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Abstract: In this paper, we discuss the application of an iterative collocation method
based on the Lagrangian polynomials to the numerical solution of a class of nonlinear
Voltera integral equations with constant delay. This application contains, but is not
limited to, many important Voltera delay integral equations that arise in physical and
biological modeling processes and that are widely used in the analysis of dynamical
systems. In addition, the appoximate solution is given in a suitable polynomial spline
space by using explicit formulas without resorting to solving any algebric system.
The proposed technique is efficient and easy to implement. The error analysis of the
proposed numerical method is studied theoreticaly. Finally, illustrative examples are
given to demonstrate the efficiency of the proposed method.
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1 Introduction

In this paper, we study a numerical method for the solution of Volterra integral nonlinear
equations with constant delay τ > 0,

x(t) = f(t) +

∫ t

0

k1(t, s, x(s))ds+

∫ t−τ

0

k2(t, s, x(s))ds, t ∈ I = [0, T ], (1)
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where x(t) = Φ(t), t ∈ [−τ, 0], f , k1, k2 and Φ are the functions being sufficiently smooth.
Equation (1) is frequently encountered in physical and biological modeling processes [1].
The monograph [2] presents a historical survey of mathematical models in biology, which
can be described by Volterra integral equations with constant delays.

Now, some results on the numerical solutions of Volterra integral equations have been
investigated [3–10]. Different methodologies have been proposed to approximate the
solution of (1). For example, Ali et al. [11] proposed a spectral method for pantograph-
type delay integral equations by using the Legendre collocation method. Brunner [2]
applied the polynomial collocation method to approximate the solution of (1). Caliò et
al. [12,13] proposed a deficient spline collocation method, Birem et al. [16] developed an
algorithm for solving first kind two-dimentional Voltera integral equations by using the
collocation method, Horvat [14] used the spline collocation method to find a numerical

solution of (1) in the spline space S
(d)
m+d(ΠN ) and Rouibah et al. [15] provided a new

numerical approach based on the use of continuous collocation Lagrange polynomials for
the numerical solution of nonlinear Volterra integral equations.

On the other hand, the Taylor polynomial method for approximating the solution
of integral equations has been proposed in the recent years. For example, Bellour and
Rawashdeh [17] used the Taylor method to find an approximate solution for first kind
integral equations. Darania and Ivaz [18], Maleknejad and Mahmoudi [19], K. Al-Khaled
and M.H. Yousef applied the Sumudu decomposition method [20], Sezer and Gülsu [21]
applied the Taylor method to certain linear and nonlinear Volterra integral equations.

This paper is concerned with a piecewise polynomial collocation method based on
the Lagrangian polynomials. Our goal is to develop an iterative explicit solution to
approximate the solution of the Volterra integral equation with a constant delay (1).

The main advantages of the current collocation method are:
1. A more direct and convergent algorithm is introduced to compute the approxima-

tion solution and this provides an explicit numerical solution of the equation (1), which
is a basic motivation for using an iterative collocation method.

2. In the current method, there is no algebraic system needed to be solved, which
makes the proposed algorithm very effective, easy to implement and the calculation cost
low.

The rest of the paper is organized as follows. In Section 2, we divide the interval
[0, T ] into subintervals, and we approximate the proposed solution in each interval by
using Lagrange polynomials. Global convergence is established in Section 3, and three
numerical examples are provided in Section 4. Finally, conclusion is given in Section 5.

2 Description of the Collocation Method

Let ΠN be a uniform partition of the interval I = [0, T ] defined by

tin = iτ + nh, i = 0, ..., r − 1, n = 0, ..., N − 1, (2)

where the stepsize is given by
τ

N
= h and τ =

T

r
.

Let 0 ≤ c1 < ...... < cm ≤ 1 be the collocation parameters, and tin,j = tin + cjh,
j = 1, ...,m, i = 0, ..., r − 1, n = 0, ..., N − 1 be the collocation points.

Define the subintervals as σi
n = [tin, t

i
n+1], and σi

N−1 = [tiN−1, t
i
N ]. Denote by πm

the set of all real polynomials of degree not exceeding m. We define the real polynomial
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spline space of degree m as follows:

S
(−1)
m−1(I,ΠN ) = {u : un = u|σi

n
∈ πm−1, n = 0, .., N − 1, i = 0, ..., r − 1}. (3)

It is easy to show that for any y ∈ Cm([0, T ]),

y(tin + sh) =

m∑
j=1

Lj(s)y(t
i
n,j) + ϵn(s), ϵn(s) = hm ym(ζn)(s)

m!

m∏
j=1

(s− cj), (4)

where s ∈ [0, 1] and Lj(v) =
m∏
l ̸=j

v − cl
cj − cl

are the Lagrange polynomials associate with the

parameters cj , j = 1, ...,m.
Inserting (4) into (1), we get

x(tin,j) = f(tin,j) + h
i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, x(t

l
p,v)) + h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, x(t

i
pv))

+ h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, x(t

i
n,v)) + h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, x(t

l
p,v))

+ h

n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , x(t

i−1
p,v )) + h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , x(t

i−1
n,v ))

+ o(hm),

where j = 1, ...,m, i = 0, ..., r − 1, n = 0, ..., N − 1, such that

aj,v =

∫ cj

0

Lv(η)dη

and

bv =

∫ 1

0

Lv(η)dη.

It holds for any u ∈ S−1
m−1(I,ΠN ) that

u(tin + sh) =

m∑
j=1

Lj(s)u(t
i
n,j), s ∈ [0, 1]. (5)

Now, we approximate the exact solution x by u ∈ S−1
m−1(I,ΠN ) such that u(tin,j)

satisfy the following nonlinear system:

u(tin,j) = f(tin,j) + h

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, u(t

l
p,v)) + h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, u(t

i
pv))

+ h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, u(t

i
n,v)) + h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, u(t

l
p,v))

+ h

n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , u(t

i−1
p,v )) + h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , u(t

i−1
n,v )),
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where v = 1, ...,m, n = 0, ..., N − 1, i = 0, ..., r − 1, and u(t) = ϕ(t) ∈ [−τ, 0].

According to the nonlinearity of the previous system, we can use an iterative collo-
cation solution uq ∈ S−1

m−1(I,ΠN ), q ∈ N, to approximate the exact solution of (1) such
that

uq(tin + sh) =

m∑
j=1

Lj(s)u
q(tin,j), s ∈ [0, 1], (6)

where the coefficients uq(tin,j) are given by

uq(tin,j) = f(tin,j) + h

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, u

q(tlp,v))

+ h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, u

q(tipv)) + h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, u

q−1(tin,v))

+ h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, u

q(tlp,v)) + h

n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , u

q(ti−1
p,v ))

+ h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , u

q(ti−1
n,v )),

where the initial values u0(tin,j) ∈ J (J is a bounded interval). The above formula is
explicit and the approximate solution uq is given without needing to solve any algebraic
system.

In the following section, we prove the convergence of the approximate solution uq to
the exact solution x of (1). Moreover, we can show that the order of convergence is m
for all q ≥ m.

3 Convergence Analysis

Here, we assume that the functions k1 and k2 satisfy the Lipschitz condition with respect
to the third variable; i.e., there exists Li ≥ 0 (i = 1, 2) such that

|ki(t, s, y1)− ki(t, s, y2)| ≤ Li|y1 − y2|.

The following lemmas are very important.

Lemma 3.1 (Discrete Gronwall-type inequality [2])

Let {kj}nj=0 be a given non-negative sequence and the sequence {εn} satisfy ε0 ≤ p0
and

εn ≤ p0 +

n−1∑
i=0

kiεi, n ≥ 1,

where p0 ≥ 0, then εn can be bounded by

εn ≤ p0 exp

n−1∑
j=0

kj

 , n ≥ 1.
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Lemma 3.2 (Discrete Gronwall-type inequality [22])

If {fn}n≥0, {gn}n≥0 and {εn}n≥0 are non negative sequences and

εn ≤ fn +

n−1∑
i=0

giεi, n ≥ 0,

then

εn ≤ fn +

n−1∑
i=0

figi exp

(
n−1∑
k=0

gk

)
, n ≥ 0.

The following result gives the existence and uniqueness of the bounded solution for
the nonlinear system (2).

Lemma 3.3 For sufficiently small h, the nonlinear system (2) has a unique solution
u ∈ S−1

m−1. Moreover, the function u is bounded.

Proof. 1. The nonlinear system (2) has a unique solution in ∈ S−1
m−1. We will use

the induction combined with the Banach fixed point theorem.

(i) On the interval σ0
0 = [t00, t

0
1], for j = 1...m, where x(t) = Φ(t) for t ∈ [−τ, 0], we

have

u(t00,j) = f(t00,j) + h

m∑
v=1

aj,vk1(t
0
0,j , t

0
0,v, u(t

0
0,v)) + h

m∑
v=1

aj,vk2(t
0
0,j , t

0
0,v − τ, ϕ(t00,v)).

Let :F 0
0 : Rm → Rm for j = 1...m, so

F 0
0,j(x) = f(t00,j) + h

m∑
v=1

aj,vk1(t
0
0,j , t

0
0,v, xv) + h

m∑
v=1

aj,vk2(t
0
0,j , t

0
0,v − τ, ϕ(t00,v)).

From the Banach fixed point theorem, we have

∥F 0
0 (x)− F 0

0 (y)∥≤ hL1∥x− y∥,

which ensures the existence and uniqueness of u ∈ σ0
0 for h being sufficiently small.

(ii) Suppose that u exists and is unique on each interval σl
k, l = 0, ..., i−1, k = 0, ..., N−
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1, and we show that u exists and is unique on σi
n = [tin, t

i
n+1], j = 1, ...,m. Hence

F i
n,j(x) = f(tin,j)+h

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, u(t

l
p,v))

+ h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, u(t

i
pv))

+ h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, xv)

+ h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, u(t

l
p,v))

+ h
n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , u(t

i−1
p,v ))

+ h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , u(t

i−1
n,v )).

For all i = 0....r − 1, n = 0...N − 1, j = 1...m, we have

∥F i
n,j(x)− F i

n,j(y)∥≤ hL1∥x− y∥,

which ensures the existence and uniqueness of u ∈ σi
n for h being sufficiently small.

2. The solution u is bounded. We have

∣∣u(tin,j)∣∣ ≤ α+ hL1

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣u(tlp,v)∣∣+ hL2

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣u(tlp,v)∣∣

+ hL1

n−1∑
p=0

m∑
v=1

bv
∣∣u(tipv)∣∣+ hL2

n−1∑
p=0

m∑
v=1

bv
∣∣u(ti−1

p,v ))
∣∣

+ hL1

m∑
v=1

aj,v
∣∣u(tin,v)∣∣+ hL2

m∑
v=1

aj,v
∣∣u(ti−1

n,v ))
∣∣ .

Let α = ||f ||+(τ +T +h)(||k1||+ ||k2||) and let yin = max{u(tin,P ), p = 1....m}. We have

yin − hL1y
i
n ≤ α+ hL1

i−1∑
l=0

N−1∑
p=0

ylp + hL2

i−2∑
l=0

N−1∑
p=0

ylp

+ hL2

n−1∑
p=0

yi−1
p + hL2y

i−1
n + hL1

n−1∑
p=0

yip

≤ α+ h(L1 + 3L2)

i−1∑
l=0

N−1∑
p=0

ylp + hL1

n−1∑
p=0

yip.
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Hence, for all h ∈ (0,
1

2L1
], we get

yin ≤ 2α+ hL3

i−1∑
l=0

N−1∑
p=0

ylp + hL4

n−1∑
p=0

yip, (7)

where L3 = 6L2 + 2L1 and L4 = 2L1. Then, by Lemma 3.1, we obtain

yin ≤ (2α+ hL3

i−1∑
l=0

N−1∑
p=0

ylp) exp(τL4)

≤ α2 + hL5

i−1∑
l=0

N−1∑
p=0

ylp.

We put zin = max{yin, n = 0....N − 1}, we have zi ≤ α2 + hL5

∑i−1
l=0 Nzl. Therefore, by

Lemma 3.1, we obtain zi ≤ α2 exp(TL5). So (u(tin,j)) is bounded.
The following result gives the convergence of the approximate solution u to the exact

solution x.

Theorem 3.1 Let f, k1, k2 and Φ be m times continuously differentiable on their
respective domains. Then for sufficiently small h, the collocation solution u converges to
the exact solution x, and the resulting error function e = x−u satisfies ∥e∥L∞(I) ≤ Chm,
where C is a finite constant independent of h.

Proof. We calculate the error between x and the approximate solution u for v =
1, 2, ...m, n = 0, 1, 2, ..., N−1 and i = 0, 1, ..., r−1. By setting e = x−u as the collocation
error, we get

|e(tin,j)| ≤ hL1

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣e(tlp,v)∣∣+ hL2

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣e(tlp,v)∣∣

+ hL1

n−1∑
p=0

m∑
v=1

bv
∣∣e(tipv)∣∣+ hL2

n−1∑
p=0

m∑
v=1

bv
∣∣e(ti−1

p,v ))
∣∣

+ hL1

m∑
v=1

aj,v
∣∣e(tin,v)∣∣+ hL2

m∑
v=1

aj,v
∣∣e(ti−1

n,v ))
∣∣ .

Let ein = max{e(tin,v), v = 1, ...,m}, we have

ein ≤ hL3

i−1∑
l=0

N−1∑
p=0

elp + hL1

n−1∑
p=0

eip + o(hm), where L3 = 3L2 + L1.

Hence, for all h ∈ (0,
1

2L1
], we get

ein ≤ 2hL3

i−1∑
l=0

N−1∑
p=0

elp + 2hL1

n−1∑
p=0

eip + 2o(hm). (8)
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By Lemma 3.1, one can obtain

ein ≤ (2hL3

i−1∑
l=0

N−1∑
p=0

elp + 2o(hm)) exp(2hL1N) ≤ hα

i−1∑
l=0

N−1∑
p=0

elp + chm,

where α = 2hL3 exp(2hL1N).
Let ei = max{ein, n = 0...N − 1}. So

ei ≤ τα

i−1∑
l=0

elp + chm ≤ chm exp(Tα) ≤ Chm.

Thus, the proof is completed by taking C = c exp(Tα). The following result gives the
convergence of the iterative solution uq to the exact solution x.

Theorem 3.2 For any initial condition u0(tin,j) ∈ J , the sequence uq(tin,j) converges
to the exact solution x. Moreover, the following error estimates hold:∣∣uq(tin,j)− x

∣∣ ≤ (hd)q
∣∣(u)0 − x

∣∣+ Cdqhm+q + Chm, (9)

where d = L1 exp(τL1)+rL1 exp(τL1)τ(L1+2L2) exp(τL1) exp(rτ(L1+2L2) exp(τL1)).

Proof. Let (ein)
q = max

∣∣uq+1(tlp,v)− u(tlp,v)
∣∣ v = 1....m. So

(ein)
q+1 ≤ hL1

i−1∑
l=0

N−1∑
p=0

(elp)
q+1 + hL1

n−1∑
p=0

(eip)
q+1 + hL1(e

i
n)

q

+ hL2

i−2∑
l=0

N−1∑
p=0

(elp)
q+1 + hL2

n−1∑
p=0

(ei−1
p )q+1 + hL2(e

i−1
n )q+1

≤ hL3

i−1∑
l=0

N−1∑
p=0

(elp)
q+1 + hL1(e

i
n)

q + hL1

n−1∑
p=0

(eip)
q+1,

where L3 = L1 + 3L2.
Let ei = max{ein, n = 0....N − 1}. This implies

(ein)
q+1 ≤ hL1(e

i)q + τL3

i−1∑
l=0

(el)q+1 + hL1

n−1∑
p=0

(eip)
q+1.

In view of the well-known result on discrete Gronwall inequalities 3.1, we get

(ein)
q+1 ≤ (hL1(e

i)q + τL3

i−1∑
l=0

(el)q+1) exp(τL1)

≤ hL4(e
i)q + L5

i−1∑
l=0

(el)q+1,

where L4 = L1 exp(τL1) and L5 = τL3 exp(τL1). By Lemma 3.2, one can obtain

(ei)q+1 ≤ hL4(e
i)q +

i−1∑
l=0

hL4(e
i)qL5 exp(rL5). (10)
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Let (e)q = max{(ei)q, i = 0, 1, ..., r − 1}, we have

(e)q+1 ≤ hL4(e)
q + hrL4(e)

qL5 exp(rL5),

≤ hd(e)q d = L4 + rL4L5 exp(rL5),

≤ (hd)q
∣∣(u)0 − x

∣∣+ Cdqhm+q,

where j = 1, ...,m, i = 0, ..., r − 1, n = 0, ..., N − 1, q ∈ N∗. This implies∣∣uq(tin,j)− x(tin,j)
∣∣ ≤ ∣∣uq(tin,j)− u(tin,j)

∣∣+ ∣∣u(tin,j)− x(tin,j)
∣∣

≤ (hd)q
∣∣(u)0 − x

∣∣+ Cdqhm+q + Chm.

4 Numerical Examples

In order to verify the theoretical results, we present the following examples with τ = 0.5
and T = 1. All the exact solutions x are already known. In each example, we calculate
the error between x and the iterative collocation solution um.

Example 4.1 Consider the nonlinear Volterra delay integral equation

x(t) = f(t) +

∫ t

0

k1(t, s, x(s))ds+

∫ t−τ

0

k2(t, s, x(s))ds, t ∈ [0, 1], (11)

where k1(t, s, z) = s sin(t+ 2z − s), k2(t, s, z) =
set−z

1 + t
and f is chosen so that the exact

solution is x(t) = 2t+ 1.
The absolute errors for (m,N) = {(4, 4), (5, 5), (6, 6), (8, 8)}, for t = 0, 0.2, ..., 1 are

shown in Table 1. From columns 2, 3, 4, we note that the absolute error reduces as m
increases, and from columns 4, 5, we note that the absolute error reduces as N increases.

t m = 4, N = 5 m = 5, N = 5 m = 7, N = 5 m = 7, N = 10
0.0 0.146× 10−5 0.69× 10−7 0.25× 10−7 0.33× 10−7

0.2 0.145× 10−4 0.342× 10−6 0.68× 10−7 0.6× 10−8

0.4 0.272× 10−4 0.75× 10−7 0.34× 10−7 0.6× 10−8

0.6 0.256× 10−4 0.82× 10−6 0.27× 10−7 0.4× 10−8

0.8 0.193× 10−4 0.20× 10−5 0.59× 10−7 0.56× 10−7

1.0 0.147× 10−3 0.13× 10−4 0.39× 10−6 0.7× 10−7

Table 1: Absolute errors of Example 4.2.

Example 4.2 The given functions in equation (1) are

k1(t, s, z) = 2 cos(t+ z − s)s2,

k2(t, s, z) =
stz

1 + t2
, and x(t) = sin(t) + 1.

The absolute errors for (m,N) = {(2, 5), (4, 5), (5, 5), (6, 10)}, for t = 0, 0.2, ..., 1 are
shown in Table 2. From columns 2, 3, 4, we note that the absolute error reduces as m
increases, and from columns 4, 5, we note that the absolute error reduces as both m and
N increase.



428 K. ROUIBAH, S. KAOUACHE AND A.BELLOUR

t m = 2, N = 5 m = 4, N = 5 m = 5, N = 5 m = 6, N = 10
0.2 0.123× 10−3 0.81× 10−7 0.14× 10−7 0.1× 10−8

0.2 0.472× 10−3 0.16× 10−6 0.17× 10−7 0.2× 10−8

0.4 0.794× 10−3 0.34× 10−6 0.4× 10−8 0.41× 10−7

0.6 0.232× 10−2 0.58× 10−5 0.19× 10−7 0.12× 10−7

0.8 0.813× 10−2 0.83× 10−4 0.312× 10−6 0.52× 10−7

1 0.599× 10−2 0.22× 10−4 0.245× 10−6 0.1× 10−7

Table 2: Absolute errors of Example 4.3.

Example 4.3 ( [23,24]) Consider the following nonlinear Volterra integral equation:

t Method in [23] Method in [24] Our method
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

0.1 1.0× 10−5 1.5× 10−6 1.2× 10−5 2.5× 10−8 9.8× 10−8 5.5× 10−9

0.2 2.4× 10−5 3.2× 10−6 1.6× 10−6 3.4× 10−7 1.4× 10−7 3.3× 10−9

0.3 3.6× 10−5 4.7× 10−6 2.0× 10−4 9.1× 10−7 2.0× 10−7 1.4× 10−8

0.4 4.6× 10−5 5.8× 10−6 2.0× 10−5 1.4× 10−6 2.7× 10−7 1.6× 10−8

0.5 5.2× 10−5 6.6× 10−6 3.8× 10−5 1.8× 10−6 3.5× 10−7 2.2× 10−8

0.6 5.5× 10−5 6.9× 10−6 5.1× 10−5 2.1× 10−6 4.3× 10−7 2.6× 10−8

0.7 5.5× 10−5 6.9× 10−6 7.2× 10−5 1.8× 10−6 5.1× 10−7 3.4× 10−8

0.8 5.2× 10−5 6.4× 10−6 6.4× 10−5 6.4× 10−6 5.6× 10−7 3.2× 10−8

0.9 4.6× 10−5 5.7× 10−6 1.9× 10−5 1.0× 10−4 6.0× 10−7 4.5× 10−8

01 3.9× 10−5 4.7× 10−6 6.3× 10−4 9.2× 10−4 4.6× 10−7 2.4× 10−8

Table 3: Comparison of the absolute errors of Example 4.3

x(t) = 1 + (sin(t))2 −
∫ t

0

3 sin(t− s)(x(s))2ds, t ∈ [0, 1],

which is a particular case of Equation (1), where k1(t, s, z) = −3 sin(t − s)z2 and
k2(t, s, z) = 0. Here x(t) = cos(t) is the exact solution.

The absolute errors for N = 10, 20 and m = 4 at t = 0, 0.1, ..., 1 are displayed in Table
3. The numerical results of the present method are considerably accurate in comparison
with the numerical results obtained in [23, 24]. From Table 3, it is easy to see that
the results obtained by the present method are very superior to those obtained by the
methods in [23,24].

5 Conclusion

In this paper, an iterative collocation method based on Lagrangian polynomials has been
developed to achieve numerical solution of nonlinear Volterra delay integral equations in
a suitable spline space. This method is easy to implement and the coefficients of the
approximation solution are determined by using iterative formulas without the need to
solve any system of algebraic equations. Numerical examples show that the method is
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convergent with a good accuracy. In addition, the results in these examples confirm
the theoretical results. Moreover, from Tables 1 and 2, we note that the absolute error
reduces as N or m increases.
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[13] F. Caliò, E. Marchetti, R. Pavani and G. Micula. About some Volterra problems solved by
a particular spline. Studia Univ. Babes-Bolyai 48 (2003) 45–52.

[14] V. Horvat. On collocation methods for Volterra integral equations with delay arguments.
Mathematical Communications 4 (1999) 93–109.

[15] K. Rouibah, A. Bellour, P. Lima and E. Rawa Shdeh. Iterative continuous collocation
method for Solving nonlinear Volterra integral equations. Kragujevac Journal of Mathe-
matics 64 (4) (2022) 635–648.



430 K. ROUIBAH, S. KAOUACHE AND A.BELLOUR

[16] F. Birem, A. Boulmarka, H. Laib and C. Hennous. An algorithm for solving first-kind two
dimentional voltera integral equations using collocation method. Nonlinear Dynamics and
Systems Theory 23 (5) (2023) 475–486.

[17] A. Bellour and E. Rawashdeh. Numerical solution of first kind integral equations by using
Taylor polynomials. Journal of Inequalities and Special Functions 1 (2) (2010) 23–29.

[18] P. Darania and K. Ivaz. Numerical solution of nonlinear Volterra-Fredholm integro-
differential equations. Computers and Mathematics with Applications 56 (9) (2008) 2197–
2209.

[19] K. Maleknejad and Y. Mahmoudi. Taylor polynomial solution of high-order nonlinear
Volterra-Fredholm integro-differential equations. Applied Mathematics and Computation
2 (2003) 641–653.

[20] K. Al-Khaled and M.H. Yousef. Sumudu decomposition method for solving higher-order
nonlinear Volterra-Fredholm fractional integro-differential equations. Nonlinear Dynamics
and Systems Theory 19 (3) (2019) 348–361.

[21] M. Sezer and M. Gülsu. Polynomial solution of the most general linear Fredholm-Volterra
integro-differential difference equations by means of Taylor collocation method. Applied
Mathematics and Computation 185 (2007) 646–657.

[22] R.P. Agrwal. Difference equations and inequalities: Theory, Methods and Applications.
Second edition. Marcel Dekker, Inc. New York, 2000.

[23] N. Ebrahimi and J. Rashidinia. Collocation method for linear and nonlinear Fredholm and
Volterra integral equations. Appl. Math. Comput. 270 (2015) 156–164.

[24] S.H. Javadi, A. Davari and E. Babolian. Numerical implementation of the Adomian de-
composition method for nonlinear Volterra integral equations of the second kind. Int. J.
Comput. Math. 84 (2007) 75–79.


	Introduction
	Description of the Collocation Method
	Convergence Analysis
	Numerical Examples
	Conclusion

