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Abstract: In this paper, we study the existence of solution for a general class of
strongly nonlinear elliptic problems associated with the differential inclusion β(u) +
A(u)+g(x, u,Du) ∋ f , where A is a Leray-Lions operator from W 1,p

0 (Ω) into its dual,
β is a maximal monotone mapping such that 0 ∈ β(0), while g(x, s, ξ) is a nonlinear
term which has a growth condition with respect to ξ and no growth with respect to
s but it satisfies a sign condition on s. The right-hand side f is assumed to belong
to L∞(Ω).
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1 Introduction

Let Ω be a bounded domain in RN (N ≥ 1) with sufficiently smooth boundary ∂Ω. Our
aim is to show the existence of solutions for the following strongly nonlinear elliptic
inclusion:

(E, f)


β(u) +A(u) + g(x, u,Du) ∋ f in D′(Ω),

u ∈ W 1,p
0 (Ω), g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω),

where A is a Leray-Lions operator from W 1,p
0 (Ω) into its dual W−1,p′

(Ω) (1 < p < ∞)
defined as A(u) = −div(a(x, u,Du)), f ∈ L∞(Ω), β is a maximal monotone mapping
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such that 0 ∈ β(0) and g is a nonlinear lower term having ”natural growth” (of order p)
with respect to Du, with respect to u, we do not assume any growth restrictions, but we
assume the ”sign condition” g(x, s, ξ)s ≥ 0.

The particular instances of the problem (E, f) have been studied for β ≡ 0, Boccardo,
Gallouët and Murat in [7] have proved the existence of at least one solution for the
problem. Let us point out that another work in this direction can be found in [6].

For g ≡ 0, it is known (cf. [5,10,18,20]) that the problem (E, f) has a solution in the
standard sense, the so-called weak solution, that is, a couple (u, b) ∈ W 1,p

0 (Ω) × L1(Ω)
such that b ∈ β(u) a.e. in Ω and∫

Ω

bφ+

∫
Ω

a(x, u,Du) ·Dφ =

∫
Ω

fφ, ∀φ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

In another important work [2], Akdim and Allalou have proved the existence of a
renormalized solution for an elliptic problem of diffusion-convection type in the frame-
work of weighted variable exponent Sobolev spaces

(E)


β(u)− div(a(x,Du) + F (u)) ∋ f in Ω,

u = 0 on ∂Ω.

We also refer the reader to [1,3,4,8,12,13,17,19] for more results on problems in this
direction. One of the motivations for studying (E, f) comes from applications to electro-
rheological fluids (see [16] for more details) as an important class of non-Newtonian fluids.

The present paper is organized as follows. In Section 2, we give assumptions and
the statement of result. The proof of the theorem is given in Section 3, it consists of
the following steps. First, we define approximation equations. We then prove an a
priori estimate in W 1,p

0 (Ω) for the solutions uε of these approximate equations. Finally,
we prove that the truncations Tk(uε) are relatively compact in the strong topology of
W 1,p

0 (Ω), a result which allows us to pass to the limit and obtain the existence result. In
the last Section 4, we will present an example for illustrating our abstract result.

2 Assumptions and Main Result

2.1 Assumptions

Let Ω be a bounded domain in RN (N ≥ 1) with sufficiently smooth boundary ∂Ω and
1 < p < ∞ be fixed.

Let A be a nonlinear operator from W 1,p
0 (Ω) into its dual W−1,p′

(Ω) ( 1p + 1
p′ = 1)

defined by A(u) = −div(a(x, u,Du)), where a : Ω× R× RN → RN is the Carathéodory
function satisfying the following assumptions:
(H1)

a(x, s, ξ) · ξ ≥ λ|ξ|p, where λ > 0, (1)

|a(x, s, ξ)| ≤ α(k(x) + |s|p−1 + |ξ|p−1), where k(x) ∈ Lp′
(Ω), k ≥ 0, α > 0, (2)

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0 for ξ ̸= η ∈ RN . (3)
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Let g : Ω× R× RN → R be the Carathéodory function such that
(H2)

g(x, s, ξ)s ≥ 0, (4)

|g(x, s, ξ)| ≤ h(|s|)(c(x) + |ξ|p), (5)

where h : R+ → R+ is a continuous increasing function and c(x) is a positive function
which is in L1(Ω).

Let β : R → 2R be a set valued, maximal monotone mapping such that 0 ∈ β(0) and
consider
(H3) f ∈ L∞(Ω).

2.2 Main result

Consider the strongly nonlinear elliptic inclusion problem with the Dirichlet boundary
conditions

(E, f)


β(u) +A(u) + g(x, u,Du) ∋ f in D′(Ω),

u ∈ W 1,p
0 (Ω), g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω).

Definition 2.1 A weak solution to (E, f) is a pair of functions (u, b) ∈ W 1,p
0 (Ω) ×

L1(Ω) satisfying b(x) ∈ β(u(x)) a.e. in Ω, g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω)
and

b− div(a(x, u,Du)) + g(x, u,Du) = f in D
′
(Ω).

Our objective is to prove the following existence theorem.

Theorem 2.1 Under the assumptions (H1) − (H3), there exists at least one weak
solution of (E, f) in the sense of Definition 2.1.

3 Proof of Theorem 2.1

Step 1: Approximate problems

From now on, we will use the standard truncation function Tk, k ≥ 0, defined for all
s ∈ R by Tk(s) = max{−k,min{s, k}}.

Let 0 < ε ≤ 1, we introduce the approximate problem

(Eε, f)


βε(T 1

ε
(uε))− div(a(x, uε, Duε)) + gε(x, uε, Duε) = f,

uε ∈ W 1,p
0 (Ω),

where

gε(x, s, ξ) =
g(x, s, ξ)

1 + ε|g(x, s, ξ)|

satisfies

gε(x, s, ξ)s ≥ 0, |gε(x, s, ξ)| ≤ |g(x, s, ξ)|, |gε(x, s, ξ)| ≤
1

ε
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and where βε : R → R is the Yosida approximation of β. Note that, for any u ∈ W 1,p
0 (Ω),

we have

⟨βε(u), u⟩ ≥ 0, |βε(u)| ≤
1

ε
|u| and lim

ε→0
βε(u) = β(u).

We refer the reader to [9] for more details about the maximal monotone mapping.

Since |βε(T 1
ε
(uε))| ≤

1

ε2
and gε is bounded for any fixed ε > 0, there exists at least

one solution uε of (Eε, f) (cf. [14], [15]), i.e., for each 0 < ε ≤ 1 and f ∈ W−1,p′
(Ω),

there exists at least one solution uε ∈ W 1,p
0 (Ω) such that∫

Ω

βε(T 1
ε
(uε))φ+

∫
Ω

a(x, uε, Duε) ·Dφ+

∫
Ω

gε(x, uε, Duε)φ = ⟨f, φ⟩ (6)

holds for all φ ∈ W 1,p
0 (Ω), where ⟨., .⟩ denotes the duality pairing between W 1,p

0 (Ω) and

W−1,p′
(Ω).

Step 2: A priori estimates

Taking uε as a test function in (6), we obtain∫
Ω

βε(T 1
ε
(uε))uε +

∫
Ω

a(x, uε, Duε) ·Duε +

∫
Ω

gε(x, uε, Duε)uε =

∫
Ω

fuε, (7)

as the first term on the left-hand side is nonnegative and since gε verifies the sign condi-
tion, by (1), we have

λ||uε||pW 1,p
0 (Ω)

≤ C||f ||L∞(Ω)||uε||W 1,p
0 (Ω),

where C is a positive constant coming from the Hölder and Poincaré inequalities, then

||uε||W 1,p
0 (Ω) ≤ C1. (8)

Moreover, from (7) and (8), we infer that

0 ≤
∫
Ω

gε(x, uε, Duε)uε ≤ C2. (9)

For δ > 0, we define H+
δ : R −→ R by

H+
δ (r) =


1 if r > δ,
r

δ
if 0 ≤ r ≤ δ,

0 if r < 0.

Clearly, H+
δ is an approximation of sign+

0 .
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We use the test function φ = H+
δ (βε(T 1

ε
(uε))− k) in (6), we obtain∫

Ω

βε(T 1
ε
(uε))H

+
δ (βε(T 1

ε
(uε))− k) +

∫
Ω

a(x, uε, Duε) ·D(H+
δ (βε(T 1

ε
(uε))− k))

+

∫
Ω

gε(x, uε, Duε)H
+
δ (βε(T 1

ε
(uε))− k) =

∫
Ω

fH+
δ (βε(T 1

ε
(uε))− k).

By using (1) and the fact that βε is monotone increasing with βε(0) = 0, we have∫
Ω

a(x, uε, Duε)(H
+
δ )

′

(βε(T 1
ε
(uε))− k)β

′

ε(T 1
ε
(uε)) ·Duε ≥ 0.

Since gε verifies the sign condition, we obtain∫
Ω

gε(x, uε, Duε)H
+
δ (βε(T 1

ε
(uε))− k) ≥ 0.

Consequently, we get∫
Ω

(βε(T 1
ε
(uε))− k)H+

δ (βε(T 1
ε
(uε))− k) ≤

∫
Ω

(f − k)H+
δ (βε(T 1

ε
(uε))− k).

Taking δ → 0 yields ∫
Ω

(βε(T 1
ε
(uε))− k)+ ≤

∫
Ω

(f − k)+. (10)

Similarly, one can show∫
Ω

(βε(T 1
ε
(uε)) + k)− ≤

∫
Ω

(f + k)−. (11)

Combining (10) and (11) gives∫
Ω

(|βε(T 1
ε
(uε))| − k)+ ≤

∫
Ω

(|f | − k)+.

Choosing k > ||f ||∞, we obtain

||βε(T 1
ε
(uε))||∞ ≤ ||f ||∞. (12)

Step 3: Basic convergence results

By (12), there exists b ∈ L∞(Ω) such that

βε(T 1
ε
(uε))

∗
⇀ b in L∞(Ω). (13)

Since uε remains bounded in W 1,p
0 (Ω), we can extract a subsequence, still denoted

by uε, such that

uε ⇀ u weakly in W 1,p
0 (Ω)

and
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uε → u a.e. in Ω.

We already know that for any fixed k ∈ R∗+,

Tk(uε) ⇀ Tk(u) weakly in W 1,p
0 (Ω).

Our objective is to prove that

Tk(uε) → Tk(u) strongly in W 1,p
0 (Ω).

We shall use in (6) the test function

vε = φ(zε),

where

zε = Tk(uε)− Tk(u) and φ(s) = seλs
2

.

We get∫
Ω

βε(T 1
ε
(uε))vε +

∫
Ω

a(x, uε, Duε) ·Dvε +

∫
Ω

gε(x, uε, Duε)vε =

∫
Ω

fvε.

From now on, we denote by η1(ε), η2(ε), ... various sequences of real numbers which
converge to zero when ε tends to zero.

Since vε converges to zero weakly∗ in L∞(Ω), we have∫
Ω

fvε → 0,

this implies that

η1(ε) =

∫
Ω

βε(T 1
ε
(uε))vε +

∫
Ω

a(x, uε, Duε) ·Dvε +

∫
Ω

gε(x, uε, Duε)vε → 0.

Note that∫
Ω

βε(T 1
ε
(uε))vε =

∫
{|uε|≤k}

βε(T 1
ε
(uε))vε +

∫
{|uε|>k}

βε(T 1
ε
(uε))vε.

The fact that the second term on the right-hand side is nonnegative and
χ{|uε|≤k}βε(T 1

ε
(uε)) is uniformly bounded, together with the Lebesgue dominated con-

vergence theorem provide that∫
{|uε|≤k}

βε(T 1
ε
(uε))vε → 0.

This implies that∫
Ω

a(x, uε, Duε) ·Dvε +

∫
Ω

gε(x, uε, Duε)vε ≤ η2(ε).

Using the same arguments as in [7], we obtain

0 ≤
∫
Ω

[a(x, Tk(uε), DTk(uε))− a(x, Tk(uε), DTk(u))] ·D(Tk(uε)− Tk(u)) ≤ η3(ε).
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Finally, a result in [8] (see also [11]) implies

Tk(uε) → Tk(u) strongly in W 1,p
0 (Ω). (14)

Step 4: Passing to the limit

In virtue of (14), we have for the subsequence

Duε → Du a.e. in Ω,

which with

uε → u a.e. in Ω

yields, since a(x, uε, Duε) is bounded in (Lp′
(Ω))N ,

a(x, uε, Duε) ⇀ a(x, u,Du) weakly in (Lp′
(Ω))N (15)

as well as
gε(x, uε, Duε) → g(x, u,Du) a.e. in Ω. (16)

We now use the classical trick in order to prove that gε(x, uε, Duε) is uniformly equi-
integrable.

For any measurable subset E of Ω and for any m ∈ R+, we have∫
E

|gε(x, uε, Duε)| =
∫
E∩{|uε|≤m}

|gε(x, uε, Duε)|+
∫
E∩{|uε|>m}

|gε(x, uε, Duε)|

≤
∫
E

|gε(x, Tm(uε), DTm(uε))|+
1

m

∫
E

gε(x, uε, Duε)uε.

Using (5) and (9), we obtain∫
E

|gε(x, uε, Duε)| ≤ h(m)

∫
E

(c(x) + |DTm(uε)|p) +
C2

m
.

Since the sequence (DTm(uε)) converges strongly in (Lp(Ω))N , the above inequality
implies the equi-integrability of gε(x, uε, Duε).

In view of (16), we thus have

gε(x, uε, Duε) → g(x, u,Du) strongly in L1(Ω). (17)

From (13), (15) and (17), we can pass to the limit in (6):∫
Ω

βε(T 1
ε
(uε))φ+

∫
Ω

a(x, uε, Duε) ·Dφ+

∫
Ω

gε(x, uε, Duε)φ =

∫
Ω

fφ,

we obtain∫
Ω

bφ+

∫
Ω

a(x, u,Du) ·Dφ+

∫
Ω

g(x, u,Du)φ =

∫
Ω

fφ for any φ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Moreover, since gε(x, uε, Duε)uε ≥ 0, gε(x, uε, Duε)uε → g(x, u,Du)u a.e. in Ω and

0 ≤
∫
Ω

gε(x, uε, Duε)uε ≤ C,

by Fatou’s lemma, we have
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g(x, u,Du)u ∈ L1(Ω).

Step 5: Subdifferential argument

It remains to prove that u(x) ∈ D(β(x)) and b(x) ∈ β(u(x)) for almost all x ∈ Ω.
Since β is a maximal monotone graph, there exists a convex, l.s.c and proper function

j : R → [0,∞] such that β(r) = ∂j(r) for all r ∈ R.

According to [9], for 0 < ε ≤ 1, jε : R → R defined by jε(r) =

∫ r

0

βε(s)ds has the

following properties:

i) For any 0 < ε ≤ 1, jε is convex and differentiable for all r ∈ R so that j′ε(r) = βε(r)
for all r ∈ R and any 0 < ε ≤ 1.

ii) jε(r) → j(r) for all r ∈ R as ε → 0.

From i), it follows that for any 0 < ε ≤ 1,

jε(r) ≥ jε(T 1
ε
(uε)) + (r − T 1

ε
(uε))βε(T 1

ε
(uε)) (18)

holds for all r ∈ R and almost everywhere in Ω.
Let E ⊂ Ω be an arbitrary measurable set and χE be its characteristic function. Let

hl : R → R be defined by hl(r) = min(1, (l + 1− |r|)+) for each r ∈ R.
We fix ε0 > 0, multiplying (18) by hl(uε)χE , integrating over Ω and using ii), we

obtain

j(r)

∫
E

hl(uε) ≥
∫
E

jε0(Tl+1(uε))hl(uε) + (r − Tl+1(uε))hl(uε)βε(T 1
ε
(uε)) (19)

for all r ∈ R and all 0 < ε < min(ε0,
1

l
). As ε → 0, taking into account that E is

arbitrary, we obtain from (19)

j(r)hl(u) ≥ jε0(Tl+1(u))hl(u) + bhl(u)(r − Tl+1(u)) (20)

for all r ∈ R and almost everywhere in Ω.
Passing to the limit with l → ∞ and then with ε0 → 0 in (20) finally yields

j(r) ≥ j(u(x)) + b(x)(r − u(x)) (21)

for all r ∈ R and almost everywhere in Ω, hence u ∈ D(β) and b ∈ β(u) for almost
everywhere in Ω.

With this last step, the proof of Theorem 2.1 is concluded.

4 Example

Let Ω be a bounded domain of RN (N ≥ 1). Let us consider the Carathéodory functions

a(x, s, ξ) = |ξ|p−2ξ,

g(x, s, ξ) = ρs|s|r|ξ|p, ρ > 0, r > 0,
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and β is the maximal monotone mapping defined by

β(s) = (s− 1)+ − (s+ 1)−.

It is easy to show that the Carathéodory function a(x, s, ξ) satisfies the growth con-
dition (2), the coercivity condition (1) and the strict monotonicity condition (3). Also,
the Carathéodory function g(x, s, ξ) satisfies the conditions (4) and (5).

Finally, the hypotheses of Theorem 2.1 are satisfied, therefore, for all f ∈ L∞(Ω), the
following problem

β(u)−∆p(u) + g(x, u,Du) ∋ f in D′(Ω),

u ∈ W 1,p
0 (Ω), g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω),

has at least one solution.

5 Conclusion

This paper focuses on establishing the existence of solution for a general class of strongly
nonlinear elliptic problems associated with the differential inclusion β(u) + A(u) +
g(x, u,Du) ∋ f , where A is a Leray-Lions operator from W 1,p

0 (Ω) into its dual, β is
a maximal monotone mapping such that 0 ∈ β(0), while g(x, s, ξ) is a nonlinear term
which has a growth condition with respect to ξ and no growth with respect to s but it
satisfies a sign condition on s. The right-hand side f is assumed to belong to L∞(Ω). In
the future, we aim to expand this study for a measure or L1 sources.
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