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Abstract: This paper derives new results on the adaptive control, synchronization
and anti-synchronization for the new chaotic system with a line equilibrium when
the system’s parameters are unknown. Firstly, we construct an adaptive controller to
stabilize the new chaotic system to its unstable equilibrium at the origin. Then, we
construct an adaptive controller to synchronize the new identical chaotic systems with
unknown parameters. Finally, the corresponding adaptive controller to realize the
anti-synchronization is also constructed for the same new identical chaotic systems.
The Lyapunov stability theory and adaptive control theory have been applied to prove
all the control, synchronization and anti-synchronization results derived in this paper.
Numerical simulations have been presented to illustrate the main results for the new
chaotic system with a line equilibrium.
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1 Introduction

Over the last decades, there has been a great interest in the study of the chaotic behavior
in deterministic systems. There are two leading applications in the chaos theory: chaos
control and chaos synchronization. The emergence of these two areas in the study of non-
linear systems is due to the classical chaos control theory by Ott, Grebogi and Yorke [3]
and chaos synchronization by Pecora and Carroll [7], followed by several types of syn-
chronization that have been studied, namely generalized synchronization [9], projective
synchronization [4], phase synchronization [14], anti-synchronization [8], etc.

Chaos, control and synchronization have received much attention due to their ap-
plications in many areas such as secure communication [11], biomedical engineering [2],
ecological systems [1] and some other fields.

Lots of literature have studied the control, synchronization and anti-synchronization
between two identical systems via classical control techniques, including PC and OGY
methods, nonlinear optimal control [5], active control [15], adaptive control [12,13], etc.

In this paper, the first case obtained after a systematic computer search from the
Sprott case A with a line equilibrium is chosen to illustrate the proposed techniques.
We design state control laws to stabilize the new chaotic system around the unstable
periodic solutions or unstable equilibrium points. On the other hand, we use the adaptive
control method to synchronize two new identical systems with a line equilibrium. Chaos
synchronization investigates the linking of the trajectory of one system to the other
system with the same parameter values, the two coupled chaotic systems are called
synchronized if the error system converges to zero as time goes to infinity. Similarly,
two coupled chaotic systems are called anti-synchronized if the sum system converges
to zero as time goes to infinity, we demonstrate the effectiveness and validity of the
proposed adaptive stabilization, synchronization and anti-synchronization schemes for
the new chaotic system with a line equilibrium.

The paper is organized as follows. In Section 2, a system description is given. In Sec-
tion 3, we apply the adaptive control for stabilizing the chaotic orbits to the equilibrium
point of the system. In Section 4, we use the adaptive control method to synchronize
two identical systems with unknown parameters. In Section 5, we also build a new adap-
tive controller to anti-synchronize the same new identical chaotic systems. Finally, some
conclusions are given in Section 6.

2 System Description

We consider a general parametric form of the Sprott case A system [6] with quadratic
nonlinearities of the form ẋ = y,

ẏ2 = a1x+ a2yz,
ż2 = a3x+ a4y + a5y

2 + a7xy + a8xz + a9yz.
(1)

This system has a line equilibrium in (0, 0, z) with no other equilibria.
In 2013, after a systematic computer search, six simple chaotic cases LE1−LE6 were

founded [10] with only six terms and all these cases were dissipative. The typical example
(LE1) is given by  ẋ = y,

ẏ = −x+ yz,
ż = −x− axy − bxz,

(2)
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where (a, b) ∈ R2.

For (x0, y0, z0) = (0., 0.5, 0.5), the chaotic attractor is shown in Figure 1.

Figure 1: New chaotic system (2) with a = 15 and b = 1. (a) The strange attractor. (b)
Projection on the x-y plane, (c) Projection on the x-z plane and (d) Projection on the z-y plane.

3 Adaptive Control of the New Chaotic System with a Line Equilibrium

3.1 Theoretical results

In this section, we design an adaptive control law for stabilizing the new chaotic system
with a line equilibrium when the parameter values are unknown.

We add controllers to the system (2), then the controlled system is given by ẋ = y + u1,
ẏ = −x+ yz + u2,
ż = −x− axy − bxz + u3,

(3)

where u1, u2 and u3 are the function controllers to be designed using the variables x, y
and z.

In order to ensure that the controlled system (3) converges to the zero equilibrium
asymptotically, we consider the following adaptive control functions:

u1(t) = −y − x,
u2(t) = x− yz − y,

u3(t) = x+ âxy + b̂xz − z,
(4)

where â and b̂ are the estimates of the unknown parameters a and b.
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Substituting the control law (4) into the controlled system (3), we obtain
ẋ = −x,
ẏ = −y,

ż = (â− a)xy + (b̂− b)xz − z.
(5)

Let us now define the parameter errors as follows:

ea = a− â,

eb = b− b̂.

For the derivation of the update law in order to adjust the parameter estimates â and
b̂, the Lyapunov approach is used.

Consider the quadratic Lyapunov function

V =
1

2
(x2 + y2 + z2 + e2a + e2b),

which is a positive definite function on R5.
By deriving V , we get

V̇ = −x2 − y2 + z(−eaxy − ebxz − z) + ea(−
·
â) + eb(−

·
b̂). (6)

In view of Eq.(6), the estimated parameters are updated by the following law:
·
â = −zxy + ea,
·
b̂ = −z2x+ eb.

(7)

Substituting (7) into (6), we get

V̇ = −x2 − y2 − z2 − e2a − e2b < 0. (8)

Next, we prove the following result

Theorem 3.1 The new controlled system (3) with unknown parameters is exponen-
tially stabilized by the adaptive control law (4), where the parameter update law is given
by (7).

3.2 Numerical results

For the numerical simulations, the fourth-order Runge-Kutta method with the time step
∆t = 0.001 is used to solve the system (3) with the adaptive control law (4) and parameter
update law (7). The parameters of the system (3) are selected as: a = 15 and b = 1.

Suppose that the initial values of the estimated parameters are â(0) = 0 and b̂(0) = 4.
The initial states of the controlled system (3) are taken as: x(0) = 0.5, y(0) = −0.5 and
z(0) = 1.5. When the adaptive control law (4) and the parameter update law (7) are
used, the controlled system converges to the origin exponentially as shown in Figure 2.
The time evolution of the parameter estimates is shown in Figure 3.
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Figure 2: Time responses of the controlled system (3).

Figure 3: Time evolution of the parameter estimates â(t) and b̂(t).

4 Adaptive Synchronization of New Identical Chaotic Systems with a Line
Equilibrium

4.1 Theoretical results

In this section, we design a control law for achieving synchronization between two new
chaotic systems with two unknown parameters a and b.
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The master system is given by ẋ1 = y1,
ẏ1 = −x1 + y1z1,
ż1 = −x1 − ax1y1 − bx1z1.

(9)

The slave system is given by ẋ2 = y2 + u1,
ẏ2 = −x2 + y2z2 + u2,
ż2 = −x2 − ax2y2 − bx2z2 + u3,

(10)

where ui(i = 1, 2, 3) are the adaptive control functions to be designed.
It is said that synchronization occurs between master system (9) and slave system

(10) if
lim
t→∞

∥ X2(t)−X1(t) ∥= 0,

where
X1 = (x1, y1, z1),
X2 = (x2, y2, z2).

Now, for our synchronization scheme, let us define error signals between system (9)
and system (10) as  ex(t) = x2(t)− x1(t),

ey(t) = y2(t)− y1(t),
ez(t) = z2(t)− z1(t).

The time derivative of the error signal is ėx(t) = ey + u1(t),
ėy(t) = −ex + y2z2 − y1z1 + u2(t),
ėz(t) = −ex − a(x2y2 − x1y1)− b(x2z2 − x1z1) + u3(t).

(11)

New chaotic systems (9) and (10) can be synchronized asymptotically for any different
initial conditions with the following adaptive controller:

u1(t) = −ey − ex,
u2(t) = ex − y2z2 + y1z1 − ey,

u3(t) = ex + â(x2y2 − x1y1) + b̂(x2z2 − x1z1)− ez.
(12)

Let us now define the parameter errors as

ea = a− â,

eb = b− b̂.

Then  ėx(t) = −ex,
ėy(t) = −ey,
ėz(t) = −ea(x2y2 − x1y1)− eb(x2z2 − x1z1)− ez.

(13)

For the derivation of the update law for adjusting the parameter estimates â and b̂,
let us take the following Lyapunov function candidate:

V =
1

2
(e2x + e2y + e2z + e2a + e2b),
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which is a positive definite function on R5.
By deriving V , we get

V̇ = −e2x − e2y + ez(−ea(x2y2 − x1y1)− eb(x2z2 − x1z1)− ez) + ea(−
·
â) + eb(−

·
b̂). (14)

In view of Eq.(14), the estimated parameter is updated by the following law:
·
â = ez(x2y2 − x1y1) + ea,
·
b̂ = ez(x2z2 − x1z1) + eb.

(15)

Substituting (15) into (14), we get

V̇ = −e2x − e2y − e2z − e2a − e2b < 0. (16)

Next, we prove the following result

Theorem 4.1 The new identical chaotic systems (9) and (10) are exponentially syn-
chronized by the adaptive control law (12), where the parameter update law is given by
(15).

4.2 Numerical results

Numerical simulations are performed to verify the efficiency and feasibility of the con-
troller (12). The Runge-Kutta method is employed with the time step ∆t = 0.001. The
parameters of the system (9) are selected as a = 15 and b = 1. Suppose that the initial

values of the estimated parameters are: â(0) = 0 and b̂(0) = 4. We take the initial values
of the master system (9) as: x1(0) = 0, y1(0) = 0.5 and z1(0) = 0.5. We take the initial
values of the slave system (10) as: x2(0) = 0.5, y2(0) = −1 and z2(0) = 1. Figure 4 shows
the complete synchronization of the identical systems (9) and (10). Figure 5 shows the

time evolution of the parameter estimates â(t) and b̂(t).

5 Adaptive Anti-Synchronization of New Identical Chaotic Systems with a
Line Equilibrium

5.1 Theoretical results

In this section, we design an adaptive control law for achieving the anti-synchronization
of new identical chaotic systems with two unknown parameters.

The master system is given by ẋ1 = y1,
ẏ1 = −x1 + y1z1,
ż1 = −x1 − ax1y1 − bx1z1.

(17)

The slave system is given by ẋ2 = y2 + u1,
ẏ2 = −x2 + y2z2 + u2,
ż2 = −x2 − ax2y2 − bx2z2 + u3,

(18)
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Figure 4: Time series of systems (9) and (10). (a) x1(t) and x2(t). (b) y1(t) and y2(t). (c)
z1(t) and z2(t).

Figure 5: Time evolution of the parameter estimates â(t) and b̂(t).

where ui (i = 1, 2, 3) are the adaptive control fonctions to be designed. The anti-
synchronization error between system (17) and system (18) is defined by

lim
t→∞

∥ X2(t) +X1(t) ∥= 0,

where
X1 = (x1, y1, z1)
X2 = (x2, y2, z2).
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Then  ex(t) = x2(t) + x1(t),
ey(t) = y2(t) + y1(t),
ez(t) = z2(t) + z1(t).

The time derivative of the error signal is ėx(t) = ey + u1(t),
ėy(t) = −ex + y2z2 + y1z1 + u2(t),
ėz(t) = −ex − a(x2y2 + x1y1)− b(x2z2 + x1z1) + u3(t).

(19)

New chaotic systems (17) and (18) can be anti-synchronized asymptotically for any
different initial conditions with the following adaptive controller:

u1(t) = −ey − ex,
u2(t) = ex − y2z2 − y1z1 − ey,

u3(t) = ex + â(x2y2 + x1y1) + b̂(x2z2 + x1z1)− ez.
(20)

Let us now define the parameter errors as

ea = a− â,

eb = b− b̂.

Then  ėx(t) = −ex,
ėy(t) = −ey,
ėz(t) = −ea(x2y2 + x1y1)− eb(x2z2 + x1z1)− ez.

(21)

For the derivation of the update law for adjusting the parameter estimates â and b̂,
let us take the following Lyapunov function candidate:

V =
1

2
(e2x + e2y + e2z + e2a + e2b),

which is a positive definite function on R5.
By deriving V , we get

V̇ = −e2x − e2y − ez(−ea(x2y2 + x1y1)− eb(x2z2 + x1z1)− ez) + ea(−
·
â) + eb(−

·
b̂). (22)

In view of Eq.(22), the estimated parameter is updated by the following law:
·
â = −ez(x2y2 + x1y1) + ea,
·
b̂ = −ez(x2z2 + x1z1) + eb.

(23)

Substituting (23) into (22), we get

V̇ = −e2x − e2y − e2z − e2a − e2b < 0. (24)

Next, we prove the following result.

Theorem 5.1 The new identical chaotic systems are exponentially anti-synchronized
by the adaptive control law (20), where the parameter update law is given by (23).
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Figure 6: Time series of systems (18) and (19). (a) x1(t) and x2(t). (b) y1(t) and y2(t). (c)
z1(t) and z2(t).

Figure 7: Time evolution of the parameter estimates â(t) and b̂(t).

5.2 Numerical results

The Runge-Kutta method is employed with the time step ∆t = 0.001. The parameters
of system (17) are selected as: a = 15 and b = 1. The initial values of the estimated

parameters are â(0) = 0 and b̂(0) = −4. We take the initial values of the master system
(17) as: x1(0) = 0, y1(0) = 0.5 and z1(0) = 0.5. We take the initial values of the
slave system (18) as: x2(0) = 0.5, y2(0) = 0 and z2(0) = 0. Figure 6 shows the anti-
synchronization of the identical systems (17) and (18). Figure 7 shows the time evolution

of the parameter estimates â(t) and b̂(t).
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6 Conclusion

In this paper, based on the Lyapunov stability theory and adaptive control theory, new
results of stabilization, synchronization and anti-synchronization of the new chaotic sys-
tem with a line equilibirum obtained from the Sprott case A are demonstrated. First,
we designed adaptive control laws to stabilize the new chaotic system with unknown pa-
rameters to its unstable equilibrium point at the origin. Then, the synchronization and
anti-synchronization of the new identical chaotic systems with unknown parameters are
also realized. The proposed adaptive control method is very effective to achieve chaos
control, synchronization and anti-synchronization. Numerical simulations are shown to
demonstrate the effectiveness of the controllers in this paper.
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