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Abstract: This paper aims to improve power quality issues following the IEEE 519
power quality standard recommendations. Indeed, the existing electrical distribution
system employs highly nonlinear loads, which raises concerns about the quality of
electrical energy. To solve these problems, an optimized PI controller and a bio-
inspired MPPT controller are applied to a Wind Energy Conversion System (WECS)
integrated with a Shunt Active Power Filter (SAPF). The MPPT controller is used for
extracting maximum power from the WECS using the Flying Squirrel Search (FSS)
algorithm. In order to overcome the problem of the dynamic performance of DC Link
voltage that occurs when using the traditional PI control, an adaptive PI controller
using the Sliding Mode Extremum-Seeking (SMES) algorithm is adopted. The SMES
algorithm is utilized here to reduce a selected cost function that brings the required
performance aspects. The dynamic performance of the SAPF is optimized using
the direct power control technique. Simulation results are provided to confirm the
effectiveness of the proposed controllers. They clearly demonstrate that the applied
control algorithms are effective in eliminating harmonic currents and injecting the
available active power of the wind turbine into the load and power grid.

Keywords: SAPF; THD; WECS; MPPT controller; FSS algorithm; adaptive PI
controller; SMES technique.
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1 Introduction

With substantial advancements in power electronics and microelectronics technology in
recent years, the propagation of nonlinear loads such as static power converters has
impaired the power quality in transmission systems energy distribution. Indeed, the
current waveform is not purely sinusoidal on the network mainly due to high harmonic
currents. This results in a reduced power factor, decreased efficiency, and decreased
system performance which is not allowed according to the recommendations of the IEEE
519 power quality standard [1–3].

Using passive LC has always been the simplest way to reduce current harmonics
and boost the power factor. However, there are numerous drawbacks to using a passive
filter [4, 5]. Because of the rapid advancement of modern power electronic technology,
earlier efforts have primarily focused on active filters rather than passive filters. One of
the most common active filters is the shunt active power filter (SAPF). It injects currents
that are equal and at the same time opposite to the harmonic components, allowing only
the fundamental components to flow through the point of common coupling (PCC) [5].

DC-link voltage directly affects the performance of shunt active power filters (SAPFs).
Maintaining voltage stability of the DC-link voltage has a direct impact on the system
output and is critical to ensuring the converters operate properly. In SAPFs, DC-link
voltage regulators are critical for mitigating fluctuations in instantaneous active power [6].

The shunt active power filter is powered by a DC voltage source or a capacitor which
is expensive [1]. In our case, we propose another free continuous source, which is the
wind energy. The Wind Energy Conservation System (WECS) based on the SAPF is
used to improve power quality. It ensures bidirectional energy flow while extracting
maximum energy under different wind speeds [4, 5]. As we know, the MPPT controller
can extract the maximum energy from the WECS by adjusting the duty cycle of the
boost converter. MPPT offers a variety of control strategies, such as perturbation and
observation (P&O), fuzzy logic, neural network, etc. [5]. However, there are only a few
publications on bio-inspired MPPT techniques for the WECS [7,8]. The most significant
advantage of bio-inspired MPPT algorithms is that they do not require mathematical
modeling of the process to improve control; their convergence speed is appreciable; and
they are robust to load variations [9, 10].

In this paper, two regulators are proposed to ensure the maintenance of the THD
of current sources according to the IEEE 519 standard in the SAPF connected to a
WECS. The first controller is the flying squirrel search optimization (FSSO) MPPT
controller. This MPPT technique is proposed to extract the maximum power from the
WECS. The second controller is the DC-link voltage controller based on an adaptive PI
controller which uses the sliding-mode extremum-seeking technique to enhance compen-
sation adaptability for fluctuation in wind speed.

This paper is structured as follows. Section 2 describes the system under considera-
tion. Control strategies of a shunt active power filter in a grid-integrated wind system
are presented in Section 3. Section 4 employs simulations to assess the efficacy of the
proposed controllers. Finally, the conclusions are presented in Section 5.

2 Configuration of the System

The structure of the shunt active power filter connected to the wind energy conversion
system (WECS) is presented in Figure 1. In this system, a permanent magnet syn-
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chronous generator (PMSG) wind turbine is coupled to the grid and a nonlinear load
via a shunt active power filter. The inverter converts power from the wind turbine in
addition to compensating for harmonic currents.

 

Figure 1: Block Diagram of the SAPF connected to the WECS.

2.1 Wind energy conversion system

As shown in Figure 1, the wind energy conversion system is formed up of a wind turbine
that transforms wind energy into mechanical energy. A gearbox connects the wind tur-
bine shaft to the shaft of the permanent magnet synchronous generator. The generator
generates nominal three-phase voltages and currents, which are then fed into a three-
phase rectifier. The resulting DC signal is amplified in a DC/DC boost converter [7].

2.2 Shunt active power filter

The operation of the SAPF is based on the fact that the harmonic currents are produced
equally in amplitude and in phase opposite to these harmonics generated by the non-
linear loads and circulating in the network. As a result, the SAPF current is generated in
such a way that the network current’s sinusoidal shape is retained. The typical structure
of a SAPF includes a converter, a DC-link capacitor and a filter inductor, as illustrated
in Figure 1 [1, 3].

3 Control Strategies of Shunt Active Power Filter in Grid-Integrated Wind
System

Figure 2 depicts the different control strategies adopted for the integrated wind system
with a grid-connected shunt active power filter. In this section, we will describe in detail
the MPPT flying squirrel search controller of the WECS and the adaptive PI controller
of the DC Link voltage control loop.

3.1 Flying Squirrel Search MPPT controller

3.1.1 Overview of the FSSO algorithm

The search process begins when flying squirrels start looking for food. During the warm
season (fall), squirrels glide from one tree to the next in quest of food. They shift their
location and explore different regions of the forest while doing so. They can achieve
their daily energy requirements more quickly on a diet of abundantly accessible acorns
since the climatic conditions are warm enough and hence consume the acorns promptly
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Figure 2: General control structure of the SAPF and the WECS.

after finding them. Once they have met their daily energy requirements, they begin
looking for winter food sources (hickory nuts). Storing hickory nuts will help them meet
their energy needs in difficult weather conditions, avoid costly foraging trips, and hence
boost their chances of survival. Indeed, in the winter, the lack of leaf cover in deciduous
woods increases the risk of predation, and as a result, they become less active but do not
hibernate. As the winter season ends, flying squirrels become active again (Figure 3).
This is a repetitive process that continues during a flying squirrel’s foraging for food [11].

 

Figure 3: Flying Squirrel foraging habit.

3.1.2 FSSO algorithm steps for global maximum power point tracking

The power output of the WECS is used as the objective (food source) in MPPT, while
the duty ratio ‘d ’ of the boost converter is used as the decision variable (position).

To minimize the convergence time to global maximum power point (GMPP), the ex-
isting FSSO algorithm is modified with the elimination of the presence of predators. The
various phases and processes of the FSSO algorithm to follow the GMPP are described
as follows [12].
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1. Initialization: Initially, the Nfs FS are positioned at different positions, which
represent different values of the duty cycle of the boost converter in a limited duty cycle
space solution :0< di < 0.5.

2. Fitness Assessment: The boost converter acts sequentially with each duty cycle
(i.e., the position of each FS) in this step. The quality of the food source is determined by
the instantaneous wind power Pwind(d) for each duty cycle ‘d ’. This phase is performed
for all duty cycles, and the MPPT objective fitness function is f(d) = Max(Pwind(d)).

3. Declaration and sorting: The hickory tree is declared to have the duty cycle
with the maximum wind power output. The next best FS position is supposed to be on
an acorn tree.The remaining FSs are presumed to be on normal trees.

4. Position update: The duty cycle update is performed after the seasonal mon-
itoring condition has been verified. Duty cycles are updated using (a) if (Sk

C < Smin),
other duty cycles are updated using (b). Following that, the fitness is assessed.

(a). Seasonal monitoring condition: Introducing seasonal monitoring conditions
ensures that the algorithm does not get stuck in the LMPP. The seasonal constant (SC)
and its minimum value (Smin) for a one-dimensional space are calculated as follows:

Sk
C = |dkat − dht|, (1)

Smin =
10e−6

(365)k/(km/2.5)
, (2)

where dht and dat represent the squirrel position at the hickory and acorn trees, respec-
tively; k is the current iteration number and km is the maximum number of iterations
allowed. The duty ratios (FSs on normal trees) NTFS are relocated using the Lévy
distribution for better search space exploration

dk+1
nt = dknt + s, (3)

where dnt represents the squirrel position at the normal tree and the step length s using
the Lévy distribution is presented as

s ≈ K

(
u

|v|1/β

)
(dht − dnt), (4)

where the Lévy index β and step coefficient K are taken as 1.5 and 1.25, respectively,
and u and v are determined from the normal distribution curve as

u ≈ N(0, σ2
u) v ≈ N(0, σ2

v) (5)

if Γ denotes the integral gamma function, then the variables σu and σv are defined as

σu =

Γ(1 + β)sin(πβ/2)

Γ
(

1+β
2

)
β(2)(

β−1
2 )

1/β

and σv = 1, (6)

where Γ(n) = (n− 1)!.
(b). Routine update: The squirrel on the hickory tree is not allowed to move. The

squirrel on the acorn tree is making its way toward the hickory tree. Some squirrels from
normal trees move toward the hickory tree, whereas the others move toward the acorn
tree. The corresponding duty cycles are updated according to the following equations:

dk+1
at = dkat + gdGc(d

K
ht − dkat), (7)
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dk+1
nt = dknt + gdGc(d

K
ht − dknt), (8)

dk+1
nt = dknt + gdGc(d

K
at − dknt), (9)

where Gc and gd represent the gliding constant and gliding distance, respectively. The
value of Gc is taken as 0.0019. The gliding distance gd is expressed as{

gd =
hg

sf tanϕ
,

tanϕ = FD

FL
,

(10)

where the value of the height loss after gliding (hg ) is taken to be 0.01m; the scaling
factor sf is selected as 0.18. FD and FL are the drag and the lift forces, respectively,
which are calculated as {

FD = 1
2ρV

2SCD,
FL = 1

2ρV
2SCL,

(11)

where ρ is the air density, V is the velocity of the squirrel, and S is the surface area of
the body. The drag coefficient CD is taken as 0.006 and the lift coefficient CL is selected
as 0.007.

5. Convergence determination: If the change in the position of all FSs is less
than a threshold, or if the maximum number of iterations is achieved, the algorithm
optimization is ended, and the duty cycle at which the boost converter works while
tracking GMPP is selected as the output.

6. Re-initialization: The MPPT is a time variation optimization algorithm in
which the fitness value varies with the weather. In such circumstances, the FSs positions
(duty ratios) are re-initialized to look for the new GMPP. In this paper, the duty cycles
are reinitialized after detecting the change in wind power through the following constraint
equation:

P k+1
wind − P k

wind

P k+1
wind

≥ ∆P (%). (12)

3.2 DC Link voltage PI controller tuned using sliding mode extremum seek-
ing algorithm

The DC Link voltage controller is synthesized in this section. In the DC Link voltage
control loop, the suggested adaptive PI controller is employed to reduce DC capacitor
fluctuation voltages. As shown in Figure 4, the optimized PI controller is used to maintain
the DC Link voltage at a specified value using the error between the measured DC Link
voltage and its reference to control the output active power of the inverter. The proposed
sliding-mode extremum seeking (SMES) technique is employed to adjust the parameters
of the PI controller with the aim of minimizing a specified cost function [13,14].

The block diagram for the overall control loop with the proposed sliding-mode ex-
tremum seeking PI controller is shown in Figure 4. The cost function is utilized to
quantify the effectiveness of the PI controller.

In general, the Integrated Squared Error (ISE) is used as a cost function [13]:

J(θ) =
1

T

∫ T

0

[e(t, θ)]2dt (13)

and θ = [kp ki]
T contains the PI parameters. The SMES algorithm updates the PI

controller parameters θ to minimize the cost function J(θ).
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Figure 4: Block diagram for the overall control loop with the proposed multivariable sliding-
mode extremum seeking PI controller.

The proposed sliding-mode extremum seeking algorithm applies two switching func-
tions

σ = [σ1 σ2] (14)

to determinate the gains kp and ki of the PI controller. Each switching function is defined
as

σi = J(θ))− pit, (15)

pi > 0 (i = 1, 2) represents the slope of the i-th sliding surface. The vector of driving
signals is determined as

p = [p1 p2]. (16)

According to Figure 4, gi is an increasing reference function defined as ġi = pi. The
parameter θi is considered as the optimal control law. It is designed to satisfy

θ̇ = Ksesisgn(sin(πσi/βi), (17)

where Ksesi and βi are positive.

The proposed scheme adopts a minimal search method with a periodic switching func-
tion since the performance function is not known. This technique adapts the parameters
of the PI controller to achieve the minimum point of the cost function and this by forcing
the function J(θ) to rest on the increasing sliding surface vector.

4 Simulations Results

A MATLAB/Simulink model merging SAPF and WECS has been developed to vali-
date the suggested control strategies under non-linear load conditions and wind speed
variation.

We have adressed two cases: with and without the WECS. The WECS is not con-
nected in the first case. Figure 5 depicts the source voltages, source current Ias, filter
current Iaf , and load current IaL before and after SAPF compensation.

The source voltage waveform is sinusoidal and balanced, as seen in Figure 5. Before
filtering, the source current waveform was distorted, but once the active filter was applied
to the configuration (t = 0.25 s), the waveform immediately became sinusoidal.
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Figure 5: Source voltages, the source current Ias, the filter current Iaf , and the load current
IaL before and after compensation by the shunt APF.

 

a. THD 
 

b.Current Ias ans IaL 

Figure 6: a. Temporal pattern of the THD without and with SAPF of the source current Ias.
b. Source current Ias, and the load current IaL with SAPF.

As shown in Figure 6a, the THD (Total Harmonic Distortion) decreases significantly
after activating the filter on the electrical network, confirming the high quality of the
filtering. Figure 6b shows that the source current meets the load requirement (IaL).

In the second case, the WECS is connected to the shunt active power filter. We
employed two wind speed profiles for the wind turbine, one at 5 m/s and the other at
9m/s. For both wind speed profiles, the form of the source current is clearly sinusoidal
(Figure 7).

 

a. Wind speed 5 m/s 

 

b. Wind speed 9 m/s 

Figure 7: The source voltages, the source current Ias, the filter current Iaf , and the load
current IaL for both wind speed.

According to Figure 8a, the charging current is supplied by the two sources (WECS
and network); however, as illustrated in Figure 8b, part of the wind energy satisfies the
load demand and the additional energy is injected into the power grid, which is justified
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by the fact that there is a phase π between Vas and Ias (Figure 8b). In addition, the
THD (Total Harmonic Distortion) complies with IEEE 519 standard, as seen in Figure
9.

 

a. Wind speed 5 m/s 

 

b. Wind speed 9 m/s 

Figure 8: The source current Ias and the load current IaL for both wind speeds.

 

a. Wind speed 5 m/s 

 

b. Wind speed 9 m/s 

Figure 9: Temporal pattern of the THD for both wind speeds.

 

 

Figure 10: Dynamic performance of the classic DC Link PI controller and the adaptive PI
controller with their associated THD.

As demonstrated in Figure 10, the adaptive PI controller considerably improves the
dynamic performance of the DC Link voltage regulator as well as the THD of the source
currents.
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5 Conclusion

This paper focuses on the application of two regulators to control an active shunt power
filter in order to improve the compensation of current harmonics injected by nonlinear
charges. The first is an MPPT controller based on the flying squirrel search algorithm.
The advantage of the proposed method is that it requires only the instantaneous cur-
rent and voltage generated by the wind turbine to generate the duty cycle of the boost
controller. The second regulator is an adaptive PI controller based on the sliding mode
extreme search technique. It is used to control the dynamic performance of the DC
Link voltage regulator. The proposed optimizer modifies the PI gains by minimizing a
cost function based on the feedback error term. The resulting PI controller can exhibit
fast and accurate tracking response as well as excellent disturbance rejection. The two
proposed controllers are considered model-free algorithms. The three-phase inverter of
the SAPS is controlled using a Direct Power Control (DPC) technique. According to the
simulation results, the proposed system works efficiently. Indeed, the combination of the
proposed control strategies makes it possible to reduce current harmonics according to
the standard recommendations of the electrical energy quality (IEEE519) while injecting
all the available power of the PMSG into the load and, in certain cases, into the power
grid, particularly when the wind speed increases.
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Abstract: The hospitality industry continues to grow globally. More and more
people are traveling for various purposes such as leisure, business, or special events.
This growth has created a huge opportunity for hotels to increase revenue and profits.
Due to the growth of the industry, competition among hotels has also intensified. So,
this condition encourages hotels to look for efficient ways of managing hotel resources.
One way to efficiently manage a hotel is by forecasting the hotel occupancy. The
study in this paper is aimed to optimize hotel management through the application
of occupancy forecasting by the SVM and linear regression methods. The results
indicated that the linear regression method had a higher accuracy and a smaller error
than the SNM for two cases. When compared, as a whole, using linear regression in
case 2 had the smallest RMSE value, in which the difference in RMSE by the linear
regression method is around 0.3 -0.9 smaller than that by the SVM method.
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1 Introduction

Hospitality industry continues to grow globally. More and more people are traveling for
various purposes such as leisure, business, or special events. This growth has created
a huge opportunity for hotels to increase revenues and profits. Due to the growth of
the industry, competition among hotels has also intensified [1]. Hotels must compete to
attract the attention of potential customers and retain existing guests. This encourages
hotels to find innovative ways to improve their services and operational efficiency. On
the other hand, hotel operating costs, including employee salaries, raw materials, energy,
and property maintenance, continue to increase. Such condition compels them to find
any possible efficient ways of managing hotel resources.

One way to efficiently manage a hotel is by forecasting the hotel occupancy [2]. Before
the 1980s, forecasting was still seen as a technical activity in the western world. While
in the 1990s, the same view was still felt among Indonesian business people and those in
other developing countries. Whereas in its place of origin (the United States), the scope
of forecasting has grown rapidly beyond its technical nature, encompassing an extensive
use in planning, decision-making, and other managerial disciplines [3].

The main purpose of the forecasting process in general is to make estimates or predic-
tions about future events or data based on available historical information. The function
of forecasting is among others to assist organizations in a long-term and short-term strate-
gic planning by providing a view of future demand, sales, production, or other needs and
to support the development of business strategies by providing a better understanding of
market trends, customer behavior, and several other business development and research
studies used forecast methods to help predict the desired figures or data. Several publi-
cations related to forecasting were applied in the health sector for forecasting the spread
of Dengue Fever (DHF) [4]. Forecasting was also used to detect coffee aroma [5]. Fore-
casting researches using the Backpropagation Neural Network [6, 7], ANFIS and Linear
Support Vector Machine methods were also applied for forecasting in the economic [8,9]
and tourism fields to support government policies related to tourism development.

Some reliable forecasting methods include Support Vector Machine (SVM) and linear
regression. SVM is a machine learning method which can be used to analyze data and sort
it into one of two categories. SVM was originally developed for classification problems.
It can be used to separate data into two classes. However, SVM can also be applied to
regression problems whose goal is to predict numerical values. In the context of data
forecasting, SVM is used for both classification (e.g., predicting whether an event will
occur or not) and regression (e.g., predicting stock prices). Linear regression analysis
is an approach for modeling the relationship between one dependent variable and one
independent variable. The main purpose of the Linear Regression method is to model
the linear relationship between one or more independent variables (also referred to as
predictor variables or features) and the dependent variable (also referred to as the target
variable) so as to make predictions or estimates. And, in this paper, it is for optimizing
hotel management through the application of occupancy forecasting by the SVM and
linear regression methods.

2 Occupancy Data of Hotel W

The following tables present the occupancy data of Hotel W.
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2017 2018 2019
Room Occ Room Room Occ Room Room Occ Room

Available (%) Sold Available (%) Sold Available (%) Sold

Jan 2,201 27.1% 596 2,201 50.3% 1,108
Feb 1,988 32.3% 643 1,988 76.3% 1,516
Mar 2,201 51.7% 1,139 2,201 82.8% 1,822
Apr 2,130 43.0% 916 2,130 71.3% 1,518
May 2,201 52.8% 1,162 2,201 74.6% 1,641
Jun 2,130 40.7% 866 2,130 72.0% 1,533
Jul 2,201 41.7% 918 2,201 63.1% 1,389
Aug 2,201 57.5% 1,265 2,201 69.8% 1,536
Sep 2,130 49.4% 1,052 2,130 68.9% 1,468
Oct 1,988 36.8% 732 2,201 58.6% 1,290 2,201 68.3% 1,504
Nov 2,130 53.1% 1,132 2,130 53.4% 1,137 2,130 66.5% 1,416
Dec 2,201 52.9% 1,164 2,201 47.7% 1,050 2,201 66.4% 1,461

Table 1: The occupancy data of Hotel W for 2017-2019.

2020 2021 2022
Room Occ Room Room Occ Room Room Occ Room

Available (%) Sold Available (%) Sold Available (%) Sold

Jan 2,201 55.8% 1,229 2,201 37.3% 820 2,201 31.2% 687
Feb 2,059 65.4% 1,346 1,988 36.6% 728 1,988 35.0% 695
Mar 2,201 46.5% 1,023 2,201 39.6% 871 2,201 43.0% 947
Apr 2,130 9.9% 210 2,130 41.0% 874 2,130 37.5% 798
May 2,201 0.0% 0 2,201 37.6% 827 2,201 47.2% 1,038
Jun 2,130 12.2% 259 2,130 44.8% 955 2,130 34.8% 741
Jul 2,201 28.7% 632 2,201 36.2% 797 2,201 53.2% 1,170
Aug 2,201 25.4% 560 2,201 38.0% 836 2,201 48.0% 1,056
Sep 2,130 24.1% 514 2,130 46.9% 1,000 2,130 44.0% 938
Oct 2,201 27.1% 597 2,201 48.6% 1,070 2,201 52.9% 1,165
Nov 2,130 33.4% 711 2,219 34.1% 756 2,130 52.5% 1,118
Dec 2,201 45.0% 990 2,201 39.5% 870 2,201 61.4% 1,352

Table 2: The occupancy data of Hotel W for 2020-2022.

2023
Room Occ Room

Available (%) Sold

Jan 2,201 58.4% 1,286
Feb 1,988 52.2% 1,038
Mar 2,201 43.0% 947
Apr 2,130 60.1% 1,280
May 2,201 52.6% 1,158

Table 3: The occupancy data of Hotel W for 2023.

3 Algorithm of Support Vector Machine

SVM was invented in [11]. Since then, SVMs have been used in text, hypertext, and
image classification. SVMs can work with handwritten characters, and the algorithm
has been used in biology labs to perform tasks such as protein sorting. SVMs work to
find the best hyperplane or decision boundary function to separate two or more classes
in the input space. The hyperplane can be a line in two dimensions and can be a flat
plane in multiple planes.

The algorithm of SVM is shown in Figure 2.

3.1 Linear Regression method

Simple linear regression analysis is an approach method for modeling the relationship
between one dependent variable and one independent variable. In regression, the inde-
pendent variable explains the dependent variable. In a simple regression analysis, the
relationship between variables is linear, in which the changes in the variable X are fol-
lowed by those in the variable Y in a fixed manner. While in a non-linear relationship, the
changes in the variable X are not followed by those in the variable Y proportionally [10].

A simple linear regression analysis model is

Y = a+ bX + ε, (1)
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Figure 1: Support Vector Machine Model [1].

Figure 2: Algorithm of Support Vector Machine.

where Y is the predicted value, a is the constant, b is the regression coefficient, X is the
independent variable, ε is the residual value.

The value a = ΣY−b(ΣX)
n , b = n(ΣXY )−(ΣX)(ΣY )

n(ΣX2)−(ΣX)2 .
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4 Simulation Results

4.1 Implementation of SVM and linear regression algorithms on data

Below is the implementation of the SVM and linear regression algorithms for hotel oc-
cupancy data in the RapidMiner software.

Figure 3: Implementation of the SVM and linear regression algorithms for hotel occupancy.

4.2 Simulation results

In the simulation, this study used two algorithms, the SVM and linear regression algo-
rithms, the results of which were compared for several types of training data and testing
data. There were 2 types of training and testing data grouping cases, that is, case 1
with 75% of training data and 25% of testing data and case 2 (the second case) with
85% of training data and 15% of testing data. After modeling in the RapidMiner soft-
ware, using Hotel W occupancy data, the SVM and linear regression methods were then
implemented, resulting in Figures 4 and 5.

Figure 4 is an explanation related to case 1 with 70% of training data and 30% of
testing data, indicating that the H-infinity forecasting results by the SVM method have
a bigger error than those by the linear regression method because the simulation results
graph shows that the SVM method still has a difference from the real data. It can be
seen in Table 4 that the RMSE produced by the SVM method is 0.946 and that by the
linear regression method is 0.005. Thus, the linear regression method has a smaller error
of about 0.9.

Figure 5 is an explanation related to case 2 with 85% of training data and 15% of
testing data. It shows that the forecasting results by the SVM method have a bigger
error than those by the linear regression method because the simulation results graph
shows that the SVM method still has a difference from the real data. It can be seen in
Table 4 that the RMSE produced by the SVM method is 0.371 and that by the linear
regression method is 0.004. Thus, the linear regression method has a smaller error of
about 0.3.

Based on Table 4, it can be seen that the linear regression method has a higher
accuracy and a smaller error than the SVM for both cases. When compared, as a whole,
the linear regression method for case 2 has the smallest RMSE value. When considering
the SVM method alone, case 2 has the smallest RMSE value because the training data
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Figure 4: Hotel Y occupancy forecast simulation results with 70% of training data and 30% of
testing data.

Figure 5: Simulation results of Hotel Y occupancy forecast with 80% of training data and 20%
of testing data.

is larger than that in case 1. Likewise, the linear regression method in case 2 has a
smaller RMSE value than that in case 1. The Linear Regression method is often used in
various fields such as economics, social science, natural science, finance, and engineering.
However, it is important to remember that the Linear Regression has certain assumptions
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SVM Linear Regression
75% 85% 75% 85%

Training Training Training Training
data and data and data and data and

30% Testing 15% Testing 30% Testing 15% Testing
data data data data

RMSE of 0.946 0.371 0.005 0.004
Forecasting results

Table 4: Comparison of RMSE generated by the SVM and linear regression methods.

to be met for valid results, for example, the assumption that the relationship between the
variables is linear and normally distributed. At the same time, the main advantage of
the SVM is its ability to handle non-linear data, in this case, using hotel occupancy data
which is classified as linear data. So, the linear regression method has a higher accuracy
than the SVM method.

5 Conclusion

Based on the results of the discussion above and the forecasting results graph above, it
can be concluded that the linear regression method has a higher accuracy and a smaller
error than the SNM for two cases. When compared, as a whole, the linear regression in
case 2 has the smallest RMSE value. When considering the SVM method alone, in case
2, it has the smallest RMSE value because the training data is larger than that in case
1. Likewise, the linear regression for case 2 has a smaller RMSE value than it has for
case 1. The Linear Regression is often used in various fields such as economics, social
science, natural science, finance, and engineering. However, it is important to remember
that Linear Regression has certain assumptions to be met for the results to be valid,
for example, the assumption that the relationship between the variables is linear and
normally distributed. At the same time, the main advantage of the SVM is its ability
to handle non-linear data, in this case, using hotel occupancy data which are classified
as linear data, therefore the linear regression method is more accurate than the SVM.
However, the SVM method is very reliable for forecasting hotel occupancy.
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Abstract: In this paper, we employ a direct collocation method using Taylor poly-
nomials to estimate the solution of linear Volterra integral equations with two con-
stant delays within the polynomial spline S

(−1)
m−1(ΠN ). This approach is well-suited

for capturing the dynamics inherent in age and size-structured population models
(Gurtin–MacCamy model), epidemiological models, chemical engineering processes
(heat equation with delay in control and in state) and control theory (Roesser model).
We derive an iterative formula to compute the approximate solution and prove its
convergence. We confirm the validity and efficacy of this convergent algorithm by
presenting numerical results.

Keywords: neutral double delay Volterra integral equation; collocation method;
Taylor polynomials; error analysis.
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1 Introduction

Delay Volterra integral equations pose a significant mathematical challenge across various
scientific and engineering domains, encompassing biology [1], epidemiology [2,3], chemical
engineering [4], control theory [5], physics [6] and social sciences [7]. In [8,9], double delay
Volterra integral equations (DDVIEs), which incorporate memory and delayed effects,
apply to model age-structured populations, where two distinct age groups within a single
population are considered. The dual delays in equation (1) correspond to the time
required for maturation and reaching the maximum age, rendering analytical solutions
impractical for many problems. As a result, developing efficient and precise numerical

∗ Corresponding author: mailto:hafida.laib@gmail.com

© 2024 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua236

mailto: hafida.laib@gmail.com
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (3) (2024) 236–245 237

methods for solving such equations has become a significant area of research in recent
years.

The study of DDVIEs is driven by their widespread applicability, addressing prob-
lems that involve multiple delays and intricate memory effects. Including two distinct
delays introduces additional complexity to the equations, making their numerical analysis
intellectually stimulating and practically crucial.

The numerical investigation of equation (1) has only recently garnered attention, and
the existing specialized literature on this subject still needs to be expanded. A numerical
method developed to resolve equation (1) is elaborated in [10].

This research explores the Taylor collocation method [11] applied to the solution of
linear DDVIEs. The method leverages the versatility of Taylor polynomials and the
precision of collocation schemes, providing an advantageous approach for addressing the
challenges posed by this class of integral equations.

We consider the linear Volterra integral equation with two constant delays τ1, τ2 of
the form

x(t) = g(t) + x(t− τ1) + x(t− τ2) +

∫ t−τ1

t−τ2

K(t, s)x(s)ds (1)

for t ∈ [τ2, T ] and x(t) = ϕ(t) for t ∈ [0, τ2]. In the following, we assume that the given
functions g,K and ϕ are sufficiently smooth. Furthermore, we suppose that

ϕ(τ2) = g(τ2) + ϕ(τ2 − τ1) + ϕ(0) +

∫ τ2−τ1

0

K(τ2, s)ϕ(s)ds.

Bellour et al. [12] provide a proof regarding the existence and uniqueness of results for
equation (1).

The structure of this paper is as follows. Section 2 presents a description of the Taylor
collocation method for our problem (1). Section 3 introduces the analysis of convergence.
Subsequently, in Section 4, we present the results obtained using our proposed approach.
Finally, in Section 5, we discuss the implications of our work and suggest potential
avenues for the future.

2 Description of the Method

We suppose that T = (r + 1)τ2, where r ∈ {1, 2, 3, ...}. Let ΠN be a uniform partition
of the interval I = [τ2, T ] defined by tin = (i+ 1)τ2 + nh, n = 0, 1, .., N, i = 0, 1, .., r− 1,
where the step size is given by h = tin+1 − tin, and assume that h = τ1

N1
= τ2

N with

N and N1 being positive and integer. Define the subintervals σi
n = [tin; t

i
n+1), n =

0, 1, .., N − 1, i = 0, 1, .., r− 2 and σr−1
N−1 = [tr−1

N−1, t
r−1
N ]. Moreover, denote by πm the set

of all real polynomials of degree not exceeding m. We define the real polynomial spline
space of degree m− 1 as follows:

S
(−1)
m−1(ΠN ) = {u(I,R) : ui

n = u|σi
n
∈ πm−1, n = 0, ..., N − 1, i = 0, 1, .., r − 1}.

This is the space of piecewise polynomials of degree (at most) m − 1. Its dimension is
rNm, i.e., the same as the total number of the coefficients of the polynomials ui

n, n =
0, ..., N − 1, i = 0, 1, .., r − 1. To find these coefficients, we use the Taylor polynomial on
each subinterval.
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First, to approximate x by u0
n (n ∈ {0, 1, ..., N − 1}) on the interval σ0

n, x must be
approximated by u0

k (0 ≤ k < n) on each interval σ0
k so that

u0
n(t) =

m−1∑
j=0

û
(j)
n,0(t

0
n)

j!
(t− t0n)

j ; t ∈ σ0
n, (2)

where û0,0(τ2) = x(τ2) and ûn,0 is the exact solution of the integral equations

ûn,0(t) = g(t) + ϕ(t− τ1) + ϕ(t− τ2) +

∫ t−τ1

t−τ2

K(t, s)ϕ(s)ds, n ∈ {0, ..., N1 − 1}, (3)

and

ûn,0(t) = g(t) + u0
n−N1

(t− τ1) + ϕ(t− τ2) +

∫ τ2

t−τ2

K(t, s)ϕ(s)ds

+

n−N1−1∑
i=0

∫ t0i+1

t0i

K(t, s)u0
i (s)ds+

∫ t−τ1

t0n−τ1

K(t, s)u0
n−N1

(s)ds, n ∈ {N1, ..., N − 1}.
(4)

Now, for all j = 1, ...,m − 1, the formula for computing the values of the coefficients

û
(j)
n,0(t

0
n) can be obtained by differentiating (3) and (4), respectively, we get the following

formulas:

û
(j)
n,0(t

0
n) = g(j)(t0n) + ϕ(j)(t0n − τ1) + ϕ(j)(t0n − τ2)

+

(∫ t−τ1

t−τ2

K(t, s)ϕ(s)ds

)(j)

(t0n), n ∈ {0, ..., N1 − 1},

and

û
(j)
n,0(t

0
n) = g(j)(t0n) + û

(j)
n−N1,0

(t0n−N1
) + ϕ(j)(t0n − τ2) +

(∫ τ2

t−τ2

K(t, s)ϕ(s)ds

)(j)

(t0n)

+

n−N1−1∑
i=0

m−1∑
l=0

û
(l)
i,0(t

0
i )

l!

∫ t0i+1

t0i

∂
(j)
1 K(t0n, s)(s− t0i )

lds

+

j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n−N1,0

(t0n−N1
)[∂

(j−1−i)
1 K(t, t− τ1)]

(i−l)(t0n), n ∈ {N1, ..., N − 1}.

Second, for x to be approximated by up
n (n ∈ {0, 1, ..., N − 1} and p ∈ {1, 2, ..., r − 1} )

on the interval σp
n, x must be approximated by uj

k (0 ≤ k < n and 0 ≤ j ≤ p) on each

interval σj
k so that

up
n(t) =

m−1∑
j=0

û
(j)
n,p(tpn)

j!
(t− tpn)

j ; t ∈ σp
n, (5)

where ûn,p is the exact solution of the integral equations

ûn,p(t) = g(t) + up−1
N−N1+n(t− τ1) + up−1

n (t− τ2)

+

∫ tp−1
n+1

t−τ2

K(t, s)up−1
n (s)ds+

N−N1+n−1∑
d=n+1

∫ tp−1
d+1

tp−1
d

K(t, s)up−1
d (s)ds

+

∫ t−τ1

tpn−τ1

K(t, s)up−1
N−N1+n(s)ds, n ∈ {0, ..., N1 − 1},

(6)
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and

ûn,p(t) = g(t) + up
n−N1

(t− τ1) + up−1
n (t− τ2) +

∫ tp−1
n+1

t−τ2

K(t, s)up−1
n (s)ds

+

N−1∑
d=n+1

∫ tp−1
d+1

tp−1
d

K(t, s)up−1
d (s)ds+

n−N1−1∑
i=0

∫ tpi+1

tpi

K(t, s)up
i (s)ds

+

∫ t−τ1

tpn−τ1

K(t, s)up
n−N1

(s)ds, n ∈ {N1, ..., N − 1}.

(7)

The coefficients û
(j)
n,p(tpn) are given by the following formulas. For n ∈ {0, ..., N1 − 1},

û(j)
n,p(t

p
n) = g(j)(tpn) + û

(j)
N−N1+n,p−1(t

p−1
N−N1+n) + û

(j)
n,p−1(t

p−1
n )

−
j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n,p−1(t

p−1
n )[∂

(j−1−i)
1 K(t, t− τ2)]

(i−l)(tpn)

+

m−1∑
l=0

û
(l)
n,p−1(t

p−1
n )

l!

∫ tp−1
n+1

tpn−τ2

∂
(j)
1 K(tpn, s)(s− tp−1

n )lds

+

N−N1+n−1∑
d=n+1

m−1∑
l=0

û
(l)
d,p−1(t

p−1
d )

l!

∫ tp−1
d+1

tp−1
d

∂
(j)
1 K(tpn, s)(s− tp−1

d )lds

+

j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
N−N1+n,p−1(t

p−1
N−N1+n)[∂

(j−1−i)
1 K(t, t− τ1)]

(i−l)(tpn),

and for n ∈ {N1, ..., N − 1},

û(j)
n,p(t

p
n) = g(j)(tpn) + û

(j)
n−N1,p

(tpn−N1
) + û

(j)
n,p−1(t

p−1
n )

−
j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n,p−1(t

p−1
n )[∂

(j−1−i)
1 K(t, t− τ2)]

(i−l)(tpn)

+

m−1∑
l=0

û
(l)
n,p−1(t

p−1
n )

l!

∫ tp−1
n+1

tpn−τ2

∂
(j)
1 K(tpn, s)(s− tp−1

n )lds

+

N−1∑
d=n+1

m−1∑
l=0

û
(l)
d,p−1(t

p−1
d )

l!

∫ tp−1
d+1

tp−1
d

∂
(j)
1 K(tpn, s)(s− tp−1

d )lds

+

n−N1−1∑
i=0

m−1∑
l=0

û
(l)
i,p(t

p
i )

l!

∫ tpi+1

tpi

∂
(j)
1 K(tpn, s)(s− tpi )

lds

+

j−1∑
i=0

i∑
l=0

(
i

l

)
û
(l)
n−N1,p

(tpn−N1
)[∂

(j−1−i)
1 K(t, t− τ1)]

(i−l)(tpn).

3 Analysis of Convergence

The following lemmas will be used in this section.
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Lemma 3.1 (Discrete Gronwall-type inequality [13]) Let {kj}nj=0 be a given nonneg-

ative sequence, and the sequence {εn} satisfy εn ≤ p0 +
∑n−1

i=0 kiεi, n ≥ 0,

with p0 ≥ 0. Then εn can be bounded by εn ≤ p0exp
(∑n−1

j=0 kj

)
, n ≥ 0.

Lemma 3.2 Let g and K be m times continuously differentiable on their respective
domains. Then there exists a positive number α(m) such that for all n = 0, 1, ..., N − 1,

p = 0, 1, ..., r − 1, and j = 0, ...,m, we have ∥ û
(j)
n,p ∥L∞(σp

n)≤ α(m), where û0,0(t) = x(t)
for t ∈ σ0

0.

Proof. The proof is split into two steps.

Claim 1. There exists a positive constant α1(m) such that ∥ û
(j)
n,0 ∥L∞(σp

n)≤ α1(m) for

all n = 0, 1, ..., N − 1, j = 0, ...,m. Let ajn =∥ û
(j)
n,0 ∥L∞(σ0

n)
, then, for j = 0, ...,m,

aj0 ≤ max
{
∥ x(j) ∥L∞(σ0

0)
, j = 0, ...,m

}
= α1

1(m). (8)

Now, for all n = 1, 2, ..., N − 1 and j = 1, ...,m, by differentiating (3) and (4) j times, we
obtain

ajn ≤ c+ d21h

m−1∑
l=j

aln−N1
+ hd11

n−N1∑
i=0

m−1∑
l=0

ali +m2hd21

m−1∑
l=0

aln−1−N1
+ hd11

m−1∑
l=0

aln−N1

≤ c+
(
d21(1 +m2) + d11

)︸ ︷︷ ︸
d1

h

m−1∑
l=0

aln−N1
+ hd11

n−1∑
i=0

m−1∑
l=0

ali,

(9)

where the constants c, d11 and d21 are positive and independent of N .
On the other hand, if j = 0, then, from (3) and (4), we have

a0n ≤ c+ (d11 + d21)h

m−1∑
l=0

aln−N1
+ hd11

n−1∑
i=0

m−1∑
l=0

ali. (10)

From (9) and (10), for each fixed n ≥ 1, we consider the sequence ajn for j = 0, ....,m,

ajn ≤ c+ 2hd1

n−1∑
i=0

m−1∑
l=0

ali. (11)

Consider the sequence zn =
∑m

j=0 a
j
n for n ≥ 0. Then, from (11), we have

zn ≤ (m+ 1)c︸ ︷︷ ︸
c1

+h 2(m+ 1)d1︸ ︷︷ ︸
d2

n−1∑
i=0

zi. (12)

Moreover, from (8), we obtain

z0 ≤ (m+ 1)α1
1(m) = c2. (13)

Then, from (12) and (13), we have for all n = 0, 1, ..., N − 1,

zn ≤ c3 + hd2

n−1∑
i=0

zi
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such that c3 = max(c1, c2). Using Lemma 3.1, for all n = 0, 1, ..., N − 1, we obtain

zn ≤ c3exp(τ2d2)︸ ︷︷ ︸
α1(m)

.

Hence, the first claim is true.

Claim 2. There exists a positive constant α2(m) such that ∥ û
(j)
n,p ∥L∞(σp

n)≤ α2(m) for
all n = 0, 1, ..., N − 1, j = 0, ...,m and p = 1, 2, ..., r − 1.

Let a
(j)
n,p =∥ û

(j)
n,p ∥L∞(σp

n) and εp = max
{
aji,p, j = 0, ..,m, i = 0, ..., N − 1

}
for p =

1, ..., r − 1. Similarly to Claim 1, by differentiating (6) and (7) j times, we obtain for
all n = 1, ..., N − 1,

ajn,p ≤ c4 + b1εp−1 + d3h

n−1∑
i=0

m−1∑
l=0

ali,p,

where c4, b1, and d3 are positive numbers. Consider the sequence yn =
∑m

j=0 a
j
n,p,

n = 0, 1, ..., N − 1, using Lemma 3.1, for all n = 0, ..., N − 1, we obtain

yn ≤ ((m+ 1)c4 + (m+ 1)b1εp−1) exp

n−1∑
i=0

(m+ 1)d4h︸ ︷︷ ︸
d4

≤ (m+ 1)c4exp (d4)︸ ︷︷ ︸
c5

+(m+ 1)b1exp (d4)︸ ︷︷ ︸
b2

εp−1

≤ c6 + b3α1(m)︸ ︷︷ ︸
α2(m)

,

where c6 and b3 are positive numbers.
Hence, the proof of Lemma 3.2 is completed by setting α(m) = max{α1(m), α2(m)}.

The following theorem gives the convergence of the presented method.

Theorem 3.1 Let g and K be m times continuously differentiable on their respective

domains. Then (2) and (5) define a unique approximation u ∈ S
(−1)
m−1(ΠN ), and the

resulting error function e = x−u satisfies ∥ e ∥L(l)∞≤ Chm, provided that h is sufficiently
small, where C is a finite constant independent of h.

Proof. The proof is split into two steps.
Claim 1. There exists a constant C1 independent of h such that ∥ e0 ∥L∞(σ0)≤ C1h

m,
where the error e0 = e |σ0 is defined on σ0

n by e0(t) = e0n(t) =| x(t) − u0
n(t) | for all

n = 0, 1, ..., N − 1. Let t ∈ σ0
0 . Then we have for sufficiently small h,

| e00(t) |=| x(t)− u0
0(t) |≤

∥ xm ∥L∞(σ0
0)

m!
hm ≤ α(m)

m!
hm.

From (3) and (4), for n = 1, ..., N − 1, we have

∥ x− ûn,0 ∥L∞(σ0
n)
≤ hk

n−1∑
i=0

∥ e0i ∥L∞(σ0
i )

+ ∥ e0n−N1
∥L∞(σ0

n−N1
),
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where k =∥ k ∥L∞(I), therefore, by Lemma 3.2,

∥ e0n ∥L∞(σ0
n)

≤∥ x− ûn,0 ∥L∞(σ0
n)

+ ∥ ûn,0 − u0
n ∥L∞(σ0

n)

≤ hk

n−1∑
i=0

∥ e0i ∥L∞(σ0
i )

+ ∥ e0n−N1
∥L∞(σ0

n−N1
) +

α(m)

m!
hm

≤ hk

n−1∑
i=0

∥ e0i ∥L∞(σ0
i )

+2
α(m)

m!
hm.

Hence, by Lemma 3.1, for all n = 1, ..., N1 − 1,

∥ e0n ∥L∞(σ0
n)

≤
(
2α(m)

m!
exp (τ2k)

)
︸ ︷︷ ︸

C1
1

hm,

by taking C1 = max{α(m)
m! , C1

1}, Claim 1 is true.
Claim 2. There exists a constant C2 independent of h such that ∥ e ∥L∞(l)≤ C2h

m.
Define the error ep(t) on σp by ep(t) = x(t) − up(t) and on σp

n by ep(t) = epn(t) =
x(t)− up

n(t) for all n = 0, ..., N − 1 and p = 1, ..., r − 1.
Let t ∈ σp

n for n = 0, 2, ..., N − 1 . Then we have from (6) and (7),

∥ x− ûn,p ∥L∞(σp
n) ≤∥ ep−1

N−N1+n ∥L∞(σp−1
N−N1+n)

+ ∥ ep−1
n ∥L∞(σp−1

n ) + ∥ epn−N1
∥L∞(σp

n−N1
)

+ 2hk

N−1∑
i=0

∥ ep−1
i ∥L∞(σp−1

d ) +hk

n−1∑
i=0

∥ epi ∥L∞(σp
i )
,

hence,

∥ x− ûn,p ∥L∞(σp
n) ≤ 2(1 + τ2k) ∥ ep−1 ∥L∞(σp−1) + ∥ epn−N1

∥L∞(σp
n−N1

)

+ hk

n−1∑
i=0

∥ epi ∥L∞(σp
i )

.

Therefore, by Theorem 3.2, for n = 1, 2, ..., N − 1,

∥ epn ∥L∞(σp
n) ≤∥ x− ûn,p ∥L∞(σp

n) + ∥ ûn,p − up
n ∥L∞(σp

n)

≤∥ x− ûn,p ∥L∞(σp
n) +

α(m)

m!
hm.

Then we repeat the next step a times for n = 1, 2, ..., aN1 − 1, a = {1, 2, .., τ2
τ1
},

∥ epn ∥L∞(σp
n) ≤ 2(1 + τ2k) ∥ ep−1 ∥L∞(σp−1) +hk

n−1∑
i=0

∥ epi ∥L∞(σp
i )

+ ∥ epn−N1
∥L∞(σp

n−N1
) +

α(m)

m!
hm,

hence, by Lemma 3.1, for all n = 0, 1, ..., N − 1,

∥ epn ∥L∞(σp
n) ≤

α(m)C1exp(τ2k)

m!
hm + 2(1 + τ2k)exp(τ2k) ∥ ep−1 ∥L∞(σp−1),

then, for all p = 1, ..., r − 1, ∥ epn ∥L∞(σp
n)≤ C2h

m.
Thus, the proof is completed by taking C = max{C1, C2}.
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4 Numerical Illustrations

In this section, we present numerical experiments that evaluate the effectiveness of the
Taylor collocation method (TCM) in solving problems described by (1). We demonstrate
convergence of order m by providing numerical examples that exhibit convergence rates
of up to m when applying this method. Additionally, we record the computational time
(in CPU time/s) for each example. Our numerical experiments were conducted using
Maple version 17 on a personal computer equipped with an Intel Core i7-1165G7 CPU
@ 2.80GHz and 16 GB of RAM, running the MS Windows 7 operating system. As the
values of both n andm increase, the absolute error function decreases, thereby confirming
the theoretical estimates outlined in Section 3.

Example 4.1 Consider the neutral double delay Volterra integral equation

x(t) = g(t) + x(t− 1

2
) + x(t− 1) +

∫ t− 1
2

t−1

(ts+ cos(t+ s))x(s)ds

for t ∈ [1, 5], and g is chosen so that the exact solution x(t) = cos(t) + 1, x(t) =
Φ(t) for t ∈ [0, 1]. The absolute errors and computational time for (N,m) =
{(2, 2), (4, 4), (6, 6), (8, 8)} are presented in Table 1. The exact and approximate solu-
tions for N = m = 8 are shown in Figure 1(a).

t N = m = 2 N = m = 4 N = m = 6 N = m = 8
1.00 0.0 0.0 0.0 0.0
2.00 1.58e− 02 1.02e− 5 1.29e− 9 7.08e− 11
3.00 1.27e− 02 2.89e− 6 2.52e− 9 9.70e− 10
4.00 4.45e− 02 2.53e− 4 1.17e− 7 2.53e− 08
5.00 1.44e− 01 7.31e− 3 3.81e− 6 8.50e− 07
CPU 1.79 s 1.95 s 3.18 s 5.29 s

Table 1: Absolute errors for Example 4.1.

Example 4.2 Consider the neutral double delay Volterra integral equation

x(t) = g(t) + x(t− 0.4) + x(t− 0.8) +

∫ t−0.4

t−0.8

(t− s)et−sx(s)ds

for t ∈ [1, 8], and g is chosen so that the exact solution x(t) = e−t sin(t), Φ(t) =
x(t) for t ∈ [0, 0.8]. The absolute errors and computational time for (N,m) =
{(2, 6), (2, 8), (2, 10), (4, 4), (4, 6), (4, 8)} are presented in Table 2. Figure 1(b) displays
the exact and approximate solutions for N = 4,m = 8.
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N = 2 N = 4
t m = 6 m = 8 m = 10 m = 4 m = 6 m = 8
0.8 0 0 0 0 0 0
1.6 5.22e− 07 2.26e− 09 2.82e− 10 6.28e− 06 9.24e− 09 2.81e− 10
2.4 1.57e− 06 9.66e− 09 1.05e− 09 2.59e− 05 2.64e− 08 1.08e− 09
3.2 5.31e− 06 3.57e− 08 3.53e− 09 9.19e− 05 8.57e− 08 3.75e− 09
4.0 1.88e− 05 1.30e− 07 1.18e− 08 3.21e− 04 2.95e− 07 1.29e− 08
4.8 6.69e− 05 4.67e− 07 3.97e− 08 1.12e− 03 1.02e− 06 4.46e− 08
5.6 3.65e− 04 1.66e− 06 1.34e− 07 3.91e− 03 3.55e− 06 1.54e− 07
6.4 8.30e− 04 5.86e− 06 4.56e− 07 1.35e− 02 1.23e− 05 5.32e− 07
7.2 2.90e− 03 2.06e− 05 1.55e− 06 4.71e− 02 4.25e− 05 1.83e− 06
8.0 1.07e− 02 7.81e− 05 4.98e− 06 1.65e− 01 1.49e− 04 6.28e− 06
CPU 1.57 s 1.90 s 3.85 s 1.75 s 2.56 s 3.82 s

Table 2: Absolute errors of Example 4.2.

(a) Example 1 (N = m = 8) (b) Example 2 (N = 4,m = 8)

Figure 1: The exact and approximate solutions.

5 Conclusion

In the concluding remarks of our study, we have addressed the reviewer’s suggestion to
bolster the description of the novelty arising from our results. Our exploration of the
Taylor collocation method for approximating the solution of linear DDVIEs has yielded
noteworthy outcomes. Our findings underscore this method’s effectiveness and ease of
implementation, emphasizing its reliability in generating approximate solutions through
iterative formulas without necessitating the resolution of algebraic equation systems.
The numerical examples presented in this paper demonstrate the method’s convergence
with high accuracy. The results obtained from these examples validate our theoretical
estimates and highlight the proposed approach’s practical applicability. It is worth noting
that the numerical outcomes consistently align with the expected convergence patterns,
affirming the reliability of the Taylor collocation method in the context of linear DDVIEs.
Our future research endeavors will extend beyond the scope of this paper. We plan
to generalize the proposed method to tackle DDVIEs in two dimensions and a system
of DDVIEs, further expanding its applicability to a broader class of problems. This
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extension is anticipated to contribute to the method’s versatility and potential to address
complex systems exhibiting intricate temporal dependencies.
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1 Introduction

Contact mechanics is the study of the deformation of solids that are in contact with
each other at one or more points. Antiplane shear deformations are one of the simplest
classes of deformations that solids can undergo. The antiplane shear deformation is the
deformation that we expect to appear after loading a long cylinder in the direction of its
generators so that the displacement field is parallel to the generators of the cylinder and
independent of the axial coordinate.

The piezoelectric effect results from the coupling between electrical and mechanical
properties, in which the body has the ability to produce an electrical field when a me-
chanical stress is present and, conversely, under the action of an electric field the body
undergoes a mechanical stress. The models for piezoelectric materials can be found
in [1], [2] and [3].

In this paper, we study an antiplane contact problem for electro-viscoelastic materials
with the slip rate–dependent friction law, in the framework of the Mathematical Theory
of Contact Mechanics, when the foundation is electrically conductive. We consider the
case of antiplane shear deformation, i.e., the displacement is parallel to the generators
of the cylinder and independent of the axial coordinate (see [5], [6] and the references
therein). Such kind of problems was studied in a number of papers in the context of
various constitutive laws and contact conditions (see, e.g. [12], [13] and [14]).

Our paper is structured as follows. In Section 2, we present the mechanical model
for the quasistatic antiplane contact problem. In Section 3, we introduce the notation,
list the assumption on problem’s data, derive the variational formulation of the problem.
Finally, in Section 4, we state our main existence and uniqueness result, i.e., Theorems
4.1-4.2. The proof of this result is carried out in several steps and is based on the
arguments of evolutionary inequalities.

2 The Mathematical Model

We consider a piezoelectric body B identified with a region in R3 it occupies in a fixed and
undistorted reference configuration. We assume that B = Ω × (−∞,+∞) is a cylinder
with generators parallel to the x3-axis with a cross-section which is a regular region Ω
in the x1, x2-plane, Ox1x2x3 being a Cartesian coordinate system. The cylinder is acted
upon by body forces of density f0 and has volume free electric charges of density q0.
It is also constrained mechanically and electrically on the boundary. To describe the
boundary conditions, we denote by ∂Ω=Γ the boundary of Ω and we assume a partition
of Γ into three open disjoint parts Γ1, Γ2 and Γ3, on the one hand, and a partition of
Γ1 ∪ Γ2 into two open parts Γa and Γb. On the other hand, we assume that the one-
dimensional measures of Γ1 and Γa, denoted meas Γ1 and meas Γa, are positive. Let
T > 0 and let [0, T ] be the time interval of interest.

The cylinder is clamped on Γ1 × (−∞,+∞) and therefore the displacement field
vanishes there, surface tractions of density f2 act on Γ2 × (−∞,+∞). We also assume
that the electrical potential vanishes on Γa × (−∞,+∞) and a surface electrical
charge of density q2 is prescribed on Γb × (−∞,+∞). The cylinder is in contact over
Γ3 × (−∞,+∞) with a conductive obstacle, the so-called foundation. The contact is
frictional and is modeled by Tresca’s law.

We denote by S3 the space of the second-order symmetric tensors on R3, and we
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define the inner products and the corresponding norms on R3 and S3 by

u.v = uivi, ∥v∥ = (v.v)
1
2 for all u = (ui), v = (vi) ∈ R3, 1 ≤ i, j ≤ 3,

σ.τ = σi,jτi,j , ∥τ∥ = (τ.τ)
1
2 for all σ = (σi,j), τ = τi,j ∈ S3, 1 ≤ i, j ≤ 3.

We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω× [0, T ] −→ R, (1)

and
f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ] −→ R. (2)

The body forces (1) and the surface tractions (2) would be expected to give rise to a
deformation of the elastic cylinder whose displacement, denoted by u, is of the form

u = (0, 0, u), with q0 : Ω× [0, T ] −→ R. (3)

Such kind of deformation, associated to a displacement field of the form (3), is called
an antiplane shear. We assume also that

q0 = q0(x1, x2, t) with u = u(x1, x2, t) : Ω× [0, T ] −→ R, (4)

q2 = q2(x1, x2, t) with q2 : Γb × [0, T ] −→ R. (5)

The electric charges (4), (5) would be expected to give rise to deformations and to
the electric charges of the piezoelectric cylinder corresponding to an electric potential
field φ which is independent of x3 and has the form

φ = φ(x1, x2, t) : Ω× [0, T ] −→ R. (6)

The infinitesimal strain tensor, denoted by ε(u) = (εi,j(u)), is defined by

εi,j(u) =
1

2
(ui,j + uj,i), 1 ≤ i, j ≤ 3, (7)

where the index that follows the comma indicates a partial derivative with respect to the
corresponding component of the spatial variable. Moreover, in the sequel, the convention
of summation upon a repeated index is used. From (3) and (7), it follows that, in the
case of the antiplane problem, the infinitesimal strain tensor becomes

ε(u) =

 0 0 1
2u,1

0 0 1
2u,2

1
2u,1

1
2u,2 0

 . (8)

We also denote by E(φ) = (Ei(φ)) the electric field and by D=(Di) the electric
displacement field, where

εi,j(u) =
1

2
(ui,j + uj,i), (9)

Ei(φ) = −φ,i. (10)

Let σ = (σij) denote the stress field. We suppose that the material’s behavior is
modelled by an electro-viscoelastic constitutive law of the form

σ = 2θε(u̇) + ζtrε(u̇)I + 2µε(u) + λtrε(u)I − E∗E(φ), (11)

D = E∗ε(u) + βE(φ), (12)
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where ζ and θ are viscosity coefficients, λ and µ are the Lame coefficients, tr ε(u) = εii(u),
I is the unit tensor in R3, α is the electric permittivity constant, E represents the third-
order piezoelectric tensor and E∗ is its transpose. We assume that

Eε =

e(ε13 + ε31)
e(ε23 + ε32)
e(ε33)

 , ∀ε = (εi,j) ∈ S3, (13)

where e is a piezoelectric coefficient. We also assume that the coefficients θ, µ, β and e
depend of the spatial variables x1, x2, but are independent on the spatial variable x3.
Since Eε.v = ε.E∗v for all ε ∈ S3, v ∈ R3, it follows from (13) that

E∗v =

 0 0 ev1
0 0 ev2
ev1 ev2 ev3

 , ∀ v = (vi) ∈ R3. (14)

Here and below the dot above represents the derivative with respect to the time
variable. The stress field is given by the matrix

σ =

 0 0 σ13
0 0 σ23
σ31 σ32 0

 . (15)

In the antiplane context (3), (6), when using the constitutive equations (11)-(12) and
equalities (13)-(14), it follows that the stress field and the electric displacement field are
given by

σ =

 0 0 θu̇,1 + µu,1 + eφ,1

0 0 θu̇,2 + µu,2 + eφ,2

θu̇,1 + µu,1 + eφ,1 θu̇,2 + µu,2 + eφ,2 0

 , (16)

D =

eu,1 − βφ,1

eu,2 − βφ,2

0

 . (17)

We assume that the process is mechanically quasistatic and electrically static and
therefore is governed by the equilibrium equations

Divσ + f0 = 0, (18)

Di,i − q0 = 0 in B × (0, T ), (19)

where Divσ = (σij,j) represents the divergence of the tensor field σ. Thus, keeping in
mind (1), (3), (4), (6), (16) and (17), the equilibrium equations above are reduced to the
following scalar equations :

div(θ∇u̇+ µ∇u) + div(e∇φ) + f0 = 0, in Ω× (0, T ), (20)

div(e∇u)− div(β∇φ) = q0, in Ω× (0, T ). (21)

Here and below we use the notation

divτ = τ1,2 + τ1,2 for τ = (τ1(x1, x2, t), τ(x1, x2, t)),
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∇v = (v,1, v,2), ∂νv = v,1ν1 + v,2ν2 for v = v(x1, x2, t).

Recall that since the cylinder is clamped on Γ1 × (−∞,+∞), the displacement field
vanishes there. Thus (3) implies

u = 0 on Γ1 × (0, T ), (22)

the electrical potential vanishes too on Γa × (−∞,+∞), thus (4) implies that

φ = 0 on Γa × (0, T ). (23)

Let ν denote the unit normal on Γ× (−∞,+∞). We have

ν = (ν1, ν2, 0) (24)

with νi = νi(x1, x2) : Γ −→ R, i = 1, 2. For a vector v we denote by vν and vτ its normal
and tangential components on the boundary which are given by

vν = v.ν, vτ = v − vνν, (25)

respectively. In (25), and everywhere in this paper, ”.” represents the inner product on
the space R3(d = 2, 3). Moreover, for a given stress field σ, we denote by σν and στ the
normal and tangential components on the boundary, respectively, i.e.,

σν = (σν).ν, στ = σν − σνν. (26)

From (16), (17) and (24), we deduce that the Cauchy stress vector and the normal
component of the electric displacement field are given by

σν = (0, 0, θ∂ν u̇+ µ∂νu+ ∂νφ), D.ν = e∂νu− β∂νφ. (27)

Here and subsequently we use the notations ∂νu = u,1ν1 + u,2ν2 and ∂νφ = φ,1ν1 +
φ,2ν2. When keeping in mind the traction boundary condition σν = f2 on Γ2×(−∞,+∞)
and the electric condition D.ν = q2 on Γb × (−∞,+∞), it follows from (2), (5) and (27)
that

θ∂ν u̇+ µ∂νu+ ∂νφ = f2 on Γ2 × (0, T ), (28)

e∂νu− β∂νφ = q2 on Γb × (0, T ). (29)

We now describe the frictional contact condition on Γ3 × (−∞,+∞). First, we note
that from (3), (24) and (25), we find uν = 0, which shows that the contact is bilateral,
that is, the contact is kept during all the process. Using now (3), (24)-(27), we conclude
that

uτ = (0, 0, u), (30)

στ = (0, 0, στ ), (31)

where
στ = θ∂ν u̇+ µ∂νu+ ∂νφ. (32)

We assume that the friction is invariant with respect to the x3-axis and for all t ∈
[0, T ], it is modelled by the following conditions on Γ3:{

|στ | ≤ g(|u̇τ |) on Γ3 × [0, T ],

στ = −g(|u̇|) u̇τ

|u̇τ | , on Γ3 × [0, T ].
(33)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (3) (2024) 246–258 251

Here g : Γ3 ×R −→ R3 is a given function, the friction bound, and u̇τ represents the
tangential velocity on the contact boundary. In (33), the strict inequality holds in the
stick zone and the equality is true in the slip zone.

Using now (30), (32), it is straightforward to see that the conditions (33) imply{
|θ∂ν u̇+ µ∂νu+ e∂νφ| ≤ g(|u̇|),
θ∂ν u̇+ µ∂νu+ e∂νφ = −g(|u̇|) u̇

|u̇| , on Γ3 × [0, T ].
(34)

Finally, we prescribe the initial displacement

u(0) = u0, in Ω, (35)

where u0 is a given function on Ω.

Problem 2.1 Find a displacement field u : Ω× [0, T ] → R and the electric potential
field φ : Ω× [0, T ] → R such that

div(θ∇u̇+ µ∇u) + div(e∇φ) + f0 = 0, in Ω× (0, T ), (36)

div(e∇u)− div(β∇φ) = q0, in Ω× (0, T ), (37)

u = 0 , on Γ1 × (0, T ), (38)

θ∂ν u̇+ µ∂νu+ e∂νφ = f2, on Γ2 × (0, T ), (39){
|θ∂ν u̇+ µ∂νu+ e∂νφ| ≤ g(|u̇|),
θ∂ν u̇+ µ∂νu+ e∂νφ = −g(|u̇|) u̇

|u̇| , on Γ3 × (0, T ),
(40)

φ = 0, on Γa × (0, T ), (41)

e∂νu− β∂νφ = q2, on Γb × (0, T ), (42)

u(0) = u0, in Ω× (0, T ). (43)

3 Assumptions and Varitional Formulation

To obtain a variational formulation for the mechanical problem (36)-(43), we introduce
the function spaces V = {v ∈ H1(Ω) : v = 0 onΓ1} and W = {ψ ∈ H1(Ω) : ψ =
0 onΓ1}, and here and below, we write w for the trace γw of a function w ∈ H1 on Γ1.

Since measΓ1 > 0 and measΓa > 0, it is well known that V and W are the real
Hilbert spaces with the inner products

(u, v)V =

∫
Ω

∇u.∇vdx,∀u, v ∈ V,

and

(φ,ψ)W =

∫
Ω

∇φ.∇ψdx,∀φ,ψ ∈W.

Moreover, the associated norms

∥v∥V = ∥∇v∥L2(Ω)2 ,∀v ∈ V, (44)

∥ψ∥W = ∥∇ψ∥L2(Ω)2 ,∀ψ ∈W, (45)
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are equivalent on V and W , respectively, with the usual norm ∥.∥H1(Ω). By Sobolev’s
trace theorem, we deduce that there exist two positive constants cV > 0 and cW > 0
such that

∥v∥L2(Γ3) ≤ cV ∥v∥V ,∀v ∈ V, (46)

∥v∥L2(Γ3) ≤ cW ∥ψ∥W ,∀ψ ∈W. (47)

For a real Banach space (X, ∥.∥X), we use the usual notation for the spaces Lp(0, T,X)
and W k,p(0, T,X), where 1 ≤ p ≤ ∞, k = 1, 2...; we also denote by C(0, T,X) and
C1(0, T,X) the spaces of continuous and continuously differentiable functions on [0, T ]
with values in X, with the respective norms

∥x∥C(0,T,X) = max
t∈[0,T ]

∥x∥X ,

and
∥x∥C1(0,T,X) = max

t∈[0,T ]
∥x∥X + max

t∈[0,T ]
∥ẋ∥X ,

and we use the standard notations for the Lebesgue space L2(0, T,X) as well as the
Sobolev spaceW 1,2(0, T,X). In particular, recall that the norm on the space L2(0, T,X)
is given by the formula

∥u∥2L2(0,T,X) =

∫ T

0

∥u(t)∥2Xdt,

and the norm on the space W 1,2(0, T,X) is defined by the formula

∥u∥2W 1,2(0,T,X) =

∫ T

0

∥u(t)∥2Xdt+
∫ T

0

∥u̇(t)∥2Xdt.

In the study of Problem 2.1, we assume that the viscosity coefficient and the electric
permittivity coefficient satisfy

θ ∈ L∞(Ω) and there θ∗ > 0 such that θ(x) ≥ θ∗ a.e x ∈ Ω, (48)

β ∈ L∞(Ω) and there β∗ > 0 such thatβ(x) ≥ β∗ a.e x ∈ Ω. (49)

We also assume that the Lame coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞ and µ(x) > 0, a.e x ∈ Ω, (50)

e ∈ L∞. (51)

The forces, tractions, volume and surface free charge densities have the regularity

f0 ∈W 1,2(0, T, L2(Ω)); f2 ∈W 1,2(0, T, L2(Γ2)), (52)

q0 ∈W 1,2(0, T, L2(Ω)), (53)

q2 ∈W 1,2(0, T, L2(Γb)), q2 = 0 a.e x ∈ Γb. (54)

The friction bound satisfies
a) g : Γ3 × R −→ R+

b) ∃ Lg > 0 such that |g(x, r1)− g(x, r2)| ≤ Lg|r1 − r2|
c) x −→ g(x, r) is Lebesgue mesurable on Γ3 ∀r ∈ R
d) the mapping x −→ g(x, 0) belongs to L2(Γ3),

(55)
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the functional j : v × v −→ R is given by

j(u̇, v) =

∫
Γ3

g(|u̇|)|v|da,∀v ∈ V. (56)

Let η1, η2, v1, v2 ∈ V , by using (55)-(56), we find that

j(η1, v2)− j(η1, v1) + j(η2, v1)− j(η2, v2)| ≤ Lg∥η1 − η2∥L2(Γ3)∥v1 − v2∥L2(Γ3),

and, keeping in mind (46), we obtain

j(η1, v2)− j(η1, v1) + j(η2, v1)− j(η2, v2) ≤ c2V Lg∥η1 − η2∥V ∥v1 − v2∥V , (57)

the initial displacement is such that

u0 ∈ V. (58)

We will use the functions f : [0, T ] −→ V and q : [0, T ] −→W by

(f, v)V =

∫
Ω

f0vdx+

∫
Γ2

f2vda, ∀v ∈ V, (59)

(q, ψ)V =

∫
Γb

q2ψdx+

∫
Ω

q0ψda, ∀ψ ∈W. (60)

The defnition of f and q are based on Riesz’s representation theorem, moreover, it
follows from assumptions (59)-(60) that the integrals above are well defined and

f ∈W 1,2(0, T, V ), (61)

q ∈W 1,2(0, T,W ). (62)

Next, we define the bilinear forms aθ : V ×V −→ R, aµ : V ×V −→ R, ae : V ×W −→
R, ae :W × V −→ R, aβ :W ×W −→ R by the equalities

aθ(u, v) =

∫
Ω

θ∇u.∇vdx, (63)

aµ(u, v) =

∫
Ω

µ∇u.∇vdx, (64)

ae(u, φ) =

∫
Ω

e∇φ.∇vdx = ae(φ, v), (65)

aβ(φ,ψ) =

∫
Ω

β∇φ.∇ψdx. (66)

(67)

Assumptions (48)-(51) imply that the integrals above are well defned and, when using
(44)-(47), it follows that the forms aθ, aµ, ae and aβ are continuous, moreover, the forms
aθ, aµ and aβ are symmetric and, in addition, the form aθ is V-elliptic since

aθ(u, v) ≤ ∥θ∥L∞(Ω)∥u∥V ∥v∥V ∀u, v ∈ V, (68)

aθ(v, v) ≥ θ∗∥v∥2V ∀v ∈ V. (69)

The variational formulation of our problem is based on the following result.
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Lemma 3.1 If (u, φ) is a smooth solution to Problem 2.1, then (u(t), φ(t)) ∈ X and

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + ae(φ(t), v − u̇(t)) + j(u̇(t), v)−
j(u̇(t), u̇(t)) ≥ (f, v − u̇)V ,∀v ∈ V, t ∈ [0, T ], (70)

aβ(φ,ψ)− ae(u, ψ) = (q, ψ)W ,∀ψ ∈W, (71)

u(0) = u0. (72)

Proof. Let (u, φ) denote a smooth solution to Problem 2.1, we have u(t) ∈ V , u̇ ∈ V
and φ ∈ W a.e. t ∈ [0, T ] and let v ∈ V , ψ ∈ W , we multiply equations (36)-(37) by
(v− u̇(t)), ψ, integrate the result on Ω, and use Green’s formula (36), and from (38)-(40),
we get∫

Ω

θ∇u̇(t).∇(v − u̇(t))dx+

∫
Ω

µ∇u(t).∇(v − u̇(t))dx+

∫
Ω

e∇φ.∇(v − u̇(t))dx+∫
Γ3

g(|u̇(t)|)|u̇(t)|da−
∫
Γ3

g(|u̇(t)|)|v|da =

∫
Ω

f0(v − u̇(t))dx+∫
Γ2

f2(v − u̇(t))da∀v ∈ V, t ∈ (0, T ). (73)

Now, using (43),(59) and (63)-(65), we obtain (70) and (72), and from (41)-(42), we
get∫

Ω

β∇φ(t).∇ψdx−
∫
Ω

e∇u(t).∇ψdx =

∫
Ω

q0(t)ψdx−∫
Γb

q2(t)ψda,∀ψ ∈W, ∀t ∈ [0, T ]. (74)

Using (60) and (66)-(68), we find (71). ■
Finally, the variational formulation of Problem (70)–(72) is given as follows.

Problem 3.1 Find a displacement field u : [0, T ] −→ V and an electric potential
field φ : [0, T ] −→W such that

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + ae(φ(t), v − u̇(t)) + j(u̇(t), v)− j(u̇(t), u̇(t)) ≥
(f, v − u̇)V ,∀v ∈ V, t ∈ [0, T ], (75)

aβ(φ,ψ)− ae(u, ψ) = (q, ψ)W ,∀ψ ∈W, (76)

u(0) = u0. (77)

We notice that the varitional problem (75)–(77) is formulated in terms of a displace-
ment field and electrical potential field. The existence of the unique solution to (75)–(77)
is stated and proved in the next section.
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4 Existence and Uniqueness of a Weak Solution

Theorem 4.1 Assume (48)–(62), then there exists L0, which depends on
Ω,Γ1,Γ2,Γ3, and if Lg < L0, there exists a unique solution u to Problem 3.1 satisfy-
ing

u ∈W 2,2(0, T, V ). (78)

Proof of Theorem 4.1. The proof of Theorem 4.1 will be carried out in several steps.

First Step : We consider the following problem.

Problem 4.1 Find a displacement field u : [0, T ] −→ V such that

a(u(t), v − u̇(t)) + b(u̇(t), v − u̇(t)) + j(u̇(t), v)− j(u̇(t), u̇(t)) ≥ (F (t), v − u̇(t))V ,

∀v ∈ V, t ∈ [0, T ], (79)

u(0) = u0. (80)

In the study of the Cauchy problem (79)-(80), we assume that{
a : V × V −→ R is a bilinear form and there exists M > 0 such that

|a(u, v)| ≤M∥u∥V |v∥V , ∀u, v ∈ V.
(81)


b : V × V −→ is a bilinear symmetric form and

(a) there exists M ′ > 0 such that |b(u, v)| ≤ M ′∥u∥V ∥v∥V , ∀u, v ∈ X,

(b) there exists m′ > 0 such that b(v, v) ≥ m′∥v∥2V ∀v ∈ V,

(82)


j : V × V −→ R and

a) for all η ∈ V, j(η, .) is convex and I.S.C. on V,

b) there exists α ≥ 0 such that

|j(η1, v2)− j(η1, v1) + j(η2, v1)− j(η2, v2)| ≤ α∥η1 − η2∥V ∥v1 − v2∥V ,

(83)

∀η1, η2, v1, v2 ∈ V,

u0 ∈ V, (84)

F ∈W 1,2(0, T, V ). (85)

Under assumptions (81)–(85), we have the following result.

Lemma 4.1 Assume that (81)-(85) hold, then if m′ > α, there exists a unique solu-
tion u ∈W 1,2(0, T, V ) to problem (79)-(80).

Proof. For any t1, t2 ∈ [0, T ], we use (79) and get

a(u(t1), v − u̇(t1)) + b(u̇(t1), v − u̇(t1)) + j(u̇(t1), v)− j(u̇(t1), u̇(t1)) ≥
(F (t1), v − u̇(t1))V ,∀v ∈ V, (86)

a(u(t2), v − u̇(t2)) + b(u̇(t2), v − u̇(t2)) + j(u̇(t2), v)− j(u̇(t2), u̇(t2)) ≥
(F (t2), v − u̇(t2))V ,∀v ∈ V. (87)
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We take v = u̇(t2) in the first inequality, and v = u̇(t1) in the second one, and add
the results to obtain

b(u̇(t1)− u̇(t2), u̇(t1)− u̇(t2)) + j(u̇(t1), u̇(t2))− j(u̇(t1), u̇(t2)) + j(u̇(t2), u̇(t1))−
j(u̇(t2), u̇(t2)) ≤ a(u(t1)− u(t2), u̇(t2)− u̇(t1)) + (F (t1)− F (t2), u̇(t2)− u̇(t1)). (88)

We use now assumptions (81)-(83) to find

∥u̇(t1)− u̇(t2)∥V ≤ C(∥u(t1)− u(t2)∥V + ∥F (t1)− F (t2)∥V ), (89)

where C = max{ M
m′−α ,

1
m′−α}. This inequality combined with the reguarlarity u ∈

C1(0, t, V ) shows that u̇ : [0, T ] −→ V is an absolutely contunuous function and, more-
over,

∥u̇̇(t)∥V ≤ C(∥u̇(t)∥V + ∥F (t)∥V ) a.e t ∈ [0, T ].

Finally, we conclude that u ∈W 2,2(0, T, V ).

Second Step : Now, we prove the first inequality of Theorem 4.1.

Proof. From (76) we have

(βφ, ψ)W − (eu, φ)W = (q, ψ)W , (90)

the use of (90) gives that
βφ(t) = eu(t) + q,

hence
φ(t) =

e

β
u(t) +

q

β
. (91)

Now, we take (91) and substitute in (75), we get

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + ae(
e

β
u(t), v − u̇(t)) + j(u̇(t), v)− j(u̇(t), u̇(t))

≥ (f(t)− β−1q, v − u̇)V ,∀v ∈ V, t ∈ [0, T ], (92)

u(0) = u0. (93)

Next, we define the bilinear forms a : V × V −→ R, b : V × V −→ R by

a(u(t), v − u̇(t)) = aµ(u(t), v − u̇(t)) + ae(
e

β
u(t), v − u̇(t)), (94)

b(u̇(t), v − u̇(t)) = aθ(u̇(t), v − u̇(t)), (95)

and define the function F : [0, T ] −→ V by

(F (t), v − u̇)V = (f(t)− β−1q, v − u̇)V . (96)

The bilinear form a(., .) and the initial data u0 satisfy conditions (81) and (84). The
regularity f ∈W 1,2(0, T, V ) and q ∈W 1,2(0, T,W ) combined with the definition of F (.)
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in (96), satisfy (85).

Now, for all η ∈ V , the functional j(η, .) : V −→ R is a continuous seminorm on V
and therefore it satisfies condition (83)(a). Recall also that j satisfies inequality (57),
which shows that condition (83)(b) holds with α = cV Lg.

From (68), the bilinear form b satisfies condition (83) with m′ = θ∗.

Choose L0 =
θ∗

c2V
, which depends on Ω,Γ1,Γ2,Γ3, and θ. Then, if Lg < L0, we have

m′ > α, and therefore the first inequality in Theorem 4.1 is a direct consequence of
Lemma 3.1.

Theorem 4.2 Asume (48)-(62) and if Lg < L0, there exists a unique solution (u, φ)
to Problem 3.1 satisfying

φ ∈W 1,2(0, T,W ). (97)

In this step, we prove the second inequality cited in Theorem 4.2.
Proof. Let u ∈ W 2,2(0, T, V ) be the solution of problem (77)-(97) and let φ :

[0, T ] −→ W be the electrical potential field defined by (91). Notice that the regularity
u ∈W 2,2(0, T, V ) and q ∈W 1,2(0, T,W ) imply that φ ∈W 1,2(0, T,W ).

Conclusion

We presented a model for an antiplane contact problem for electro-viscoelastic materials
with two variables, i.e., a time-dependent variational equation for the potential field,
where the time t is in [0, T ]. The problem was set as a variational inequality for the
displacements and a variational equality for the electric potential. The existence of
a unique weak solution for the problem was established by using arguments from the
theory of evolutionary variational inequalities and a fixed-point theorem.
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Abstract: An amphibious aircraft is an aircraft that has the ability to operate from
a runway like a conventional aircraft or from shallow water. Such type of aircraft
is widely used for tourist transportation, taking tourists to areas only reachable by
water. It is not uncommon for amphibious aircraft to be used as rescue and forest
fire fighting tools. The need for amphibious aircraft is in line with the development
of navigation and guidance systems required by such amphibious aircraft. Navigation
and motion control systems for amphibious aircraft refer to technologies and systems
allowing aircraft to operate in the air and also sail on the water surface. Amphibi-
ous aircrafts are designed to have capabilities that allow them to take off and land
on conventional runways and to operate to and from water area. Several navigation
guidance methods in the field of robotics can also be used, one of which is for am-
phibious aircraft position estimation. The accuracy of aircraft position estimation is
very important to ensure that the amphibious aircraft follows the specified trajec-
tory accurately. The estimation methods used in this paper are the H-infinity and
Ensemble Kalman Filter (EnKF). This study compared the numerical simulation re-
sults of the two methods, EnKF and H-infinity, aiming to estimate the position of the
amphibious aircraft by generating 300 and 600 ensembles, and the simulation results
with 800 ensembles had the best accuracy of about 95-98%.
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1 Introduction

An amphibious aircraft is a fixed-wing aircraft able to take off and land on solid ground
and water. Its history dates back to World War II when, especially in the Pacific, the
Allies needed search and rescue aircrafts to rescue airmen adrift at sea after their aircrafts
were shot down by the enemy. An amphibious aircraft is an aircraft able to operate from
a runway like a conventional aircraft or from shallow water [1]. Such type of aircraft is
widely used for tourist transportation, taking tourists to areas only reachable by water [2].

In addition, that type of aircraft is needed for logistics transportation in remote areas
having no airstrips. In fact, in the past, it could also be used as a naval reconnaissance
aircraft due to its range. At that time the most famous amphibious aircrafts were the
PBY Catalina and the Grumman HU 16 Albatross. After the end of WWII, these
aircrafts were still widely used until around the 1960s, in both civilian and military
environments. Some of them with excellent maintenance and modifications are still
widely used in the United States, especially as a forest firefighting fleet.

An amphibious aircraft requires a technology of navigation and guidance systems,
of which the navigation system is a system that directs the position of the amphibious
aircraft to follow a predetermined trajectory and as much as possible has a fairly high
accuracy [3]. Navigation and motion control systems for amphibious aircraft refer to
technologies and systems allowing an aircraft to operate in the air and also sail on the
water surface [4]. Amphibious aircrafts are designed to have amphibious capabilities that
allow them to take off and land on conventional runways and operate to and from water
areas. Several navigation guidance methods in the field of robotics can also be used, one
of which is for amphibious aircraft position estimation. The accuracy of aircraft position
estimation is very important to ensure that the amphibious aircraft follows the specified
trajectory accurately.

One of the estimation methods having a small error is the Ensemble Kalman Filter
method, which is very reliable for a nonlinear model. The EnKF method is often used for
motion and position estimation of AUVs [5], [6], [7], mobile robots [8], and missiles [9].
Given that the EnKF method is a reliable estimation method, in this study, two methods
are applied, that is, the EnKF method and the H-inifnity method. This study compared
the numerical simulation results of the two methods, the EnKF and H-infinity, with
the aim of estimating the position of the amphibious aircraft by generating 300 and 600
ensembles.

2 Amphibious Aircraft Model

The forces working on an unmanned amphibious aircraft can be categorized into the
aircraft mass, hydrodynamic forces, aerodynamic forces and engine thrust as shown in
Fig 1. The nonlinear longitudinal dynamic motion model of the unmanned amphibious
aircraft is represented by the following equations.

In the earth coordinate system Xe;Ye;Ze, then the aircraft body coordinate system
Xb;Yb;Zb and the steady-translation coordinate system Xs;Ys;Zs:
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Figure 1: Forces working on amphibious aircraft [4].

mV̇ = T cos (α+ αt)−Da −Nw sinα−Df cosα+Gxa,

mV α̇ = mV q − T sin (α+ αt)− La −Nw cosα+Df sinα+Gza,

Iy q̇ = Ma +Mw +MT ,

θ̇ = q,

ẋg = u cos θ + w sin θ,

żg = −u sin θ + w cos θ.

3 Ensemble Kalman Filter Algorithm

Below is the algorithm flow of the Ensemble Kalman Filter method.

Figure 2: Ensemble Kalman Filter Algorithm [9], [10], [11].
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α Angle of m Amphibious
attack aircraft mass

θ Angle of Da Airodynamic
pitch drag force

V Velocity Gxa gravity along Xs

αt Angle between Gza gravity
engine force and Xb along Zs

Ma Total pitching Xg aircraft position
moment of Air along Xe

Mw Total pitching Zg aircraft position
moment of Air along Ze

MT Total pitching u velocity component
moment of Engine of aircraft velocity

along Xb

T Engine thrust w velocity component
of aircraft
along Zb

Nw Normal directional q Pitch angular
water pressure at the rate
bottom of the aircraft

Df Frictional force of Iy moment of Inertia
water along the bottom of amphibious aircraft

of the aircraft against Yb

La Aerodynamic lifting θ̇ Increase/decrease in
force angle of pitch

V̇ Increase/decrease α̇ Increase/decrease in
in velocity angle of attack

Table 1: Description of amphibious aircraft model [4].

4 H-Infinity Algorithm

Below is the algorithm flow of the H-infinity method.

5 Simulation Results

In this paper, we compared the accuracy of simulation results, the resulted accuracy of
the H-infinity method to that of the EnKF method by generating 300 and 600 ensembles.
The simulation results are as shown in Figures 4-6, each figure represents the simulation
results by the H-infinity and EnKF methods with 300 and 600 ensembles generated.
And the errors of the simulation results are as compared in Table 2. In each figure, there
are two images, that is, a and b, the image a means the simulation result by using 600
ensembles, and the image b means that by using 300 ensembles.

As seen in Figure 4, the red line is the real value of the horizontal position determined
for a flight at a certain distance from the initial position of the amphibious aircraft so
that the amphibious aircraft flies as high as 1400 m from the surface and advances about
2250 meters from the original place, so the position will always advance to 2250 m at
the 100th iteration either by the H-Infinity method or by EnKF method. The horizontal
position is closely related to the altitude at which when the horizontal position advances
(does not turn), the altitude will follow the horizontal position to get the maximum flight
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Figure 3: H-Infinity Algorithm [12], [11], [14].

Figure 4: Horizontal position estimation of amphibious aircraft by the H-Infinity and EnKF
methods, a) with 600 ensembles and b) with 300 ensembles.

altitude. In Figures 4 and 5, it can also be seen that the difference between the distance
by H-infinity and that by EnKF is almost the same as the real value and the RMSE
value is quite large, this can be seen in Table 2.

In Figure 5, it can be seen that the red line is the real value of the flight altitude
determined for the amphibious aircraft in order to follow the predetermined trajectory.
In this case, the height of the amphibious aircraft represents the maximum height the
amphibious aircraft can pass, and the simulation is made for the amphibious aircraft to
fly only and not to land again.

In Figure 6, it can be seen that the red line is the real horizontal position and the
specified altitude that the amphibious aircraft will pass through while flying at a certain
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Figure 5: Height estimation of amphibious aircraft by the H-Infinity and EnKF methods,
a) with 600 ensembles and b) with 300 ensembles.

Figure 6: Position estimation of the amphibious aircraft on the predetermined trajectory by
the H-Infinity and EnKF methods, a) with 600 ensembles and b) with 300 ensembles.

altitude and distance, of which Figure 6a has better accuracy than Figure 6b using
300 ensembles. Figure 6 shows that the amphibious aircraft follows the predetermined
trajectory from the beginning of takeoff up to flying at a certain altitude. Table 2 also
shows that the EnKF method has a smaller error than the H-infinty method.

EnKF with H-infinity EnKF with H-infinity
300 ensembles 600 ensembles

XY Motion 3.57% 4.79% 2.14% 4.56%
Time Simulation 8.45 s 7.5 s 14.73 s 12.89 s

Table 2: Comparison of the position estimation error of amphibious aircraft by the H-infinity
and EnKF methods.

As shown in Table 2, these simulation results can be compared to each other. If we
look at the comparison based on the accuracy of the methods, then the EnKF method
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has higher accuracy than the H-infinity, but it has a longer simulation time. If we look at
the comparison based on the number of ensembles, then the generation of 600 ensembles
indicates better accuracy than that of 300 ensembles. Overall, the EnKF method by
generating 600 ensembles has the highest accuracy. In this case, both estimation methods,
namely H-infinity and EnKF, have an accuracy of above 95%, so the estimation methods
can be effectively used to estimate the motion of the amphibious aircraft.

6 Conclusion

Based on the results of the analysis of the two simulations above, it can be concluded that
the EnKF method by generating 600 ensembles has the highest level of accuracy. If we
look at the comparison based on the number of ensembles, then that with 600 ensembles
has a better accuracy than that with 300 ensembles. Thus, both estimation methods,
namely H-infinity and EnKF, have an accuracy of above 95%, so that the estimation
methods can be effectively used to estimate the motion of amphibious aircraft.
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Abstract: In this research, a numerical solution to the Benjamin-Bona-Mahony-
Burger (BBMB) equation utilizing septic B-spline Galerkin method has been pro-
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norms. Furthermore, the obtained numerical results are compared with those avail-
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show the method efficiency.
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1 Introduction

Many phenomena in applied sciences such as engineering, physics, and chemistry can
be described through mathematical models. Partial differential equations (PDEs) can
be considered one of the most important of these models [1], [2]. The Benjamin-Bona-
Mahoney-Berger (BBMB) equation is one of the fundamental types of nonlinear disper-
sive equations that has occurred in various areas of applied mathematics [3], [4]. The
BBMB equation is a mathematical model proposed in [5] to study the unidirectional long
wave motion with small amplitudes. The BBMB equation represents the mathematical
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model of propagation of small amplitude long waves in the nonlinear dispersive media
along with the dissipation, which is alternate to the Korteweg-de Vries equation [6]. This
equation incorporates nonlinearity as well as the dispersive and the dissipative effects.
The terms uxx and uxxt represent the dissipative and the dispersive effects of the equation,
respectively. This equation is used in a number of branches of science and engineering.
Many studies have been conducted to find the exact solution to the BBMB equation,
such as, the homotropy analysis method [7], the exp-function method [8], the multipliers
method [9], (see also [10], [11], [12], [13], [14]). In this research paper, the septic B-spline
Galerkin method is used to solve the one-dimensional BBMB equation numerically. Sev-
eral authors have investigated the numerical solution of the BBMB equation, for example,
finite difference method [15, 16], domain decomposition technique [17], [18], [19], cubic
spline collocation method [20], finite element method [21], [22], [23], Crank–Nicolson-
type finite difference methods [24], [25], [26], [27], and B-spline quadratic finite element
method [28]. In this research paper, in Section 2, the septic B-spline Galerkin method
has been applied to the BBMB equation. In Section 3, two examples are solved using
the proposed method, and the accuracy of the method has been tested by comparing the
obtained numerical solutions with the exact solutions and with the methods existing in
the literature. Finally, a summary of the main conclusions is presented in Section 4.

2 Septic B-spline Galerkin Method

The BBMB equation is defined as

vt − vxxt − αvxx + βvx + vvx = 0, c ≤ x ≤ d, t > 0. (1)

The boundary conditions are given as

v(c, t) = v(d, t) = 0, vx(c, t) = vx(d, t) = 0,
vxx(c, t) = vxx(d, t) = 0, vxxx(c, t) = vxxx(d, t) = 0, t > 0.

(2)

and the initial condition is

v(x, 0) = f(x), x ∈ [c, d]. (3)

Applying the Galerkin technique to (1) with the test functions ψ yields∫ h

0

ψ(ut − uxxt − αuxx + βux + uux)dx = 0 . (4)

Therefore, we have∫ h

0

(ψut + ψxuxt + αψxux + βψux + ψuux)dx = 0 . (5)

The approximating solution is defined as follows:

un(x, t) =
∑n+3

p=−3 δp(t)Hp(x),

ψ(x) = Hp(x), p = −3, ..., n+ 3 ,
(6)
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where Hp is the septic B-spline function:

Hp(z) =
1

h7



(z − zp−4)
7 z ∈ [zp−4, zp−3]

(z − zp−4)
7 − 8(z − zp−3)

7 z ∈ [zp−3, zp−2]
(z − zp−4)

7 − 8(z − zp−3)
7 + 28(z − zp−2)

7 z ∈ [zp−2, zp−1]
(z − zp−4)

7 − 8(z − zp−3)
7 + 28(z − zp−2)

7 − 56(z − zp−1)
7 z ∈ [zp−1, zp]

(zp+4 − z)7 − 8(zp+3 − z)7 + 28(zp+2 − z)7 − 56(zp+1 − z)7 z ∈ [zp, zp+1]
(zp+4 − z)7 − 8(zp+3 − z)7 + 28(zp+2 − z)7 z ∈ [zp+1, zp+2]
(zp+4 − z)7 − 8(zp+3 − z)7 z ∈ [zp+2, zp+3]
(zp+4 − z)7 z ∈ [zp+2, zp+3]
0 otherwise.

(7)
When using the equation as hµ = z− zp, the septic B-splines (7) in terms of the variable µ over
[0, 1] can be given as follows:

Hp−3(z) = 1− 7µ+ 21µ2 − 35µ3 + 35µ4 − 21µ5 + 7µ6 − µ7,
Hp−2(z) = 120− 392µ+ 504µ2 − 280µ3 + 84µ5 − 42µ6 + 7µ7,
Hp−1(z) = 1191− 1715µ+ 315µ2 + 665µ3 − 315µ4 − 105µ5 + 105µ6 − 21µ7,
Hp(z) = 2416− 1680µ+ 560µ4 − 140µ6 + 35µ7,
Hp+1(z) = 1191 + 1715µ+ 315µ2 − 665µ3 − 315µ4 + 105µ5 + 105µ6 − 35µ7,
Hp+2(z) = 120 + 392µ+ 504µ2 + 280µ3 − 84µ5 − 42µ6 + 21µ7,
Hp+3(z) = 1 + 7µ+ 21µ2 + 35µ3 + 35µ4 + 21µ5 + 7µ6 − 7µ7,
Hp+4(z) = µ7.

(8)

Therefore, the approximate solution (6) is reduced over the element [xp, xp+1] to the following
form:

ven =

p+4∑
i=p−3

δi(t)Hi(x) . (9)

Substituting Eq.(9) into (5), we obtain∑p+4
j=p−3

∫ 1

0
HiHj

•
δjdµ+

∑p+4
j=p−3

∫ 1

0
H ′

iH
′
j

•
δjdµ+ α

∑p+4
j=p−3

∫ 1

0
H ′

iH
′
jδjdµ+

β
∑p+4

j=p−3

∫ 1

0
HiH

′
jδjdµ+

∑p+4
j=p−3

∑p+4
k=p−3

∫ 1

0
HiHjH

′
kδkδjdµ = 0, p = 0, 1, ...n− 1.

(10)

Here, ”•” refers to the derivative with respect to time. Rewrite (10) in a matrix form

Ae
•
δe +Be

•
δe + αBeδe + βCeδe +De(δe)T δe = 0, (11)

where

Ae
i,j =

∫ 1

0

HiHjdµ, Be
i,j =

∫ 1

0

H ′
iH

′
jdµ, Ce

i,j =

∫ 1

0

HiH
′
jdµ, De

i,j,k =

∫ 1

0

HiHjH
′
kdµ.

The matrices Ae
ij , B

e
ij , C

e
ij are matrices of 8× 8, and the matrix D is 8× 8× 8. The matrix D

is designed to be in the form of 8× 8 as

Ee
i,j =

p+4∑
k=p−3

Dijkδk. (12)

Thus Eq.(11) becomes

(Ae +Be
•
)δe + (αBe + βCe + Ee)δe = 0. (13)

Assembling the element matrix (13), we get

(A+B
•
)δ + (αB + βC + E)δ = 0, (14)
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where A,B,C,E are obtained from the element matrices Ae, Be, Ce, Ee, respectively. Applying

the forward finite difference formula,
•
δ = δn+1−δn

∆t
, with the Crank-Nicolson scheme δ = δn+1+δn

2

to Eq.(14), we obtain

[2A+ (2 + α∆t)B +∆t(βC + E)] δn+1 = [2A+ (2− α∆t)B −∆t(βC + E)] δn. (15)

3 Numerical Examples

In this section, we explain the effectiveness of the proposed method through two examples. The
results have been tested using the error norms

L2 =
∥∥vexact − vnum

∥∥
2
=

√√√√h

N∑
j=0

∣∣vexactj − vnum
j

∣∣2 , L∞ = max
j

∣∣∣vexact

j − vnum
j

∣∣∣ .
Example 1

Take equation (1) at α = β = 1, with the following initial condition:

v(x, 0) = sin(x) .

The exact solution is given by

v(x, t) = e−t sin(x) .

The boundary conditions are chosen from the exact solution. The obtained results are com-
pared with the exact solution by evaluating L2 and L∞error norms at different values of time.
Moreover, the results are compared with the results in [15] [23], which are shown in Table 1. In
Figures 1 and 2, we plotted the exact and numerical solutions of Example 1, and it turns out
that the two plots are very close to each other.

T L2 L∞

The proposed method 1 3.02235× 10−7 1.811223× 10−10

2 5.9976× 10−7 4.55663× 10−10

5 9.5589× 10−7 2.996753× 10−9

10 1.86532× 10−6 8.76521× 10−9

[15] 1 2.976712× 10−6 1.906127× 10−9

2 4.675453× 10−6 3.745931× 10−9

5 1.876409× 10−5 2.996753× 10−8

10 2.318245× 10−5 4.906127× 10−8

[23] 1 4.238861× 10−3 8.732152× 10−4

2 2.74893× 10−3 4.720312× 10−4

5 1.009326× 10−2 3.258217× 10−3

10 3.112871× 10−2 2.531897× 10−3

Table 1: Errors between the numerical and exact solutions in Example 1, at different times.
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,

Figure 1: Numerical and exact solutions in Example 1 at −20 ≤ x ≤ 20, and 0 ≤ t ≤ 1 . Left:
Exact solution; right: Numerical solution.

,

Figure 2: Comparison between the exact and approximate solution in Example 1 at t = 1.

Example 2

Take equation (1) at α = 0, β = 1, the initial condition is given by

v(x, 0) = sech2(
x

4
) .

The exact solution is

v(x, t) = e−t sin(
x

4
− t

3
) .

In Figure 3, the numerical and exact solutions are plotted. The obtained numerical results
for Example 2 are compared with the exact solution at different values of h, k and t and are
presented in Table 2. Again, it turns out that the results obtained using the proposed method
are more accurate when compared with the results in [13], [15], [22].
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h k t Absolute error

The proposed method 0.1 0.1 1 3.78786× 10−9

0.1 0.1 5 9.746302× 10−9

0.05 0.1 1 3.911113× 10−11

0.05 0.1 5 7.55322× 10−10

[15] 0.1 0.1 1 1.906512× 10−8

0.1 0.1 5 6.746302× 10−8

0.05 0.1 1 5.650921× 10−10

0.05 0.1 5 1.0774219× 10−9

[22] 0.1 0.1 1 6.479231× 10−2

0.1 0.1 5 4.209547× 10−2

0.05 0.1 1 1.226197× 10−3

0.05 0.1 5 2.626195× 10−3

[13] 0.1 0.1 1 4.783312× 10−4

0.1 0.1 5 1.622166× 10−4

0.05 0.1 1 2.040573× 10−6

0.05 0.1 5 1.192831× 10−6

Table 2: Absolute errors between the numerical and exact solutions in Example 2 at different
values for h, k and t.

,

Figure 3: Numerical and exact solutions in Example 2 at −20 ≤ x ≤ 40, and 0 ≤ t ≤ 1 . Left:
Exact solution; right: Numerical solution.
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4 Conclusions

In this research paper, the BBMB equation has been solved successfully by using the septic
B-spline Galerkin method. From Tables 1 and 2, the obtained numerical results show that
the results are more accurate and close to the exact solutions. The results achieved from the
numerical approach show that proposed technique is better than the methods used in [13], [15],
[22], [23]. Thus, the results illustrated that the proposed method is novel, powerful and efficient.
So, we advise to utilize the method to solve several types of partial differential equations.
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states. Finally, as a control application, active backstepping control has been applied
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1 Introduction

The development of chaotic systems in supply chain management related to the study and
application of chaos theory to understand and manage the complex and unpredictable
behaviors that can emerge within supply chains [1]. Chaos theory is a branch of mathe-
matics that deals with complex, non-linear systems that exhibit sensitive dependence on
initial conditions [2]. In the context of supply chain management, chaotic behavior can
lead to unexpected fluctuations, delays, and disruptions, which can significantly impact
the efficiency and effectiveness of the supply chain [3].

Supply chains are inherently complex systems involving various interconnected enti-
ties such as suppliers, manufacturers, distributors, retailers, and customers [4–6]. The
interactions among these entities can lead to non-linear and unpredictable behaviors [7].
Furthermore, chaotic behavior challenges traditional demand forecasting methods that
assume linear relationships and steady-state conditions [8]. Instead, chaotic systems re-
quire more sophisticated approaches that account for sudden shifts and fluctuations in
demand patterns [9, 10].

Chaos theory has also found applications in the field of economics, particularly in
understanding complex and non-linear dynamics within economic systems such as fi-
nancial markets [11] and bitcoin market [12], business cycles [13], decision making [14]
and policy analysis [15]. Yingjin et al. [16] conducted research on the intricacies of the
bullwhip effect within supply chains. The Bullwhip Effect, characterized by internal non-
linearity, was explored to comprehend its intricacies in the context of order processing
under demand signals. Their aim was to establish a mathematical correlation connecting
the bullwhip effect in the supply chain network with fractal and chaotic dynamics. Lei
et al. [17] constructed a three-tier network for a supply chain using the dynamic and
chaotic Lorenz model. They examined a nonlinear model for a three-level supply chain,
which, under specific circumstances, can manifest as a set of chaotic Lorenz equations.
They introduced the concept of synchronizing a chaotic supply chain network through
the application of the RBF neural network technique. Additionally, the influence of ex-
ternal perturbations on this model was explored. Xu et al. [18] proposed an adaptive
super-twisting (STW) sliding mode control (SMC) algorithm to manage the chaotic sup-
ply chain system, they demonstrated that the provided control creation combined with
dynamic analysis is crucial for strategic decision-makers in contemporary supply chain
management.

The main contribition of this work is assessing the stability and dynamic behavior
of a new chaotic supply chain model featuring an absolute nonlinearity and a quadratic
function. This analysis encompassed the use of phase portraits, Poincaré maps, Lyapunov
exponents, and bifurcation diagrams.

Multistability is a complex phenomenon typically observed for chaotic nonlinear dy-
namical systems with the coexistence of different periodic or chaotic attractors for the
same set of system parameters but different values of the initial states [19,20]. In this re-
search work, we also show that the new chaotic supply chain model exhibits multistability
with coexisting chaotic attractors for different initial states.

Finally, as a control application, active backstepping control has been applied to
achieve the complete synchronization of a pair of new chaotic supply chain models taken
as the master and slave systems. The Lyapunov stability theory has been used to achieve
the control result using active backstepping control. MATLAB simulations have been
shown to illustrate the results presented in this research work.
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2 A New Chaotic Supply Chain Model

In 2022, Hamidzadeh et al. [21] defined a chaotic supply chain model as follows:
ẏ1 = y2,

ẏ2 = y3,

ẏ3 = ay1 − by2 − y3 − y21 ,

(1)

where y1 is retailers, y2 is distributors, and y3 is manufacturers, system (1) exhibits
chaotic behavior with the parameter a = 7.5; b = 3.8 and the initial conditions are
y1(0) = 1, y2(0) = 1, y3(0) = 1.

In this work, we propose a chaotic supply chain with an absolute nonlinearity and a
quadratic function, which is modelled as follows:

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = ay1 − by2 − y3 − |y1| − y21 .

(2)

System (2) exhibits chaotic behavior with the parameter a = 8.5; b = 3.8 and the
initial conditions are y1(0) = 0.1, y2(0) = 0.1, y3(0) = 0.1. Using the Wolf algorithm, the
Lyapunov characteristic exponents of the model (2) are LE1 = 0.18109, LE2 = 0.11839
and LE3 = −1.1929. The Kaplan-Yorke dimension of the model (2) is derived as

DKY = 2 +
LE1 + LE2

|LE3|
= 2.251. (3)

Subsequently, we compute the equilibrium positions of the recently introduced chaotic
supply chain model (2). To achieve this, we address the resolution of the subsequent
system of equations 

0 = y2,

0 = y3,

0 = ay1 − by2 − y3 − |y1| − y21 .

(4)

It is a simple calculation to verify that the revised system of the chaotic supply chain
model (2) is found to possess a pair of equilibrium points, specifically determined by

E0 =

00
0

 =

7.50
0

 . (5)

The matrix provided below represents the Jacobian matrix associated with the chaotic
supply chain model (2):

JEi =

 0 0 0
0 0 1

8.5− sign(x)− 2x −3.8 −1

 . (6)

We find that

E0 =

 0 0 0
0 0 1
7.5 −3.8 −1

 , (7)
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which has the characteristics equation as follows:

λ3 + λ2 + 3.8λ− 7.5. (8)

The Jacobian matrix JE0 has the eigenvalues 1.1781, -1.0891±2.2759i. The system
(2) exhibits the Index-1 spiral saddle point, which is unstable. The Jacobian matrix of
the system (2) at E1 = (7.5, 0, 0) is obtained as follows:

E0 =

 0 1 0
0 0 1

−7.5 −3.8 −1

 , (9)

which has the characteristics equation as follows

λ3 + λ2 + 3.8λ+ 7.5 = 0. (10)

The Jacobian matrix JE1 has the eigenvalues -1.5858, 0.2929± 2.1548i. The system
(2) exhibits the Index-2 spiral saddle point, which is unstable.

The Runge-Kutta 4th-order method is a type of the numerical integration technique
that allows one to approximate the solution of an ODE by iteratively stepping through
the independent variable [22]. It is particularly useful when there is no analytical solution
available or when the ODE is too complex to solve directly. By using this method, in
Figure 1, the MATLAB plots are displayed for the chaotic supply chain (2) with (a, b) =
(8.5, 3.8), with the initial conditions Y (0) = (0.1, 0.1, 0.1).

3 Dynamical Analysis of the New Chaotic Supply Chain Model

A bifurcation diagram is a graphical representation used in the field of dynamical systems
and nonlinear mathematics to visualize the behavior of a system as a parameter changes
[23]. It helps to illustrate how the qualitative behavior of a system changes as a parameter
varies, particularly when the system undergoes bifurcations. Meanhwile, the Lyapunov
exponent is a concept from the field of chaos theory and dynamical systems that quantifies
the rate of exponential divergence or convergence of nearby trajectories in a nonlinear
system [24]. It is used to characterize the sensitivity of a system to initial conditions,
which is a fundamental aspect of chaotic behavior.

The behavior of the supply chain system (2) was explored by varying the bifurcation
parameter a within the range of 6 to 9.5. The bifurcation diagram and Lyapunov ex-
ponent diagram of the chaotic supply chain system model (2) are presented in Figures
2(a) and 2(b), respectively. It is evident from these figures that the system (2) showcases
both limit cycles and demonstrates chaotic patterns. Meanwhile, confirming the exis-
tence of a path to chaos through period doubling is straightforward when the parameter
a is increased.

By altering the parameter b within the range of [3.8, 4.8], the behavior of the supply
chain system (2) is explored. Figure 3(a) exhibits the bifurcation diagram, while Figure
3(b) presents the associated Lyapunov exponent spectrum of system (2). These figures
illustrate the system’s capacity to transition from chaotic to periodic behavior. The
presence of a route from chaos to period doubling becomes apparent upon increasing the
value of the parameter b.

A Poincaré map, also known as a Poincaré section or Poincaré surface of section,
is a graphical tool used to study the behavior of chaotic systems and to analyze the
dynamics of a system in a reduced-dimensional space. In addition, the Poincaré map of
supply chain system (2) in Figure 4 exhibits chaotic characteristics.
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(a) (y1, y2) plane (b) (y2, y3) plane

(c) (y1, y3) plane (d) The 3-D space

Figure 1: Chaotic attractors supply chain model (2) using MATLAB in (a) y1 - y2 plane
(b) y2 - y3 plane, (c) y1 - y3 plane and (d) 3D plane.

4 Multistability of the New Chaotic Supply Chain Model

Multistability is a complex phenomenon typically observed for chaotic nonlinear dynam-
ical systems with the coexistence of different periodic or chaotic attractors for the same
set of system parameters but different values of the initial states [19,20]. In this research
work, we also exhibit that the new chaotic supply chain model (2) exhibits multistability
with coexisting chaotic attractors for different initial states.

We fix the parametric values as in the chaotic case, viz. a = 8.5 and b = 3.8. We
choose two initial states as Y0 = (0.1, 0.1, 0.1) and Z0 = (0.5, 0.2, 0.5), and we denote
the corresponding state flows of the new chaotic supply chain model (2) as Y (t) (in blue
color) and Z(t) (in red color), respectively.

Figure 5 shows the multistability with coexiting chaotic attractors of the new chaotic
supply chain model (2), where the blue orbit corresponds to the chaotic attractor for
Y0 = (0.1, 0.1, 0.1) and the red orbit corresponds to the chaotic attractor for Z0 =
(0.5, 0.2, 0.5). In this figure, the parametric values are kept fixed at a = 8.5 and b = 3.8.
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(a) Bifurcation plot (b) LE diagram

Figure 2: (a) Bifurcation plot and (b) Lyapunov exponents diagram of supply chain
model (2) with variation of the parameter a.

(a) Bifurcation plot (b) LE diagram

Figure 3: (a) Bifurcation plot and (b) Lyapunov exponents diagram of supply chain
model (2) with variation of the parameter b.

5 Complete Synchronization of the New Chaotic Supply Chain Models

In this section, we use the active backstepping control method [25] to solve the design
problem of achieving the complete chaos synchronization of a pair of new chaotic supply
chain models taken as the master and slave systems.

As the master system, we take the new chaotic supply chain model given by the jerk
dynamics

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = ay1 − by2 − y3 − |y1| − y21 .

(11)

As the slave system, we consider the new chaotic supply chain model given by the
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Figure 4: Poincaré section of the chaotic supply chain model (2).

(a) (y1, y2) plane (b) (y1, y3) plane

Figure 5: Multistability of the new chaotic supply chain model (2).

jerk dynamics

ż1 = z2,

ż2 = z3,

ż3 = az1 − bz2 − z3 − |z1| − z21 + v.

(12)

In Eq.(12), v is an active backstepping control, which is to be designed in this section.

The error between the chaotic supply chain models (11) and (12) can be defined as
follows:

µ1 = z1 − y1,

µ2 = z2 − y2,

µ3 = z3 − y3.

(13)
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Using the dynamics of the systems (11) and (12), we can compute the error dynamics
as follows:

µ̇1 = µ2,

µ̇2 = µ3,

µ̇3 = aµ1 − bµ2 − µ3 − |z1|+ |y1| − z21 + y21 + v.

(14)

Theorem 5.1 The new chaotic supply chain models (11) and (12) are completely
synchronized for all initial values and in R3 when the active control law v is chosen as

v = −(3 + a)µ1 − (5− b)µ2 − 2µ3 + |z1| − |y1|+ z21 − y21 − kw3, (15)

where k > 0 is a gain constant and w3 = 2µ1 + 2µ2 + µ3.

Proof. We use the active backstepping control method [26] to establish the result in
Theorem 5.1. First, we begin with the Lyapunov function given by

P1(w1) =
1

2
w2

1, (16)

where
w1 = µ1. (17)

Then we get
Ṗ1 = µ1µ̇1 = µ1µ2 = −w2

1 + w1(µ1 + µ2). (18)

In order to simplify our calculations, we define

w2 = µ1 + µ2. (19)

Using (19), we can simplify Eq.(18) as follows:

Ṗ1 = −w2
1 + w1w2. (20)

Next, we define the Lyapunov function given by

P2(w1, w2) = P1(w1) +
1

2
w2

2 =
1

2
w2

1 +
1

2
w2

2. (21)

Then it is easy to show that

Ṗ2 = −w2
1 − w2

2 + w2 (2µ1 + 2µ2 + µ3) . (22)

In order to simplify our calculations, we define

w3 = 2µ1 + 2µ2 + µ3. (23)

Using (23), we can simplify Eq.(22) as follows:

Ṗ2 = −w2
1 − w2

2 + w2w3. (24)

Finally, we define the Lyapunov function given by

P (w1, w2, w3) = P2(w1, w2) +
1

2
w2

3 =
1

2
w2

1 +
1

2
w2

2 +
1

2
w2

3. (25)
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Then we calculate the derivative of P along the error dynamics (14) as follows:

Ṗ = −w2
1 − w2

2 + w2w3 + w3ẇ3 = −w2
1 − w2

2 − w2
3 + w3Z. (26)

A standard calculation yields the following:

Z = (3 + a)µ1 + (5− b)µ2 + 2µ3 − |z1|+ |y1| − z21 + y21 + v. (27)

Substituting the formula given in Eq.(15) for v into Eq.(28), we get Z = −kw3. Then
Eq.(26) can be simplified as follows:

Ṗ = −w2
1 − w2

2 − (1 + k)w2
3. (28)

Hence, we have shown that Ṗ is a quadratic and negative definite function on R3.
Using the Lyapunov stability theory, we conclude that the error dynamics (14) is

globally asymptotically stable.
Hence, the error variables µ1(t), µ2(t), and µ3(t) converge to zero asymptotically as

t → ∞ for all initial error conditions. This completes the proof.

Figure 6: Convergence of the synchronization errors µ1 (t) , µ2 (t) , µ3 (t).

For MATLAB values, we take the values of a and b as in the chaotic case studied in
Section 2, viz. a = 7.5 and b = 3.8. We pick the control gain constant k as k = 20.

The initial values of the master and slave chaotic supply chain systems given in the
equations (11) and (12) are taken as y (0) = (1.7, 5.4, 2.8) and z (0) = (3.6, 1.1, 6.2),
respectively.

Figure 6 shows the convergence of the synchronization errors between the master and
slave chaotic supply chain systems given in the equations (11) and (12), respectively.

6 Conclusions

This study presents a new chaotic supply chain system featuring two unstable equilibrium
points, which are saddle points. The main contribition of this work is assessed stability
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and dynamic behavior for a new chaotic supply chain model featuring an absolute non-
linearity and a quadratic function. The fundamental dynamic properties of the system
are explored using phase portraits, equilibrium analysis, the Kaplan–Yorke dimension,
Lyapunov exponents, and bifurcation analysis. Our investigations reveal that the new
chaotic supply chain system demonstrates both periodic and chaotic behaviors. Using
the active backstepping control method, we derived a new control law for achieving the
complete synchronization between the new chaotic supply chain models taken as the mas-
ter and slave chaotic systems. In the future research, we will investigate the robustness of
the proposed control method under various disturbances and uncertainties in the supply
chain system. This could involve analyzing the performance of the control method in the
presence of external factors that may affect the stability and synchronization.
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Abstract: In this paper, we consider some sufficient conditions to guarantee the
unique solvability of the new general absolute value equations (NGAVE), Ax−|Bx| =
b, (A, B ∈ Rn×n, b ∈ Rn). Besides Picard’s iterative method for solving the NGAVE,
a generalized Newton method is also proposed for solving the NGAVE. Moreover,
under suitable assumptions, we show that the proposed methods are globally linearly
convergent. We also report some numerical results of the proposed method for solving
the NGAVE, which show the efficiency of our proposed methods.
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1 Introduction

In this paper, we consider new general absolute value equations (abbreviated as NGAVE)
of the type

Ax− |Bx| = b, (1)

where A,B ∈ Rn×n are given matrices, b ∈ Rn, and |Bx| is a vector whose i-th entry
is the absolute value of the i-th entry of Bx. If B = I is the identity matrix, then the
NGAVE (1) can be reduced to the type

Ax− |x| = b. (2)

∗ Corresponding author: mailto:Khaldi_m2007@yahoo.fr

© 2024 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua286

mailto: Khaldi_m2007@yahoo.fr
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (3) (2024) 286–297 287

Moreover, the system (2) is a special case of the generalized absolute value equation
(GAVE) of the following form:

Ax−B |x| = b, (3)

where B ∈ Rn×n, the last one was introduced by Rohn [14] and investigated in a more
general context by Mangasarian and Meyer (see [9]). Other studies for the AVE can be
found in [1,5,6,11,13,16]. The AVE (2), GAVE (3) and NGAVE (1) have received much
attention from the optimization community. It is currently an active research topic due
to its broad application in many areas of scientific computing and engineering. For in-
stance, linear complementarity, linear programming, convex quadratic programming and
bi-matrix games can be equivalent to the NGAVE(1). The research effort can be summa-
rized to the following two aspects. One is purely theoretical analysis. Authors focus on
the reformulations of AVE (2), GAVE (3) and NGAVE (1) as different equivalent prob-
lems because determining the existence and uniqueness of a solution of the NGAVE (1)
is an NP-hard problem because of the nonlinear and non-differentiable term |Bx| in the
NGAVE (1). For the unique solution of NGAVE (1), some necessary and sufficient condi-
tions were presented in [17]. The other one is the numerical solvability of AVEs. Recently,
several algorithms have been designed to solve the AVE and GAVE, see e.g., [4,7,12] and
the references therein. For example, Mangasarian in [10] proposed a semi-smooth New-
ton method for solving the AVE, and under suitable conditions, he showed the finite and
linear convergence to a solution of the AVE. However, other numerical approaches focus
on reformulating the AVE as a horizontal linear complementarity problems (HLCP) (see
Achache [3]), where they introduce an infeasible path-following interior-point method for
solving the AVE by using equivalent reformulations as an HLCP. Recently, Achache and
Anane [2] have presented Picard’s iterative fixed point method for getting the solution
of the uniquely solvable GAVE. Under some suitable conditions, they showed that the
proposed method is globally linearly convergent.

The goal of this paper is twofold. First, we present some weaker sufficient conditions
that guarantee the unique solvability of the NGAVE (1). Second, for its numerical solu-
tion, we propose a generalized Newton method. In particular, under a mild assumption,
we show that this method is always well-defined and the generated sequence converges
globally and linearly to the unique solution of the NGAVE from any starting initial
point. Finally, numerical results are provided to illustrate the efficiency of our proposed
algorithm for solving the NGAVE. In addition, a numerical comparison is made with an
available method.

The outline of this paper is as follows. The main results of the unique solvability of
the NGAVE are stated in Section 2. In Section 3, Picard’s iterative method for solving
the NGAVE is presented. In Section 4, a generalized Newton method is proposed for
solving the NGAVE. Moreover, under suitable conditions, the global convergence to the
unique solution is proved. In Section 5, some numerical results are provided to show the
efficiency of the proposed algorithm. Finally, a conclusion and some remarks are drawn
in the last section of the paper.

At the end of this section, some notations are presented. Let Rn×n be the set of all
n×n real matrices. The scalar product and the Euclidean norm are denoted, respectively,
by xT y, x, y ∈ Rn and ∥x∥ =

√
xTx. Recall that a subordinate matrix norm for A ∈

Rn×nis defined as follows: ∥A∥ := max {∥Ax∥ : x ∈ Rn, ∥x∥ = 1} , this definition implies

∥Ax∥ ≤ ∥A∥ ∥x∥ , ∥AB∥ ≤ ∥A∥ ∥B∥ , ∀A,B ∈ Rn×n andx ∈ Rn.

The sign(x) denotes a vector with the components equal to -1, 0 or 1 depending on
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whether the corresponding component is negative, zero or positive. In addition, D(x) :=
Diag(sign(x)) will denote a diagonal matrix corresponding to sign(x). The absolute
value of a matrix A = (aij) ∈ Rn×n and the vector of all ones are denoted by |A| =
(|aij |) ∈ Rn×n and e ∈ Rn, respectively. σmin(A), σmax(A) represent, respectively, the
smallest and the largest singular value of the matrix A. As is well known, σ2

min(A) =
min∥x∥=1 x

TATAx, and σ2
max(A) = max∥x∥=1 x

TATAx. Finally, a matrix A ∈ Rn×n is
positive definite if for a nonzero vector x, xTAx > 0, and the inverse of a non singular
matrix A is denoted by A−1.

2 The Main Results

In this section, some conditions to guarantee the unique solution of the NGAVE (1) are
presented. First, for given matrices A,B ∈ Rn×n and for any diagonal matrix D ∈ Rn×n

whose diagonal elements are ±1 and 0, we define the matrix (A −DB) ∈ Rn×n. Then
to achieve our main results, the following lemma is required.

Lemma 2.1 Each of three conditions below implies the non singularity of (A−DB).
1. σmin(A) > σmax(B),
2.

∥∥A−1
∥∥ ∥B∥ < 1, provided A is non singular,

3. the matrix ATA− ∥B∥2 I is positive definite.

Proof. For the first claim, assume that (A−DB) is singular, then

(A−DB)x = 0, for somex ̸= 0.

We then have

σ2
min(A) = min

∥y∥=1
yTATAy ≤ xTATAx = xTBTDDBx

≤ max
∥z∥=1

zTBTDDBz = ∥DB∥2

≤ ∥D∥2 ∥B∥2 ≤ ∥B∥2 = max
∥z∥=1

zTBTBz

= σ2
max(B),

which contradicts the first condition. Hence (A − DB) is non singular. Next, by the
same argument, assume that A is non singular and let a nonzero vector x with ∥x∥ = 1
be such that

(A−DB)x = 0.

Next, because x = A−1DBx, we then have

1 = ∥x∥ =
∥∥A−1DBx

∥∥
≤

∥∥A−1
∥∥ ∥D∥ ∥B∥ ∥x∥

≤
∥∥A−1

∥∥ ∥B∥ ,

which leads to a contradiction and hence (A−DB) is non singular. For the last claim,
assume on the contrary that (A − DB) is singular, then for a nonzero vector x with
∥x∥ = 1, we have

(A−DB)x = 0.
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As Ax = DBx, we then have

xTATAx− ∥B∥2xTx = xT (DB)TDBx− ∥B∥2xTx

= ∥DBx∥2 − ∥B∥2xTx

≤ ∥D∥2 ∥B∥2 ∥x∥2 − ∥B∥2xTx

≤ ∥B∥2 − ∥B∥2 = 0,

and consequently,
xTATAx− ∥B∥2xTx ≤ 0.

This contradicts the fact that the matrix ATA − ∥B∥2I is positive definite. Hence
(A − DB) is non singular for any diagonal matrix D whose elements are ±1 and 0.
This completes the proof.

The following result guarantees the unique solvability of the NGAVE.

Theorem 2.1 The matrices A and B satisfy
1. σmin(A) > σmax(B),
2.

∥∥A−1
∥∥ ∥B∥ < 1, provided A is non singular,

3. The matrix ATA − ∥B∥2 I is positive definite, then the NGAVE (1) is uniquely
solvable for any b.

Proof. Let y = Bx, then the equation NGAVE (1) is equivalent to{
Ax+ |y| = b,
−Bx+ y = 0.

(4)

The latter system can be expressed as(
A −D (y)
−B I

)(
x
y

)
=

(
b
0

)
, (5)

where D (y) := diag (sign (y)) , y ∈ Rn. Once we find the unique solution of the two-by-
two linear Eq.(5), naturally, the unique solution of NGAVE (1) is obtained as well. To
show that the equation admits a unique solution, it suffices to show that the application
of

F (x, y) =

(
A −D
−B I

)(
x
y

)
is one-to-one for any diagonal matrix D whose elements are ±1 and 0. To do so, we

prove only that the Null F = {0}. For that, let
(
uT , vT

)T ∈ R2n, we have

F (u, v) = 0 ⇒
(

A D
−B I

)(
u
v

)
=

(
0
0

)
⇒

{
Au−Dv = 0,

v = Bu,

⇒
{

(A−DB)u = 0,
v = Bu.

Based on Lemma 2.1, the matrix (A − DB) is non singular for any diagonal matrix D
whose elements are ±1 and 0, then u = 0, and consequently, v = 0. Thus, Null F = {0}
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and so F is one-to-one. Hence, the NGAVE (1) is uniquely solvable for any b. This
completes the proof.

Then it is clear that the NGAVE (1) is uniquely solvable for any b if the matrix of co-
efficients (A−DB) is non singular for any diagonal matrix D whose elements are ±1 or 0.

3 Picard’s Fixed Point Method of NGAVE

In this section, we provide Picard’s fixed point iteration method for computing an approx-
imated solution of the uniquely solvable NGAVE. The principal feature of the method is
the use of the following equivalent scheme for NGAVE (1):

xk+1 = A−1|Bxk|+A−1b, k = 0, 1, 2, · · ·

to find an approximated solution. The details of Picard’s iterative algorithm for solving
the NGAVE (1) are described in Figure 1.

Algorithm 3.1
Input
An accuracy parameter ϵ > 0;
an initial starting point x0 ∈ Rn;
two matrices A and B and a vector b;
set k:=0;

while ∥Axk − |Bxk| − b∥ > ϵ do
begin
compute xk+1 from the linear system xk+1 = A−1(|Bxk|+ b);
k := k + 1;

end;
end.

Figure 1: Picard’s algorithm for the NGAVE.

The convergence of Picard’s fixed point scheme is based on the Banach fixed point the-
orem (see [8]).

Theorem 3.1 Let A be a non singular matrix and if∥∥A−1
∥∥ ∥B∥ < 1,

then the sequence {xk} converges to the unique solution x⋆ of the NGAVE (1) for any
arbitrary x0 ∈ Rn. In this case, the error bound is given by

∥xk+1 − x⋆∥ ≤
∥∥A−1

∥∥ ∥B∥
1− ∥A−1∥ ∥B∥

∥xk+1 − xk∥ , k = 0, 1, 2, · · ·

Moreover, the sequence {xk} converges to the unique solution x⋆ as follows:

∥xk+1 − x⋆∥ ≤
∥∥A−1

∥∥ ∥B∥ ∥xk − x⋆∥ , k = 0, 1, 2, · · ·

Proof. The proof is similar to the one given in [2].
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4 The Proposed Generalized Newton Method for the NGAVE

In this section, we propose a generalized Newton method for solving the NGAVE (1) and
we show its convergence.

Let the function F : Rn −→ Rn be defined as

F (x) = Ax+ |Bx| − b. (6)

The generalized Jacobian ∂F (x) of F (x) is given by

∂F (x) = A−D(Bx)B, (7)

where D (Bx) := diag (sign (Bx)) , x ∈ Rn. The generalized Newton method for finding
a zero of the equation F (x) = 0 after some simplifications consists then of the following
iteration:

(A−D(Bxk)B)xk+1 = b, k = 0, 1, · · ·

The details of the algorithm for solving the NGAVE (1) are described in Figure 2.

Algorithm 4.1
Input
An accuracy parameter ϵ > 0;
an initial starting point x0 ∈ Rn;
two matrices A and B and a vector b;
set k:=0;

while ∥Axk − |Bxk| − b∥ > ϵ do
begin
compute xk from the linear system (A−D (Bxk)B)xk+1 = b;
k := k + 1;

end;
end.

Figure 2: A generalized Newton algorithm for the NGAVE.

Next, following Achache [1, 10], we will study the global convergence of the generalized
Newton method, first, we give the following lemma.

Lemma 4.1 For all x ∈ Rn and y ∈ Rn, we obtain the following results:

∥|x| − |y|∥ ≤ ∥x− y∥ .

Proof. For a detailed proof, see Lemma 5 [10].

Lemma 4.2 Suppose that
∥∥∥(A−DB)

−1
∥∥∥ ≤ 1

2∥B∥ , when ∥B∥ ≠ 0, for any diagonal

matrix D with diagonal elements of ±1or 0. Then the generalized Newton iteration
converges linearly from any starting point to a solution x∗ of the NGAVE (1).

Proof. Let x∗ be a solution of the NGAVE (1), then (A−D (Bx∗)B)x∗ =
b. Note that |Bx∗| = D (Bx∗)Bx∗and |Bxk| = D (Bxk)Bxk. Now, subtracting
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(A−D (Bx∗)B)x∗ = b from (A−D (Bxk)B)xk = b, we obtain

A (xk+1 − x∗) = D (Bxk)Bxk+1 −D (Bx∗)Bx∗ = 0

= D (Bxk) (xk+1 + xk − xk)−D (Bx∗)Bx∗

= |Bxk| − |Bx∗|+D (Bxk)B (xk+1 − x∗ + x∗ − xk)

= |Bxk| − |Bx∗| −D (Bxk)B (xk − x∗) +D (Bxk)B (xk+1 − x∗) .

Hence

(A−D (Bxk)B) (xk+1 − x∗) = |Bxk| − |Bx∗| −D (Bxk)B (xk − x∗) .

Consequently,

(xk+1 − x∗) = (A−D (Bxk)B)
−1

(|Bxk| − |Bx∗|)−D (Bxk)B (xk − x∗) .

By Lemma 4.1, we have

∥xk+1 − x∗∥ = ∥(A−D (Bxk)B)∥−1 ∥B∥ ∥(xk − x∗)∥ − ∥B∥ ∥(xk − x∗)∥ .

Hence,
∥xk+1 − x∗∥ ≤ 2 ∥A−D (Bxk)B∥−1 ∥B∥ ∥(xk − x∗)∥ .

So by the condition ∥∥∥(A−DB)
−1

∥∥∥ ≤ 1

2 ∥B∥
,

it follows that ∥xk+1 − x∗∥ < ∥xk − x∗∥ . Hence the sequence
{
xk

}
converges linearly to

x∗. This completes the proof.
We are now ready to prove our main result of the global convergence. We quote first

the following lemma.

Lemma 4.3 If assumption
∥∥A−1

∥∥ ≤ 1
∥B∥ , when ∥B∥ ≠ 0, holds, then (A−DB) is

nonsingular and ∥∥∥(A−DB)
−1

∥∥∥ ≤
∥∥A−1

∥∥
1− ∥A−1B∥

.

Proof. The first part follows directly from Lemma 2.1. For the proof of the second
part, we have (A−DB)

−1
can be written in the from

(A−DB)
−1

=
(
I −A−1DB

)−1
A−1.

But since
(
I −A−1DB

)−1 (
I −A−1DB

)
= I, it follows that(

I −A−1DB
)−1

= I +
(
I −A−1DB

)−1
A−1DB.

By introducing an induced matrix norm, we get∥∥∥(I −A−1DB
)−1

∥∥∥ ≤ 1

1− ∥A−1∥ ∥D∥ ∥B∥
≤ 1

1− ∥A−1∥ ∥B∥
.

Because ∥∥∥(A−DB)
−1

∥∥∥ =
∥∥∥(I −A−1DB

)−1
A−1

∥∥∥ ,
it follows that ∥∥∥(A−DB)

−1
∥∥∥ ≤

∥∥A−1
∥∥

1− ∥A−1∥ ∥B∥
.

This completes the proof.
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Proposition 4.1 Let
∥∥A−1

∥∥ < 1
3∥B∥ and D (Bxk) ̸= 0 for all k. Then the NGAVE

is uniquely solvable for each b ∈ Rn and the generalized Newton iteration is well-defined
and converges globally from any starting point to a solution x∗ for any solvable NGAVE
(1).

Proof. The unique solvability of NGAVE (1) for any b follows from Theorem 2.1
which requires

∥∥A−1
∥∥ < 1

∥B∥ . Next, by Lemma 4.3, we have

∥∥∥(A−DB)
−1

∥∥∥ ≤
∥∥A−1

∥∥
1− ∥A−1∥ ∥B∥

≤
1

3∥B∥

1− 1
3

=
1

2 ∥B∥
.

Hence, by Lemma 4.2, the sequence generated by the generalized Newton method con-
verges to the unique solution of the NGAVE (1) from any starting point x0. This com-
pletes the proof.

5 Numerical Results

In this section, we give some numerical examples to examine the effectiveness of the
generalized Newton method (GN) for solving the NGAVE (1). All programs were im-
plemented in MATLAB R2016a on a personal PC with 1.40 GHZ AMD E1-2500 APU
Radeon(TM) HD Graphic, 8 GB memory and Windows 10 operating system. The start-
ing point and the unique solution of the NGAVE are denoted, respectively, by x0 and x⋆.
In the tables of numerical results, we display the following notations: ”Iter” and ”CPU”
state for the number of iterations and the elapsed times. In addition, to show the per-
formance of our methods in practice, we compare the obtained numerical results with
those obtained by Picard’s fixed point iteration method. The algorithm is terminated if
the current iterations satisfy RES := ∥Axk − |Bxk| − b∥ ≤ 10−8.

Example 5.1 Consider the problem of NGAVE, where A,B ∈ R10×10 are given by

A =



50 5 −4 −4 −4 −4 −4 −4 −4 −4
5 50 5 −4 −4 −4 −4 −4 −4 −4
−1 5 50 5 −4 −4 −4 −4 −4 −4
−1 −1 5 50 5 −4 −4 −4 −4 −4
−1 −1 −1 5 50 5 −4 −4 −4 −4
−1 −1 −1 −1 5 50 5 −4 −4 −4
−1 −1 −1 −1 −1 5 50 5 −4 −4
−1 −1 −1 −1 −1 −1 5 50 5 −4
−1 −1 −1 −1 −1 −1 −1 5 50 5
−1 −1 −1 −1 −1 −1 −1 −1 5 50


,
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and

B = 1/2



−51 −5 1 1 1 1 1 1 1 1
−5 −51 −5 1 1 1 1 1 1 1
1 −5 −51 −5 1 1 1 1 1 1
1 1 −5 −51 −5 1 1 1 1 1
1 1 1 −5 −51 −5 1 1 1 1
1 1 1 1 −5 −51 −5 1 1 1
1 1 1 1 1 −5 −51 −5 1 1
1 1 1 1 1 1 −5 −51 −5 1
1 1 1 1 1 1 1 −5 −51 −5
1 1 1 1 1 1 1 1 −5 −51


.

Applying Theorem 2.1, we have
∥∥A−1

∥∥ ∥B∥ = 0.9166 < 1, then this problem is
uniquely solvable for any b. For this example, we take

b = [54, 54, 54, 54, 54, 54, 54, 54, 54, 54]T .

Our starting point for this example is taken as

x0 = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
T
.

The exact unique solution of this problem is given by

x∗ = [3.653, 3.008, 3.154, 2.9412, 2.8306, 2.692, 2.567, 2.4604, 2.2705, 2.5987]T .

The obtained numerical results are stated in Table 1.

Algorithms→ Picard’s Algorithm GN Algorithm
Iter 5 2
CPU 0.032344 0.014184
RSD 5.9765e− 007 0

Table 1: Numerical results for Example 5.1.

Example 5.2 The hydrodynamic equations (equilibrium problem) are modeled as
the following non-differentiable algebraic equations:

Cx+max (0, x) = c,

where C ∈ Rn×n, c ∈ Rn are given. By using the identity

max (a, b) =
1

2
(a+ b+ |a− b|) ,

the hydrodynamic equation can be reformulated as an AVE (2). We have

Cx+
1

2
(x+ |x|) = c ⇔ Ax− |x| − b = 0,

where A = − (2C + I) , B = I and b = −2c.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (3) (2024) 286–297 295

Consider now a random hydrodynamic equation, where C ∈ Rn×n and c are given by

C = (cij) =



−25.5 −2.5 0 · · · 0 0
−2.5 −25.5 −2.5 · · · 0 0

0 −2.5 −25.5 · · · 0
...

...
...

. . .
. . . −2.5 0

0 0 0 · · · −25.5 −2.5
0 0 · · · 0 −2.5 −25.5


,

and

c = [−27,−29.5, ...,−29.5,−27]
T
.

For this example, we have taken two initial points such as

x0
1 = [0.5, ..., 0.5]

T
and x0

2 = [0.9, ..., 0.9]
T
.

The computational results with different size of n are summarized in Table 2.

Algorithms→ Picard’s Algorithm GN Algorithm
Size n x0 Iter CPU Iter CPU
100 x0

1 11 0.064263 2 0.042966
x0
2 12 0.487104 3 0.051011

1000 x0
1 88 26.133205 3 5.022345

x0
2 89 2.149593 3 5.884994

2000 x0
1 335 54.093104 3 45.347198

x0
2 333 54.651662 3 45.064239

Table 2: Numerical results for Example 5.2.

Example 5.3 The matrices A and B are given by

A =



4 −1 0 · · · 0

−1 4
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 4 −1
0 · · · 0 −1 4
0.3 0 0 · · · 0

0 0.3
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0.3 0
0 · · · 0 0 0.3

1 0 0 · · · 0

0 1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 0
0 · · · 0 0 1

1/5 −2 −1/3 · · · 0

−2 1/5
. . .

. . .
...

1/4
. . .

. . .
. . . −1/3

...
. . .

. . . 1/5 −2
0 · · · 1/4 −2 1/5



.



296 M. KHALDI AND M. ACHACHE

B = (1/n)



−2 −1 1/5 · · · 1/5

0.4 −2
. . .

. . .
...

3
. . .

. . .
. . . 1/5

...
. . .

. . . −2 −1
3 · · · 3 0.4 −2

−12 0 5 · · · 0

0 −12
. . .

. . .
...

1/5
. . .

. . .
. . . 5

...
. . .

. . . −12 0
0 · · · 1/5 0 −12

−1 0 0 · · · 0

0 −1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −1 0
0 · · · 0 0 −1
−2 −1 1/5 · · · 0

0.4 −2
. . .

. . .
...

3
. . .

. . .
. . . 1/5

...
. . .

. . . −2 −1
3 · · · 3 0.4 −2



.

b = [5,−2, . . . , 5,−2]
T
.

The obtained numerical results for different size of n, are summarized in Table 3.

Algorithms→ Picard’s Algorithm GN Algorithm

Size n Iter CPU Iter CPU

4 40 0.025384 2 0.040067

8 23 0.028198 2 0.028242

40 26 0.060005 3 0.032638

80 22 0.113059 2 0.056422

200 25 0.560619 3 0.210737

400 30 5.126521 2 1.211867

1000 ⋆ ⋆ 3 21.045136

Table 3: Numerical results for Example 5.3.

6 Conclusion

This paper presents a theoretical analysis and numerical study for solving new general
absolute value equations (NGAVE). In the first part, we have presented some weaker
sufficient conditions for the unique solvability of the NGAVE. For solving this NGAVE,
we applied the generalized Newton method. In particular, the sufficient conditions for
the convergence of our algorithm are studied. The obtained numerical results deduced
from the testing examples illustrate that the suggested algorithms are efficient and valid
to solve the NGAVE problems. Finally, an interesting topic of research in the future is
solving the NGAVEs by introducing the Splitting method.
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1 Introduction

Over the last decades, there has been a great interest in the study of the chaotic behavior
in deterministic systems. There are two leading applications in the chaos theory: chaos
control and chaos synchronization. The emergence of these two areas in the study of non-
linear systems is due to the classical chaos control theory by Ott, Grebogi and Yorke [3]
and chaos synchronization by Pecora and Carroll [7], followed by several types of syn-
chronization that have been studied, namely generalized synchronization [9], projective
synchronization [4], phase synchronization [14], anti-synchronization [8], etc.

Chaos, control and synchronization have received much attention due to their ap-
plications in many areas such as secure communication [11], biomedical engineering [2],
ecological systems [1] and some other fields.

Lots of literature have studied the control, synchronization and anti-synchronization
between two identical systems via classical control techniques, including PC and OGY
methods, nonlinear optimal control [5], active control [15], adaptive control [12,13], etc.

In this paper, the first case obtained after a systematic computer search from the
Sprott case A with a line equilibrium is chosen to illustrate the proposed techniques.
We design state control laws to stabilize the new chaotic system around the unstable
periodic solutions or unstable equilibrium points. On the other hand, we use the adaptive
control method to synchronize two new identical systems with a line equilibrium. Chaos
synchronization investigates the linking of the trajectory of one system to the other
system with the same parameter values, the two coupled chaotic systems are called
synchronized if the error system converges to zero as time goes to infinity. Similarly,
two coupled chaotic systems are called anti-synchronized if the sum system converges
to zero as time goes to infinity, we demonstrate the effectiveness and validity of the
proposed adaptive stabilization, synchronization and anti-synchronization schemes for
the new chaotic system with a line equilibrium.

The paper is organized as follows. In Section 2, a system description is given. In Sec-
tion 3, we apply the adaptive control for stabilizing the chaotic orbits to the equilibrium
point of the system. In Section 4, we use the adaptive control method to synchronize
two identical systems with unknown parameters. In Section 5, we also build a new adap-
tive controller to anti-synchronize the same new identical chaotic systems. Finally, some
conclusions are given in Section 6.

2 System Description

We consider a general parametric form of the Sprott case A system [6] with quadratic
nonlinearities of the form ẋ = y,

ẏ2 = a1x+ a2yz,
ż2 = a3x+ a4y + a5y

2 + a7xy + a8xz + a9yz.
(1)

This system has a line equilibrium in (0, 0, z) with no other equilibria.
In 2013, after a systematic computer search, six simple chaotic cases LE1−LE6 were

founded [10] with only six terms and all these cases were dissipative. The typical example
(LE1) is given by  ẋ = y,

ẏ = −x+ yz,
ż = −x− axy − bxz,

(2)



300 K. MESBAH AND N. E. HAMRI

where (a, b) ∈ R2.

For (x0, y0, z0) = (0., 0.5, 0.5), the chaotic attractor is shown in Figure 1.

Figure 1: New chaotic system (2) with a = 15 and b = 1. (a) The strange attractor. (b)
Projection on the x-y plane, (c) Projection on the x-z plane and (d) Projection on the z-y plane.

3 Adaptive Control of the New Chaotic System with a Line Equilibrium

3.1 Theoretical results

In this section, we design an adaptive control law for stabilizing the new chaotic system
with a line equilibrium when the parameter values are unknown.

We add controllers to the system (2), then the controlled system is given by ẋ = y + u1,
ẏ = −x+ yz + u2,
ż = −x− axy − bxz + u3,

(3)

where u1, u2 and u3 are the function controllers to be designed using the variables x, y
and z.

In order to ensure that the controlled system (3) converges to the zero equilibrium
asymptotically, we consider the following adaptive control functions:

u1(t) = −y − x,
u2(t) = x− yz − y,

u3(t) = x+ âxy + b̂xz − z,
(4)

where â and b̂ are the estimates of the unknown parameters a and b.
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Substituting the control law (4) into the controlled system (3), we obtain
ẋ = −x,
ẏ = −y,

ż = (â− a)xy + (b̂− b)xz − z.
(5)

Let us now define the parameter errors as follows:

ea = a− â,

eb = b− b̂.

For the derivation of the update law in order to adjust the parameter estimates â and
b̂, the Lyapunov approach is used.

Consider the quadratic Lyapunov function

V =
1

2
(x2 + y2 + z2 + e2a + e2b),

which is a positive definite function on R5.
By deriving V , we get

V̇ = −x2 − y2 + z(−eaxy − ebxz − z) + ea(−
·
â) + eb(−

·
b̂). (6)

In view of Eq.(6), the estimated parameters are updated by the following law:
·
â = −zxy + ea,
·
b̂ = −z2x+ eb.

(7)

Substituting (7) into (6), we get

V̇ = −x2 − y2 − z2 − e2a − e2b < 0. (8)

Next, we prove the following result

Theorem 3.1 The new controlled system (3) with unknown parameters is exponen-
tially stabilized by the adaptive control law (4), where the parameter update law is given
by (7).

3.2 Numerical results

For the numerical simulations, the fourth-order Runge-Kutta method with the time step
∆t = 0.001 is used to solve the system (3) with the adaptive control law (4) and parameter
update law (7). The parameters of the system (3) are selected as: a = 15 and b = 1.

Suppose that the initial values of the estimated parameters are â(0) = 0 and b̂(0) = 4.
The initial states of the controlled system (3) are taken as: x(0) = 0.5, y(0) = −0.5 and
z(0) = 1.5. When the adaptive control law (4) and the parameter update law (7) are
used, the controlled system converges to the origin exponentially as shown in Figure 2.
The time evolution of the parameter estimates is shown in Figure 3.



302 K. MESBAH AND N. E. HAMRI

Figure 2: Time responses of the controlled system (3).

Figure 3: Time evolution of the parameter estimates â(t) and b̂(t).

4 Adaptive Synchronization of New Identical Chaotic Systems with a Line
Equilibrium

4.1 Theoretical results

In this section, we design a control law for achieving synchronization between two new
chaotic systems with two unknown parameters a and b.
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The master system is given by ẋ1 = y1,
ẏ1 = −x1 + y1z1,
ż1 = −x1 − ax1y1 − bx1z1.

(9)

The slave system is given by ẋ2 = y2 + u1,
ẏ2 = −x2 + y2z2 + u2,
ż2 = −x2 − ax2y2 − bx2z2 + u3,

(10)

where ui(i = 1, 2, 3) are the adaptive control functions to be designed.
It is said that synchronization occurs between master system (9) and slave system

(10) if
lim
t→∞

∥ X2(t)−X1(t) ∥= 0,

where
X1 = (x1, y1, z1),
X2 = (x2, y2, z2).

Now, for our synchronization scheme, let us define error signals between system (9)
and system (10) as  ex(t) = x2(t)− x1(t),

ey(t) = y2(t)− y1(t),
ez(t) = z2(t)− z1(t).

The time derivative of the error signal is ėx(t) = ey + u1(t),
ėy(t) = −ex + y2z2 − y1z1 + u2(t),
ėz(t) = −ex − a(x2y2 − x1y1)− b(x2z2 − x1z1) + u3(t).

(11)

New chaotic systems (9) and (10) can be synchronized asymptotically for any different
initial conditions with the following adaptive controller:

u1(t) = −ey − ex,
u2(t) = ex − y2z2 + y1z1 − ey,

u3(t) = ex + â(x2y2 − x1y1) + b̂(x2z2 − x1z1)− ez.
(12)

Let us now define the parameter errors as

ea = a− â,

eb = b− b̂.

Then  ėx(t) = −ex,
ėy(t) = −ey,
ėz(t) = −ea(x2y2 − x1y1)− eb(x2z2 − x1z1)− ez.

(13)

For the derivation of the update law for adjusting the parameter estimates â and b̂,
let us take the following Lyapunov function candidate:

V =
1

2
(e2x + e2y + e2z + e2a + e2b),
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which is a positive definite function on R5.
By deriving V , we get

V̇ = −e2x − e2y + ez(−ea(x2y2 − x1y1)− eb(x2z2 − x1z1)− ez) + ea(−
·
â) + eb(−

·
b̂). (14)

In view of Eq.(14), the estimated parameter is updated by the following law:
·
â = ez(x2y2 − x1y1) + ea,
·
b̂ = ez(x2z2 − x1z1) + eb.

(15)

Substituting (15) into (14), we get

V̇ = −e2x − e2y − e2z − e2a − e2b < 0. (16)

Next, we prove the following result

Theorem 4.1 The new identical chaotic systems (9) and (10) are exponentially syn-
chronized by the adaptive control law (12), where the parameter update law is given by
(15).

4.2 Numerical results

Numerical simulations are performed to verify the efficiency and feasibility of the con-
troller (12). The Runge-Kutta method is employed with the time step ∆t = 0.001. The
parameters of the system (9) are selected as a = 15 and b = 1. Suppose that the initial

values of the estimated parameters are: â(0) = 0 and b̂(0) = 4. We take the initial values
of the master system (9) as: x1(0) = 0, y1(0) = 0.5 and z1(0) = 0.5. We take the initial
values of the slave system (10) as: x2(0) = 0.5, y2(0) = −1 and z2(0) = 1. Figure 4 shows
the complete synchronization of the identical systems (9) and (10). Figure 5 shows the

time evolution of the parameter estimates â(t) and b̂(t).

5 Adaptive Anti-Synchronization of New Identical Chaotic Systems with a
Line Equilibrium

5.1 Theoretical results

In this section, we design an adaptive control law for achieving the anti-synchronization
of new identical chaotic systems with two unknown parameters.

The master system is given by ẋ1 = y1,
ẏ1 = −x1 + y1z1,
ż1 = −x1 − ax1y1 − bx1z1.

(17)

The slave system is given by ẋ2 = y2 + u1,
ẏ2 = −x2 + y2z2 + u2,
ż2 = −x2 − ax2y2 − bx2z2 + u3,

(18)
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Figure 4: Time series of systems (9) and (10). (a) x1(t) and x2(t). (b) y1(t) and y2(t). (c)
z1(t) and z2(t).

Figure 5: Time evolution of the parameter estimates â(t) and b̂(t).

where ui (i = 1, 2, 3) are the adaptive control fonctions to be designed. The anti-
synchronization error between system (17) and system (18) is defined by

lim
t→∞

∥ X2(t) +X1(t) ∥= 0,

where
X1 = (x1, y1, z1)
X2 = (x2, y2, z2).
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Then  ex(t) = x2(t) + x1(t),
ey(t) = y2(t) + y1(t),
ez(t) = z2(t) + z1(t).

The time derivative of the error signal is ėx(t) = ey + u1(t),
ėy(t) = −ex + y2z2 + y1z1 + u2(t),
ėz(t) = −ex − a(x2y2 + x1y1)− b(x2z2 + x1z1) + u3(t).

(19)

New chaotic systems (17) and (18) can be anti-synchronized asymptotically for any
different initial conditions with the following adaptive controller:

u1(t) = −ey − ex,
u2(t) = ex − y2z2 − y1z1 − ey,

u3(t) = ex + â(x2y2 + x1y1) + b̂(x2z2 + x1z1)− ez.
(20)

Let us now define the parameter errors as

ea = a− â,

eb = b− b̂.

Then  ėx(t) = −ex,
ėy(t) = −ey,
ėz(t) = −ea(x2y2 + x1y1)− eb(x2z2 + x1z1)− ez.

(21)

For the derivation of the update law for adjusting the parameter estimates â and b̂,
let us take the following Lyapunov function candidate:

V =
1

2
(e2x + e2y + e2z + e2a + e2b),

which is a positive definite function on R5.
By deriving V , we get

V̇ = −e2x − e2y − ez(−ea(x2y2 + x1y1)− eb(x2z2 + x1z1)− ez) + ea(−
·
â) + eb(−

·
b̂). (22)

In view of Eq.(22), the estimated parameter is updated by the following law:
·
â = −ez(x2y2 + x1y1) + ea,
·
b̂ = −ez(x2z2 + x1z1) + eb.

(23)

Substituting (23) into (22), we get

V̇ = −e2x − e2y − e2z − e2a − e2b < 0. (24)

Next, we prove the following result.

Theorem 5.1 The new identical chaotic systems are exponentially anti-synchronized
by the adaptive control law (20), where the parameter update law is given by (23).
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Figure 6: Time series of systems (18) and (19). (a) x1(t) and x2(t). (b) y1(t) and y2(t). (c)
z1(t) and z2(t).

Figure 7: Time evolution of the parameter estimates â(t) and b̂(t).

5.2 Numerical results

The Runge-Kutta method is employed with the time step ∆t = 0.001. The parameters
of system (17) are selected as: a = 15 and b = 1. The initial values of the estimated

parameters are â(0) = 0 and b̂(0) = −4. We take the initial values of the master system
(17) as: x1(0) = 0, y1(0) = 0.5 and z1(0) = 0.5. We take the initial values of the
slave system (18) as: x2(0) = 0.5, y2(0) = 0 and z2(0) = 0. Figure 6 shows the anti-
synchronization of the identical systems (17) and (18). Figure 7 shows the time evolution

of the parameter estimates â(t) and b̂(t).
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6 Conclusion

In this paper, based on the Lyapunov stability theory and adaptive control theory, new
results of stabilization, synchronization and anti-synchronization of the new chaotic sys-
tem with a line equilibirum obtained from the Sprott case A are demonstrated. First,
we designed adaptive control laws to stabilize the new chaotic system with unknown pa-
rameters to its unstable equilibrium point at the origin. Then, the synchronization and
anti-synchronization of the new identical chaotic systems with unknown parameters are
also realized. The proposed adaptive control method is very effective to achieve chaos
control, synchronization and anti-synchronization. Numerical simulations are shown to
demonstrate the effectiveness of the controllers in this paper.
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Abstract: In this paper, we study the linear and the nonlinear forms of two–
dimensional Lane–Emden type equations by proving and applying new product and
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tation.

Keywords: two-dimensional Lane–Emden equation; two-dimensional Lane-Emden
system of equations; reduced differential transform method; modified differential trans-
form method; initial value problems.

Mathematics Subject Classification (2010): 35J15, 35J47, 70F15, 35J75.
70K99.

1 Introduction

The linear and nonlinear two-dimensional Lane-Emden type equations are first intro-
duced by Wazwaz, Rach and Duan in [8], as follows:

uxx +
α

x
ux + uyy +

β

y
uy + g(x, y)f(u) = 0, (1)

x > 0, y > 0, α > 0, β > 0,

u(x, 0) = h(x), uy(x, 0) = 0, (2)

where g(x, y)f(u) is a linear or nonlinear term.
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In this paper, we apply reduced and modified differential transform methods for
solving this kind of elliptic problems, with singularities in both x and y, for obtaining
exact solutions, not by multiplying singular equation by xyun, n∈ N, as we have done
in other paper, but by proving new product and quotient properties for the RDTM and
MDTM, which implies a minimum of computation.

L. Maia, G. Nornberg and F. Pacella in [7], introduce a dynamical system approach
for second-order Lane–Emden type problems by defining some new variables that allow us
to transform the radial fully nonlinear Lane-Emden equations into a quadratic dynamical
system. For the one-dimension Lane-Emden equation, the original formal conservation
of specific entropy along streamlines was given by a PDE in the function of t (time) and
r (radius).

2 Definition and Properties of Reduced Differential Transform Method
(RDTM)

We introduce the basic definitions of the reduced differential transform method as follows.

Definition 2.1 If the function u(x, y) is analytic and differentiated continuously with
respect to x and y, in the domain of interest, then let

Uk(x) =
1

k!

(
∂k

∂yk
u(x, y)

)
y=0

, k∈ N, (3)

where the y-dimensional spectrum function Uk(x) is the reduced transformed function.
In this paper, the lowercase u(x, y) represents the original function, while the uppercase
Uk(x) stands for the transformed function.

Definition 2.2 The reduced differential inverse transform Uk(x) of u(x, y) is defined
as follows:

u(x, y) =

∞∑
k=0

Uk(x)y
k. (4)

Then, combining equation (3)and (4), we write

u(x, y) =

∞∑
k=0

1

k!

(
∂k

∂yk
u(x, y)

)
y=0

yk.

Some important properties of RDTM used in this paper, can be readily obtained and are
listed in Table 1.

3 Definition and Properties of Modified Differential Transform Method
(MDTM)

We introduce the basic definitions of the modified differential transform method as follows

Definition 3.1 The modified differential transform of u(x, y) with respect to the
variable y at y0 is defined as

U(x, h) =
1

h!

(
∂h

∂xh
u(x, y)

)
y=y0

, k∈ N, (5)

where u(x, y) is the original function and U(x, h) is the transformed function.
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Original functions Transformed functions
w(x, y) = αu(x, y)± βv(x, y) Wk(x) = αUk(x)± βVk(x)

w(x, y) = xmyn Wk(x) = xmδ(k − n)
w(x, y) = xmynu(x, y) Wk(x) = xmUk−n(x)

w(x, y) = u(x, y)v(x, y) Wk(x) =

k∑
r=0

Ur(x)Uk−r(x)

w(x, y) = [u(x, y)]
3

Wk(x) =

k∑
r=0

r∑
s=0

Uk−r(x)Us(x)Ur−s(x)

w(x, y) =
∂u(x, y)

∂x
Wk(x) =

∂

∂x
Uk(x)

w(x, y) =
∂2u(x, y)

∂x2
Wk(x) =

∂2

∂x2
Uk(x)

w(x, y) =
∂ru(x, y)

∂yr
Wk(x) =

(k + r)!

k!
Uk+r(x)

w(x, y) = eau(x,y) Wk(x) =


eaU0(x) k = 0

a

k−1∑
r=0

r + 1

k
Ur+1(x)Wk−r−1(x) k ≥ 1

Table 1: Fundamental properties of the RDTM.

Definition 3.2 The modified inverse differential transform U(x, h) of u(x, y) is de-
fined as

u(x, y) =

∞∑
h=0

U(x, h)(y − y0)
h
. (6)

Then, combining equations (5) and (7), we write

u(x, y) =

∞∑
h=0

1

h!

(
∂h

∂xh
u(x, y)

)
y=y0

(y − y0)
h
. (7)

When (x, y0) is taken as (x, 0), then (6) can be expressed as

u(x, y) =

∞∑
h=0

U(x, h)yh.

Some important properties of MDTM used in this paper, are listed in Table 2.

4 Theorems and Corollaries

Theorem 4.1

w(x, y) =
u(x, y)

v(x, y)

and V (x, 0) ̸= 0, then the modified differential transform version is

W (x, h) =


U(x, 0)

V (x, 0)
, h = 0,

U(x, h)−
∑h−1

i=0 W (x, i)V (x, h− i)

V (x, 0)
h ≥ 1.
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Original functions Transformed functions
w(x, y) = αu(x, y)± βv(x, y) W (x, h) = αU(x, h) + βV (x, h)

w(x, y) = xmyn W (x, h) = xmδ(h− n)
w(x, y) = xmynu(x, y) W (x, h) = xmU(x, h− n)

w(x, y) = u(x, y)v(x, y) W (x, h) =

k∑
s=0

U(x, s)V (x, h− s)

w(x, y) = [u(x, y)]
3

W (x, h) =

h∑
r=0

r∑
s=0

U(x, h− r)U(x, s)U(x, r − s)

w(x, y) =
∂u(x, y)

∂x
W (x, h) =

∂U(x, h)

∂x

w(x, y) =
∂2u(x, y)

∂x2
W (x, h) =

∂2U(x, h)

∂x2

w(x, y) =
∂u(x, y)

∂y
W (x, h) = (h+ 1)U(x, h+ 1)

w(x, y) =
∂2u(x, y)

∂y2
W (x, h) = (h+ 1)(h+ 2)U(x, h+ 2)

w(x, y)=eau(x,y) W (x, h) =


eaU(x,0) h = 0

a

h−1∑
s=0

s+1

h
U(x, s+1)W (x, h−s−1), h ≥ 1

Table 2: Fundamental properties of the MDTM.

Proof.
v(x, y)w(x, y) = u(x, y).

So, by applying the modified differential transform, we get

k∑
r=0

h∑
s=0

V (x, s)W (x, h− s) = U(x, h).

For h = 0, V (x, 0)W (x, 0) = U(x, 0) gives W (x, 0) =
U(x, 0)

V (x, 0)
.

For h = 1, V (x, 1)W (x, 0) + V (x, 0)W (x, 1) = U(x, 1) .
Then

W (x, 1) =
U(x, 1)− V (x, 1)W (x, 0)

V (x, 0)
.

For h = 2,

W (x, 2) =
U(x, 2)− V (x, 2)W (x, 0)− V (x, 1)W (x, 1)

V (0, 0)
.

Finally,

W (x, h) =
U(x, h)−

∑h−1
i=0 W (x, i)V (x, h− i)

V (x, 0)
, h ≥ 1.
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Corollary 4.1 (MDTM) If

w(x, y) =
xmyn

v(x, y)

and V (x, 0) ̸= 0, then the modified differential transform version is

W (x, h) =


xmδ(n)

V (x, 0)
, h = 0,

xmδ(h− n)−
∑h−1

i=0 W (x, i)V (x, h− i)

V (x, 0)
, h ≥ 1.

Corollary 4.2 (MDTM) If

w(x, y) =
1

v(x, y)

and V (x, 0) ̸= 0, then the modified differential transform version is

W (x, h) =


1

V (x, 0)
, h = 0,

−
∑h−1

i=0 W (x, i)V (x, h− i)

V (x, 0)
, h ≥ 1.

Theorem 4.2 (MDTM) If

w(x, y) =
u(x, y)

xmyn
, (x, y) ̸= (0, 0),

then the modified differential transform version of w(x, y) is

W (x, h) =
U(x, h+ n)

xm
.

Proof. We have

xmynw(x, y) = u(x, y), (x, y) ̸= (0, 0).

From Table 2, we get xmW (x, h− n) = U(x, h). Then

W (x, h) =
U(x, h+ n)

xm
.

Corollary 4.3 (MDTM) If

w(x, y) =
u(x, y)

x
, x ̸= 0,

then the modified differential transform version is

W (x, h) =
U(x, h)

x
.
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Corollary 4.4 (MDTM) If

w(x, y) =
u(x, y)

y
, y ̸= 0.

then the modified differential transform version is

W (x, h) = U(x, h+ 1).

Theorem 4.3

w(x, y) =
u(x, y)

v(x, y)
.

Then the reduced differential transform version is

Wk(x) =


U0(x)

V0(x))
, k = 0,

Uk(x)−
∑k−1

i=0 Wi(x)Vk−i(x)

V0(x))
, k ≥ 1.

Proof. The proof is similar to the previous one (Theorem 4.2).

Corollary 4.5 (MDTM) If

w(x, y) =
xmyn

v(x, y)

and V0(x) ̸= 0, then the reduced differential transform version is

Wk(x) =


xmδ(n)

V0(x)
, k = 0,

xmδ(k − n)−
∑k−1

i=0 Wi(x)Vk−i(x)

V0(x))
, k ≥ 1.

Corollary 4.6 (MDTM) If

w(x, y) =
1

v(x, y)

and V0(x) ̸= 0, then the reduced differential transform version is

Wk(x) =


1

V0(x)
, k = 0,

−
∑k−1

i=0 Wi(x)Vk−i(x)

V0(x))
k ≥ 1.

Theorem 4.4 If

w(x, y) =
u(x, y)

xmyn
, (x, y) ̸= (0, 0),

then the reduced differential transform version of w(x, y) is

Wk(x) =
Uk+n(x)

xm
.
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Proof. We have

xmynw(x, y) = u(x, y), (x, y) ̸= (0, 0).

From Table 3, we get xmWk−n(x) = Uk(x).
Then

Wk(x) =
Uk+n(x)

xm
.

Corollary 4.7 (MDTM) If

w(x, y) =
u(x, y)

x
, x ̸= 0,

then the reduced differential transform version is

Wk(x) =
Uk(x)

x
.

Corollary 4.8 (MDTM) If

w(x, y) =
u(x, y)

y
, y ̸= 0,

then the reduced differential transform version is

Wk(x) =
Uk+1(x)

x
.

5 Applications

5.1 Modified differential transform method

Example 5.1 First, we consider the nonlinear Lane-Emden equation

uxx +
3

x
ux + uyy +

4

y
uy − 14e−u = 0 (8)

subject to the initial conditions

u(x, 0) = 2lnx, uy(x, 0) = 0. (9)

From Table 2 and Corollaries 4.7, 4.8, the modified differential transform version of (8)
is

U(x, h+ 2) =
−1

(h+ 5)(h+ 2)

[
∂2U(x, h)

∂x2 +
3

x

∂U(x, h)

∂x
− 14W (x, h)

]
,

where W (x, h) is the modified differential transform version of e−u (Table 2) such that

W (x, h) =


e−U(x,0) = 1

x2 , h = 0,

−
h−1∑
s=0

s+ 1

h
U(x, s+ 1)W (x, h− s− 1), h ≥ 1.
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Also, the modified differential transform version of initial conditions (9) is

U(x, 0) = 2lnx , U(x, 1) = 0,

then, for h = 0,

U(x, 2) =
−1

10x

[
∂2U(x, 0)

∂x2 +
3

x

∂U(x, 0)

∂x
− 14W (x, 0)

]
=

1

x2
.

For h = 1 (W (x, 1) = 0),

U(x, 3) =
−1

18x

[
∂2U(x, 1)

∂x2 +
3

x

∂U(x, 1)

∂x
− 14W (x, 1)

]
= 0.

For h = 2,

U(x, 4) =
−1

28

[
∂2U(x, 2)

∂x2 +
3

x

∂U(x, 2)

∂x
− 14W (x, 2)

]
=

−1

2x4 ,

where W (x, 2) =
−1

x4
.

For h = 3,

U(x, 5) =
−1

40

[
∂2U(x, 3)

∂x2 +
3

x

∂U(x, 3)

∂x
− 14W (x, 3)

]
= 0.

For h = 4,

U(x, 6) =
−1

54

[
∂2U(x, 4)

∂x2 +
3

x

∂U(x, 4)

∂x
− 14W (x, 4)

]
=

1

3x6
.

Then, by substituting the quantities U(x, h) in Eq.(7), we get the series solution

u(x, y) = 2lnx+
(y
x

)2

− 1

2

(y
x

)4

+
1

3

(y
x

)6

+ . . . (10)

and the exact solution is
u(x, y) = ln

(
x2 + y2

)
. (11)

The solution is also obtained by the Adomian decomposition method in [8].

Example 5.2 Second, we consider the nonlinear Lane-Emden equation

uxx +
3

x
ux + uyy +

3

y
uy − 7u−1 = 0 (12)

subject to the initial conditions

u(x, 0) = x , uy(x, 0) = 0. (13)

From Table 2 and Corollaries 4.7, 4.8, the modified differential transform version of (12)
is

∂2U(x, h)

∂x2 +
3

x

∂U(x, h)

∂x
+ (h+ 4)(h+ 2)U(x, h+ 2)− 7W (x, h) = 0.
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where W (x, h) is the modified differential transform version of u−1 (Corollary 4.2)
such that

W (x, h) =


1

x
, h = 0,

−
∑h−1

i=0 W (x, i)U(x, h− i)

x
, h ≥ 1.

From (13), we get U(x, 0) = x, U(x, 1) = 0, then W (x, 1) = 0.

U(x, h+ 2) =
−1

(h+ 4)(h+ 2)

[
∂2U(x, h)

∂x2 +
3

x

∂U(x, h)

∂x
− 7W (x, h)

]
.

For h=0, we get

U(x, 2) =
−1

8

[
∂2U(x, 0)

∂x2 +
3

x

∂U(x, 0)

∂x
− 7

x

]
=

4

8x
=

1

2x
.

For h = 1, because U(x, 1) = 0, we have W (x, 1) = 0, so

U(x, 3) =
−1

15

[
∂2U(x, 1)

∂x2 +
3

x

∂U(x, 1)

∂x
− 7W (x, 1)

]
= 0.

For h = 2, we have W(x, 2) = −1
2x3 , so

U(x, 4) =
−1

24

[
∂2U(x, 2)

∂x2 +
3

x

∂U(x, 2)

∂x
− 7W (x, 2)

]
=

−3

24x3
=

−1

8x3
.

And

U(x, 5) = 0, U(x, 6) =
1

16x5
.

Then, by substituting the quantities U(x, h) in (7), we get the following series solution:

u(x, y) = x+
1

2

(
y2

x

)
− 1

8

(
y4

x3

)
+

1

16

(
y6

x5

)
+ . . . (14)

And the exact solution is
u(x, y) =

√
x2 + y2. (15)

Example 5.3 We consider now the nonlinear Lane-Emden equation

uxx +
4

x
ux + uyy +

4

y
uy −

(
5 + 4x2y2

) (
x2 + y2

)
u−3 = 0 (16)

subject to the initial conditions

u(x, 0) = 1 , uy(x, 0) = 0. (17)

From (17), we get
U(x, 0) = 1 U(x, 1) = 0.

From Table 2 and Corollaries 4.7, 4.8, the modified differential transform version of (16)
gives

U(x, h+ 2) =
1

(h+ 5)(h+ 2)

[
∂2U(x, h)

∂x2 +
4

x

∂U(x, h)

∂x
− (5x2W (x, h) + 5W (x, h− 2)

+4x4W (x, h− 2) + 4x2W (x, h− 4)

]
,
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where W (x, h) is the modified differential transform version of u−3 (Table 2 ) such that

W (x, h)=


1

U3(x, 0)
= 1, h = 0,

−
h−1∑
i=0

W (x, i)U1(x, h− i), h ≥ 1

U1(x, h)=

h∑
r=0

r∑
s=0

U(x, h− r)U(x, s)U(x, r − s).

Then

W (x, h) =


1

U3(x, 0)
= 1, h = 0,

−
h−1∑
i=0

W (x, i)

h−i∑
r=0

r∑
s=0

U(x, h− i− r)U(x, s)U(x, r − s), h ≥ 1.

For h = 0, we get

∂2U(x, 0)

∂x2 +
4

x

∂U(x, 0)

∂x
+ 10U(x, 2)− 5x2W (x, 0) = 0.

Then

U(x, 2) =
5x2

10
=

x2

2
.

For h = 1,
∂2U(x, 1)

∂x2 +
4

x

∂U(x, 1)

∂x
+ 18U(x, 3)− 5x2W (x, 1) = 0,

where

W (x, 1) = −
0∑

i=0

W (x, i)

1−i∑
r=0

r∑
s=0

U(x, 1− i− r)U(x, s)U(x, r − s)

= −W (x, 0) [U(x, 1)U(x, 0)U(x, 0) + U(x, 0)U(x, 0)U(x, 1) + U(x, 0)U(x, 1)U(x, 0)] = 0

Then 18U(x, 3) = 0. So, U(x, 3) = 0.
For h = 2,

∂2U(x, 2)

∂x2 +
4

x

∂U(x, 2)

∂x
+ 28U(x, 4)− 5x2W (x, 2)− 5W (x, 0)− 4x4W (x, 0) = 0. (18)

We first calculate

W (x, 2) = −
1∑

i=0

W (x, i)

2−i∑
r=0

r∑
s=0

U(x, 2− i− r)U(x, s)U(x, r − s)

= −W (x, 0) [U(x, 2)U(x, 0)U(x, 0) + U(x, 1)U(x, 0)U(x, 1) + U(x, 0)U(x, 0)U(x, 2)

+U(x, 0)U(x, 1)U(x, 1) + U(x, 0)U(x, 2)U(x, 0)] = −
(
x2

2
+

x2

2
+

x2

2

)
=

−3x2

2
.
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Then Eq.(18) becomes

1 + 4 + 28U(x, 4) + 5x2

(
3x2

2

)
− 5− 4x4 = 0.

So,

28U(x, 4) =
−7x4

2
⇒ U(x, 4) =

−x4

8
.

And

U(x, 5) = 0, U(x, 6) =
x6

16
, U(x, 7) = 0, U(x, 8) =

−5x8

128
, . . .

Then, by substituting the quantities U(x, h) in Eq.(7), we get the following series solution:

u(x, y) = 1 +
x2y2

2
− x4y4

8
+

x6y6

16
− 5x8y8

128
+ . . . .

And the exact solution is
u(x, y) =

√
1 + x2y2.

The exact solution is not obtained by the Adomian method in [8], only the approximate
solution is mentioned.

Remark 5.1 The application of the reduced differential transform method gives the
same coefficients of power series and same steps of computation.

Remark 5.2 The nonlinear two-dimensional Lane–Emden system of equations can
be introduced and solved by the RDTM and MDTM using the same computation steps.

uxx +
α

x
ux + uyy +

β

y
uy + f(x, y, v) = 0,

vxx +
γ

x
vx + vyy +

θ

y
vy + g(x, y, u) = 0,

x > 0, y > 0, α > 0, β > 0, γ > 0, θ > 0,

u(x, 0) = h(x), uy(x, 0) = 0, v(x, 0) = k(x), vy(x, 0) = 0.

6 Conclusion

In this paper, the Reduced Differential Transform Method (RDTM) and Modified Dif-
ferential Transformation Method (MDTM) have been successfully applied for obtaining
exact solutions to the nonlinear forms of two–dimensional Lane–Emden type equations,
by proving and applying new product and quotient properties for different differential
transform methods (RDTM and MDTM). This paper is the first to provide an exact
solution by the DTM (Differential transform method) in the case, where the Adomian
method gives an approximative solution. We also introduce the two–dimensional Lane–
Emden system of equations and obtain exact analytic solutions.
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