∥∥(I −A−1DB

)−1
A−1

∥∥∥ ,
it follows that ∥∥∥(A−DB)

−1
∥∥∥ ≤

∥∥A−1
∥∥

1− ∥A−1∥ ∥B∥
.

This completes the proof.
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Proposition 4.1 Let
∥∥A−1

∥∥ < 1
3∥B∥ and D (Bxk) ̸= 0 for all k. Then the NGAVE

is uniquely solvable for each b ∈ Rn and the generalized Newton iteration is well-defined
and converges globally from any starting point to a solution x∗ for any solvable NGAVE
(1).

Proof. The unique solvability of NGAVE (1) for any b follows from Theorem 2.1
which requires

∥∥A−1
∥∥ < 1

∥B∥ . Next, by Lemma 4.3, we have

∥∥∥(A−DB)
−1

∥∥∥ ≤
∥∥A−1

∥∥
1− ∥A−1∥ ∥B∥

≤
1

3∥B∥

1− 1
3

=
1

2 ∥B∥
.

Hence, by Lemma 4.2, the sequence generated by the generalized Newton method con-
verges to the unique solution of the NGAVE (1) from any starting point x0. This com-
pletes the proof.

5 Numerical Results

In this section, we give some numerical examples to examine the effectiveness of the
generalized Newton method (GN) for solving the NGAVE (1). All programs were im-
plemented in MATLAB R2016a on a personal PC with 1.40 GHZ AMD E1-2500 APU
Radeon(TM) HD Graphic, 8 GB memory and Windows 10 operating system. The start-
ing point and the unique solution of the NGAVE are denoted, respectively, by x0 and x⋆.
In the tables of numerical results, we display the following notations: ”Iter” and ”CPU”
state for the number of iterations and the elapsed times. In addition, to show the per-
formance of our methods in practice, we compare the obtained numerical results with
those obtained by Picard’s fixed point iteration method. The algorithm is terminated if
the current iterations satisfy RES := ∥Axk − |Bxk| − b∥ ≤ 10−8.

Example 5.1 Consider the problem of NGAVE, where A,B ∈ R10×10 are given by

A =



50 5 −4 −4 −4 −4 −4 −4 −4 −4
5 50 5 −4 −4 −4 −4 −4 −4 −4
−1 5 50 5 −4 −4 −4 −4 −4 −4
−1 −1 5 50 5 −4 −4 −4 −4 −4
−1 −1 −1 5 50 5 −4 −4 −4 −4
−1 −1 −1 −1 5 50 5 −4 −4 −4
−1 −1 −1 −1 −1 5 50 5 −4 −4
−1 −1 −1 −1 −1 −1 5 50 5 −4
−1 −1 −1 −1 −1 −1 −1 5 50 5
−1 −1 −1 −1 −1 −1 −1 −1 5 50


,
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and

B = 1/2



−51 −5 1 1 1 1 1 1 1 1
−5 −51 −5 1 1 1 1 1 1 1
1 −5 −51 −5 1 1 1 1 1 1
1 1 −5 −51 −5 1 1 1 1 1
1 1 1 −5 −51 −5 1 1 1 1
1 1 1 1 −5 −51 −5 1 1 1
1 1 1 1 1 −5 −51 −5 1 1
1 1 1 1 1 1 −5 −51 −5 1
1 1 1 1 1 1 1 −5 −51 −5
1 1 1 1 1 1 1 1 −5 −51


.

Applying Theorem 2.1, we have
∥∥A−1

∥∥ ∥B∥ = 0.9166 < 1, then this problem is
uniquely solvable for any b. For this example, we take

b = [54, 54, 54, 54, 54, 54, 54, 54, 54, 54]T .

Our starting point for this example is taken as

x0 = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
T
.

The exact unique solution of this problem is given by

x∗ = [3.653, 3.008, 3.154, 2.9412, 2.8306, 2.692, 2.567, 2.4604, 2.2705, 2.5987]T .

The obtained numerical results are stated in Table 1.

Algorithms→ Picard’s Algorithm GN Algorithm
Iter 5 2
CPU 0.032344 0.014184
RSD 5.9765e− 007 0

Table 1: Numerical results for Example 5.1.

Example 5.2 The hydrodynamic equations (equilibrium problem) are modeled as
the following non-differentiable algebraic equations:

Cx+max (0, x) = c,

where C ∈ Rn×n, c ∈ Rn are given. By using the identity

max (a, b) =
1

2
(a+ b+ |a− b|) ,

the hydrodynamic equation can be reformulated as an AVE (2). We have

Cx+
1

2
(x+ |x|) = c ⇔ Ax− |x| − b = 0,

where A = − (2C + I) , B = I and b = −2c.
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Consider now a random hydrodynamic equation, where C ∈ Rn×n and c are given by

C = (cij) =



−25.5 −2.5 0 · · · 0 0
−2.5 −25.5 −2.5 · · · 0 0

0 −2.5 −25.5 · · · 0
...

...
...

. . .
. . . −2.5 0

0 0 0 · · · −25.5 −2.5
0 0 · · · 0 −2.5 −25.5


,

and

c = [−27,−29.5, ...,−29.5,−27]
T
.

For this example, we have taken two initial points such as

x0
1 = [0.5, ..., 0.5]

T
and x0

2 = [0.9, ..., 0.9]
T
.

The computational results with different size of n are summarized in Table 2.

Algorithms→ Picard’s Algorithm GN Algorithm
Size n x0 Iter CPU Iter CPU
100 x0

1 11 0.064263 2 0.042966
x0
2 12 0.487104 3 0.051011

1000 x0
1 88 26.133205 3 5.022345

x0
2 89 2.149593 3 5.884994

2000 x0
1 335 54.093104 3 45.347198

x0
2 333 54.651662 3 45.064239

Table 2: Numerical results for Example 5.2.

Example 5.3 The matrices A and B are given by

A =



4 −1 0 · · · 0

−1 4
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 4 −1
0 · · · 0 −1 4
0.3 0 0 · · · 0

0 0.3
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0.3 0
0 · · · 0 0 0.3

1 0 0 · · · 0

0 1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 0
0 · · · 0 0 1

1/5 −2 −1/3 · · · 0

−2 1/5
. . .

. . .
...

1/4
. . .

. . .
. . . −1/3

...
. . .

. . . 1/5 −2
0 · · · 1/4 −2 1/5



.
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B = (1/n)



−2 −1 1/5 · · · 1/5

0.4 −2
. . .

. . .
...

3
. . .

. . .
. . . 1/5

...
. . .

. . . −2 −1
3 · · · 3 0.4 −2

−12 0 5 · · · 0

0 −12
. . .

. . .
...

1/5
. . .

. . .
. . . 5

...
. . .

. . . −12 0
0 · · · 1/5 0 −12

−1 0 0 · · · 0

0 −1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −1 0
0 · · · 0 0 −1
−2 −1 1/5 · · · 0

0.4 −2
. . .

. . .
...

3
. . .

. . .
. . . 1/5

...
. . .

. . . −2 −1
3 · · · 3 0.4 −2



.

b = [5,−2, . . . , 5,−2]
T
.

The obtained numerical results for different size of n, are summarized in Table 3.

Algorithms→ Picard’s Algorithm GN Algorithm

Size n Iter CPU Iter CPU

4 40 0.025384 2 0.040067

8 23 0.028198 2 0.028242

40 26 0.060005 3 0.032638

80 22 0.113059 2 0.056422

200 25 0.560619 3 0.210737

400 30 5.126521 2 1.211867

1000 ⋆ ⋆ 3 21.045136

Table 3: Numerical results for Example 5.3.

6 Conclusion

This paper presents a theoretical analysis and numerical study for solving new general
absolute value equations (NGAVE). In the first part, we have presented some weaker
sufficient conditions for the unique solvability of the NGAVE. For solving this NGAVE,
we applied the generalized Newton method. In particular, the sufficient conditions for
the convergence of our algorithm are studied. The obtained numerical results deduced
from the testing examples illustrate that the suggested algorithms are efficient and valid
to solve the NGAVE problems. Finally, an interesting topic of research in the future is
solving the NGAVEs by introducing the Splitting method.
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