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1 Introduction

In viscous boundary problems, there is a viscodynamic operator in the Biot poroviscoelas-
tic theory which may be formulated with a fractional derivative (see [9,/10L|13}/14]). The
power law and stretched exponential temporal responses of nonideal capacitors can also
be shown to relate to the electro-elastic and electro-visco-elastic models. A fractional-
order differential equation is a generalized form of an integer-order differential equation.
This one is useful in many areas, e.g., for the depiction of physical, mechanical and bio-
logical models of several phenomena in pure mathematics and applied science. Numerical
analysis (see for more details [5,/15,|16]) is a very important branch of mathematics in
which we analyse and solve sevaral problems which require calculations with different
techniques. The important role of numerical methods for fractional calculus is how to
apply numerical methods for fractional integrals and fractional derivatives (see [2,/44/14]),
for example, finite element methods (FEM), finite difference methods, Multi-Grid meth-
ods (MGM) for fractional partial and ordinary differential equations. The development of
fractional differential equations and their solutions are carried out by using the Simulink
Matlab Program (see for more details [1}/3}7,[17]), which calculates the approximate solu-
tions of fractional differential equations of order o by using the implicit finite difference
scheme (IFDS). The structure of this paper is organized as follows. Section |2| includes
the basic concepts of the implicit finite difference scheme (IFDS) and we present the
steps of discretization and development of the scheme and several techniques of the pro-
posed approach. Section [3| discusses the stability of the approximate scheme presented
in Section 2. In Section [4] we prove the convergence of the approximate scheme for the
fractional differential equations of order a.. In Section [5] we focus on the solvability of
the approximate scheme. Finally, Section [f] includes the examples of specific algorithms
for a variety of boundary and initial conditions and conclusions are presented in Section
7.

2 Discretization and Development of the Implicit Finite Difference Scheme

In this section, we apply the NSFD to obtain the numerical solution for the linear partial
differential equations with time-fractional derivative

%tlf +a(x,t)%(az,t) +c(m,t)g—g =flz,t) 0O<ax<L, t>0, 0<a<l,

U(O’t) = Q(t)’ (1)
u(L,t) = p(t),

u(z,0) = s(x)

Let ¢1(h) and ¢2(k) be two strictly positive functions and [0, L] be the interval of in-
terest. For the numerical scheme, define x; = i¢1(h), where i = 0,M and t; =
Jjo2(k), where j =0, N. The parameters ¢ (h) and ¢o(k) are the space and time steps,
respectively. Now, let us assume that

w(wi,ty) =ul and f(zi,t;) = f} (2)

and , ,
a(zi,tj) =al and c(z,t;) = ¢

?

where uf is the numerical approximation of u(x;,¢;) and fij is the numerical approxima-
tion of f(SCZ, tj).
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There exist different approaches to fractional derivatives [11]. For simplification, we
consider the interval [0, ¢],

t Ug
O Du(a,t) {mi(m)) Jo el dg if 0<a <1, -

o) ug(x,t) if a(z,t) =1.

Initially, as the boundary value problem needs to be discretized to be able to solve , it
is first necessary to discretize the variable-order time-fractional derivative as follow:

Ot i, 1) _ 1 / ug(i,§)
tjt1)) (tj41

otawisti+i) T - azg, t — &)el@ititr) d

1 ! /“*“’“ ue (a4, €)

(1= oz, tj41)) =0/ sk (tjr1— £)e(@itiv1)

de.

Then we obtain

etz ty41) 1 /(s+1)¢2 k) ( ou > dg
(tj+1

ote(@istj+1) o F(]. — O[(l'i,thrl)) 0 spa(k) ag - f)a(wiathrl) ’

The first-order spatial derivative can be approximated by the following expression:
ou >S+l St — gt
- =i 4 A(da(k)). 4
(%) ="+ (@)

Adopting the discrete scheme given in @, we discretize the variable-order time-fractional
derivative as

aa(xi’tﬁl)u(xi,tjﬂ) B 1 J uf“ _ uf_l /(j—s+l)¢z(k) dn
ot @inti+1) D1 —a(wi b)) = o(k)  Jgogsam 0@t
_ EJ: e uj /(N+1)¢2(k) dy
I'(1— (i, tjs1)) — nea (k) ne(@itiv1)’
then we get
80‘(””i’tf+1)u(xi,tj+1) _ ¢)2( ) oz, tjq1) y
ote(@isti+) (1= (@i, tj41)L (1 = a(wi, tj41))
J
(@l (1) ) ploetet)]
n=0

Let n = tj41 —& and having in mind that I'(1+«a) = oI'(8) and expanding the summation
for n = 0, we find

Oootitu(z; tyy1) _ o(k) 0t NS nt1 em
ote(zitit) - I‘(z _ OZ(ZZZZ', tj+1)) [ u; —u; + Z(uz — u; )X (5)

n=1

[(n+ 1)1—a(11:7t.7‘+1) — nl—a(zi,tﬁl)] ] ;
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where 677 (n) = (n41)t-e@tin) _pl-alzotin) i =0 N — 1. We will use the central
difference approximation of space derivative is as follows:

J+1

au(xivthrl) Wit uzfll
= A h)). 6
The second-order spatial derivative can be approximated by the following expression:
82U($i7 tj+1) _ zii - 2uj+1 + uj+1 A(¢2(h)) (7)
0z #1(h) e

Using approximations , @ and , the semi-linear diffusion equation , we obtain

. .

po (k) (@itin1) { 1 4 jontl  jenygjitl uﬂl — 2u;
w—ul 4 ) —u "™ ()] | +al

I'2—a(zi,tj+1)) ! ¢ Z( ‘ o0 m) ' ¢3(h)

Jj+1 +u J+1

(8)

‘uj"rl _ uj-‘rl ] . -
o AL Lty =T M —1 and Vj=1,N — 1,
o1(h) '
where
JIL gd)z( ) ]+1)F(2_0‘(5Eiat]’+1)) W = CJ¢2( )b DT (2 — afwi, tjga))
' ¢1(h) ¢1(h)
pIh = Ga(k)* T (2 — i, ty41)).
The initial and boundary conditions are ug(z;) = s;, Vi = 0,M, and ujJr1 =
¢t w)ft = pitl, Vj = 0, N — 1. We obtain the following approximate scheme for

equation ([1)):

(T,ZjJrl _ ijJrl) j+1 + (1 o g+1)u{+1 + (,,,?Jrl + werl)ugill
_ u _ N 1(uJ n+1
w7 () 4+ ol Vi=T, M —1 and Vj=1,N —1, (9)
udth =gt Wt =p Vi =0,N -1
u) =s;, Vi=0,M.

The coefficients 5f+1(n) (j=0,..,N—1;9=0,.., M) satisfy the following properties:
e P1: /71 (0) = 1.

e P2: 0 <&/ (0) < 1.

3 Stability of the Approximate Scheme

In this section, we use the method of Fourier analysis to discuss the stability of the
approximate scheme @ Consider the following equation:
(rf's'1 — wﬁ'l)uj"r1 +(1- 2Tf+1) gty (r] I+ —I-wa)ufill =
j +1 j—ny i+l 1 +1
ul = 0oy (] T =TS () + ol (10)

Vi=1,M —1 and Vj =1,N — 1.
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Now, we define the following function:

uj(x):{ug, if @, ) <w <z, Vi=LM-1,

0 otherwise,

v’ (x) has the Fourier series expansion

+oo
w(z)= Y &p)e ¥, Vj=0,N,

p=—00

where
27p

L
G0 =7 [ wiae Frdn
L Jo
Assume that the solution of the equation @D has the form

vl = «fje“ehi, (11)

K2

where 6 = 2%”,;12 = —1. Now, replacing in equation , we have

&1 (r] T (e 4 e £l (e — eI 1 — 2]
J
= €j - Z(&j*n«%l - Ej,n)éf“(n)’ (12)
n=1

then we get
. 0h . J .
(1 —4arl™ Sin2(7) + 2pw] T sin(0h) = & =Y (§onir —&-n)d (). (13)

n=1

One can see that equation can be rewritten as

&= Y1 (§onn = §-)d () 14)
1— 407" sin? (%) 4 2007 sin(0R)
; 2) + 2pw " sin(0h)

i

§jv1 =

then we have the following result.

Theorem 3.1 The implicit finite difference scheme (@ is unconditionally stable for
0<B<1idf

3C >0 u'llz =1¢] < Cllu’ll2 = Cl&|, 5=T,N.
Proof. We use proof by recurrence for j = 1, in view of ,

|£1|: 1 .2 gh&J 1 =
1 —4r}sin®(5) + 2pw, sin(6h)

€0
\/16[(@)2 — (w})?]sin®(§) + 8[2(w})? — r}]sin®*(G) + 1

= C?l&l| < C|&

such that C' = maxq_;<a Cf. We assume that the following statement is true:
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and we prove that the following statement is true:

|£j+l‘ < C|£O|a .7 = OaN - ]-7 (16)
we have ) -
€51 ] _‘ = 2on=1&ong1 = &) (1)
" — 47 sin 2 + 2uw! ™ sin(6h)
|£O - Zgl 1(§j—n+1 — Ej—n)ég-i_l(n)‘
V6L )2 — (wf )2 sin® (82) + 8[2(w] )2 — r/ ) sin? (%) + 1

= Clléo =Y (§ont1 — &-n)8] T (n)]

n=1

< Ol + Y (€5-nsal + [€5-n) 167 (n)] < C7 (2N = 1)|&o| < Cléo]

n=1
such that
CcJ = 1 ,
\/16[(rj+1)2 — (w2 sin (%) + 8[2(w! )2 — T sin? () + 1

(2

Vi=0,M and Vj =0,N — 1,

07 = max CJ, C = (2N —1) max CI, ¥j=0,N—1
0<i<M 0<i<

So we find |£;41] < Clél],j =0,1,.., N — 1. The approximate scheme @ is uncondition-
ally stable, which concludes the proof of Theorem

4 Convergence of the Approximate Scheme

In this section, we use the method of Fourier analysis to discuss the convergence of the

approximation error ‘ ‘
el = u(z;,tj) —ul. (17)

K3
Replacing in equation , we obtain

( g+1 _ wfl) ]+1 + (1 _ 27’g+1)€{+1 + (,,,{‘Fl + u)g‘I’l) zill
J
PICREL A UORT (%)

foralli=1,M —1 and j = 1, N — 1. Then the error ez takes the following form:

e = $a(k)* O IT(2 — i, 1)) [A(D2((k)) + A(gr(R))].

Now, we define the grid function e’ (x) by

ej(x): ef, if T2 <T< Tyl Vi=T,M—1and Vj=1,N —1,
0, otherwise,
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and

79

ej(x):{ej if i1 <T<ZTpi, Vi=1,M—1and Vj=1,N —1,

0, otherwise.

Then e™(z) and €"(z) have the Fourier series expansions

—+oo —+oo
)= Y e, d@)= Y Np)e T, Vji=0,N, (19)
p=—00 p=—00
and
I JloN—2TEy I j _2mp,
v;i(p) = I el(x)e” T Tdx,, Ai(p) = I e (x)e” T “dx, (20)
0 0
then
L +oo L +oo
[ @i = 3 )l wd [Cle@Pi= > )P, % =08,
0 oo 0 i
Now, we take the norm in the two previous relations, then we get
M-—1 . “+o0
1713 = > [¢1(h)el> = D |y)°, Vi=0,N, (21)
=1 p=—00
and
M-—1 ) +oo
l€'ll3 =Y 1rell> = > NP, ¥i=0,N. (22)
i=1 m=—oo
Now, we suppose ' ‘ _ A
el =™ and r] = \jet (23)
Replacing in equation , we find
(T (O 4 ) 4 ] T — ) 41— o)
J
= %= Y (Vont1 = %) (n) + A;. (24)
n=1
Equation can be rewritten as
J j+1
Vi~ 2one1 (Vimnt1 — %=n)d] " (n) + A
i1 = 2 > n=1(Yi—n+t J g (25)

1— 471! sin®(%) + 2uw? T sin(6h)

Theorem 4.1 The implicit finite difference scheme @D is convergent for 0 < a < 1
if
le?ll2 = [vs] < C*(¢1(h) + d2(k)), Vi=1,N,
such that
o1(h) + ¢po2(k) — 0 when (h,k)— (0,0).
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Proof. We use the proof by recurrence for j = 1, we have

i~ B
1—4r7 1! sin®(4) + 2uw! ™ sin(6h)
_ 170 + Ao
11— 47t sin®(4) + 2wl sin(6h)|
_ 170 + Ao
V1602 = (wh)?2]sin* (%) + 8[2(w})? — rl]sin®(%) + 1
< 170l + Ao
V1602 — (wh)2]sin (%) + 8[2(w})? — ! sin® (%) +1
Aol

\/16[(7'})2 — (w})?]sin* (%) + 8[2(w})? — rf]sin(G) +1

we have 7o = €? = u(x;,0) — u? = 0. By the convergence of the series on the right-hand

side of , there is a positive constant C; such that

4Cy > 0: ‘6?‘ < Cl((bl(h) —|—¢2(k‘)), Vi=0,M,

then we have

30, > 0: |2 = [Ao| < CIVL(¢1(h) + do(K)).

Subsequently, we obtain

7| < Gl
V161(rD)? = (wh)2]sin® (%) + 8[2(w})? — rl]sin®(%) + 1
< C*(¢1(h) + ¢2(k)).

(¢1(h) + ¢2(k))

Let us write

CiVL

C*= m '
0<i<M \/16[(7"1-1)2 — (w})?] sin4(%) +8[2(w})? —r} sin2(7h) +1

)

We assume that the following statement is true:

751 < C*(¢1(h) + ¢2(K)), Vj=1,N, (26)

and we prove that the following statement is true:

[Vj+1l < C*(p1(h) + ¢2(k)), Vi=1,N, (27)
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then we have

’ Y = o Oyt = =) () +
1 — 477" sin? (%) + 2uw! ™ sin(6h)
n)

_ s = e (mn = -n)0] T () +
11— 47t sin?(2) + 2uw! ™ sin(6h)]

_ = X (gt — %) () + A
V161772 = (d )2 sin (%) + 8[2(w! )2 — T sin? (%) + 1
il + S (| + a1 () 4 [
¢16 P12 (w! )2 sin (%) + 8[2(w! )2 — T sin? (%) + 1
_ C*(2N — 1)(61(h) + (k) + || |
16672 — (w2 sint (%) + 8[2(w! )2 — ) sin?(4) + 1

|Vj+1\ =

By the convergence of the series on the right-hand side of , there is a positive constant
(1 such that

301> 0: [l€d] < Ca(a(k) + ¢ (h)), Vi=0,0 and Vj =0, N,

we obtain

30, >0 ||€]2 = |Aj| < C1VL(pa(k) + ¢1(h)), Vj=0,N.
So
1] < CY ( (2N —1)C* + Clx/f) (¢2(k) + ¢1(h))

<c (c* + {jvl.f ) (o (k) + b1.(h))

= C*(¢a(k) + ¢1(h)),

then we have
1

Cl =
\/16[(r{+1>2 = (w] ™2 sin () + 8[2(w] )2 — ] sin® () + 1

i

Vi=0,M and Vj =0,N — 1,

where _
C? = max C’ and C = (2N —1) ma;}c\/[C'J, Vji=0,N—1,

Oci<M Oci<
such that the constant L is given by

L :( cr(1 *gl)é?N* 1) )2

So we find -
vl < C*(¢1(h) + d2(k)),¥j=1,N. (28)

Therefore the implicit finite difference scheme @ is convergent, which concludes the
proof of Theorem
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5 Solvability of the Approximate Scheme

We have the second result on the solvability of the approximate scheme which is given
by Theorem

Theorem 5.1 The approrimate scheme @ s uniquely solvable.

It can be seen that the corresponding homogeneous linear algebraic equations for the
approximate scheme

a(zq, J j+1 i+1 i+1
Ba () o0ty { J+1_ Z Jmntl s ()] | el wl ) — 2wl )l
L2 - a(wi,tj+1)) — fe % ' ¢3(h)
uj+l _ uJ-‘rl .
e
Vi=1,M —1 and Vj =1,N — 1,
where
P J¢2( yo@tie )T (2 — (s, tj41)) j+1_Cj¢2(k)a(x“tj“)r(2—a(fﬂi,tjﬂ))
2% YWy =6 h
¢1(h) p1(h)
Pl = G (k) @b+ ID(2 — oy, tj41)),
are
(Tg+1 _wg+1) j+1 + (1 2 i+1)ug+1 +( J+1 +'U)J+1)’U,gill
j n+1
L > = e
ul7™M)6I T (n) + J“fﬁl, Vi=1,M—1 and Vj=1,N — 1 (29)

+1 qu+17 g\jl_l :p]+1a V_] _OvNi
u?—si, Vi=0,M.

ou

Proof. Similar to the proof of Theorem [3.I] we can also verify the solutions of
the equations satisfy |[uf]s < C|lu°||, Vi = 1, N, we have u° = 0, so we get
uw/ =0, Vj =1, N. This indicates that the equations have only zero solutions, the
approximate scheme @ is uniquely solvable, which concludes the proof of Theorem

6 Examples and Numerical Experiments

Here, we present different numerical experiments to support the theoretical and numerical
analyses of the previous sections. The following variable-order time-fractional diffusion
equation is considered:

0lu 4 Pu(pt)+ % = f(a,t) O<z <L, t>0, 0<a<l,
w(0,8) = 0, u(1,t) =0, (30)
u(x,0) = 1022(1 — x),

where N=M=N, =50, 100, 150, 200, and we have tested our numerical approximations

sin(z.t)?
— -

by two values of a(z,t). First, we have a(z,t) = But, in the second part,
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a(z,t) = M and the function f(z,t) are used to test our approaches, where
the function f(x,t) is given by
12—o(a,t) f1—a(,b)
TB—a()  TC=a@0)
The exact solution is given by
u(z,t) = 1022(1 — z)(t + 1)

By the implicit finite-difference scheme discretization method, the derivatives can be
approximated as follows.

f(x,t) = 202%(1 — x) +10(—322 — 4z +2)(1 + t)2.

First, we choose the dominator functions in the following form:
¢1(h) = h and ¢o(k) =2(e" —1).
Let now [0, 1] be the interval of inerest we discretise the domain first. We define
z; = i¢1(h) where i =0,N, and t; = jpa(k) where j =0, N,

where ¢o(k) represents the time step size and ¢4 (h) represents the space step length. Let
us assume that
t2—a(aci,tj+1) tl—a(aci,t,qu)

j+1 j+1 j+1
f('r’ta ]-‘rl) fJ - 20$ ( — ) P(?)j— a(xi7tj+1)) + P(2j_ a((Ei,tj+1)) + (31)

+10(—327 — dz; +2)(1 +tj41)7,
qj+1 = Oa (32)
pj-i-l =0, (33)
where uf is the numerical approximation of u(z;,t;) and fij is the numerical approxima-
tion of f(x;,t;).
We obtain the following approximate scheme for equation :

(r7 —w! T - QTfH)ugH + (! +w]+1)uj+1

[ i ) i+1
o =u - J y(ug iyt
w7 (n) + ]+1f3+1, Vi=1,N, —1 and Vj =1,N, — 1 (34)

wyt =gt wt =t Vi =0,N, — 1
u) =s;, Vi= O,Ngj,

where
P i G2 (k)8 )T (2 — alwi, tj11)) Wt = a(k)*t+UD(2 — of@i, t41))
‘ ’ o3 (h) Y ¢1(h)
Pl = o (k) IT(2 — i, t41)), (35)
and

j+1 —a(xq,tj _ —a(xi,tj s _ N N 1
57 n) = (n+ 1) (@iti1) _ pl=e@itiv) vy =0, N, — 1
In this example, we have tested the numerical solution when N=M=N,=50, 100, 150,

200 and «o(z,t) = M But, in the second part of our test, a(x,t) = —W
when N=M=N,=50, 100, 150, 200. Finally, various numerical tests are presented in
both one dimension and for general meshes to illustrate the capacity of the schemes and

compare theoretical and experimental results.
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sin(z.t)2

Figure 2: Exact solution when a(z,t) = =3

Figure 3: Numerical solution when N=M=N,=50,100,150,200 and a(z,t) = 7W
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cos(z.t)24+Vx.t

Figure 4: Exact solution when «a(z,t) = 1

7 Conclusion and Perspectives

In this work, we have discussed implicit discretization techniques by using an approach to
forward fractional derivatives and the first-order spatial derivative can be approximated
by the forward operator. These are particularly useful whenever the implicit scheme
requires a time step. As in the implicit schemes, the values at interior grid points at new
time levels cannot be obtained before computing the values at boundaries, an iteration
procedure is employed to handle the nonlocal boundary condition. However, the discus-
sion indicates that it is always important to explore the various algorithms when trying
to solve a numerical problem and there is a vast literature available to do this. The nu-
merical test applied to these methods gives acceptable results and suggests convergence

to the exact solution when h goes to zero, see [6,8}[12}[18].

References

[1] A.A. Alikhanov. A new difference scheme for the time fractional diffusion equation. J.
Comput. Phys. 280 (2015) 424-438.

[2] B.K. AL-Saltani. Solution of delay fractional differential equations by using linear multistep
method. J. Kerbala Univ. 5 (4) (2007) 217-222.

[3] J. J. Benito, F. Urena and L. Gavete. Influence of several factors in the generalized finite
difference method. Appl. Math. Model. (2001).

[4] V.Daftardar-Gejji, Y.Sukale and S.Bhalekar. Solving fractional delay differential equa-
tions: A new approach. Fract. Calcu. Appl. Anal. 18 (2015) 400-418.

[6] V.Daftardar-Gejji and H. Jafari. An iterative method for solving non linear functional equa-
tions. J. Math. Anal. Appl. 316 (2006) 753-763.

[6] M. Djaghout, A. Chaoui and Kh. Zennir. On Discretization of the Evolution p-Bi-Laplace
Equation. Numer. Analys. Appl. 15 (2022) 303-315.

[7] K.Diethelm. An improvement of a nonclassical numerical method for the computation of
fractional derivatives. J. Vibr. Acoust. 131 (1) (2009) Article ID 014502.

[8] M. D. Johansyah, I. Sumiati, E. Rusyaman, Sukono, M. Muslikh, M. A. Mohamed and
A. Sambas, Numerical Solution of the Black-Scholes Partial Differential Equation for the
Option Pricing Model Using the ADM-Kamal Method. Nonl. Dynam. Sys. Theory 23 (3)
(2023) 295-3009.



[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

18]

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (4) (2024) 353

L. Galeone and R. Garrappa. Explicit methods for fractional differential equations and their
stability properties. J. Comput. Appl. Math. 228 (2) (2009) 548-560.

M. M. Khader and A.S. Hendy. The approximate and exact solutions of the fractional-order
delay differential equations using Legendre seudospectral method. Inter. J. Pure and Appl.
Math. 74 (3) (2012) 287-297.

A. A. Kilbas, H. M. srivastava and J.J. Trujillo. Theory and Application of Fractional Dif-
ferential Equation. Oxford, New York, 2006.

M. Labid and N. Hamri. Chaos Anti-Synchronization between Fractional-Order Lesser Date
Moth Chaotic System and Integer-Order Chaotic System by Nonlinear Control. Nonl. Dy-
nam. Sys. Theory 23 (2) (2023) 207-213.

F. Mainardi. Fractional Calculus and Waves in Linear Visco-elasticity: An Introduction to
Mathematical Models. Imperial College Press, London, 2010.

B.P. Moghaddam and Z S. Mostaghim. A numerical method based on finite difference for
solving fractional delay differential equations. J. Taibah Univ. Sci. 7 (3) (2013) 120-127.

B.P. Moghaddam and Z S. Mostaghim. Modified finite difference method for solving frac-
tional delay differential equations. Boletim da Sociedade Paranaense de Matematica 35
(2017) 49-58.

A. Piskarev. Fractional equations and difference schemes. In: Proc. Int. Conference : Com-
putational Methods in Applied Mathematics. Javaskyla, Finland, 2016.

T. Young and M. J. Mohlenkamp. Introduction to Numerical Methods and Matlab Program-
ming for Engineers, 2011.

A. Zarour and M. Dalah. Analysis and Numerical Approximation of the Variable-Order
Time-Fractional Equation. Nonl. Dynam. Sys. Theory 24 (2) (2024) 205-216.



	Introduction
	Discretization and Development of the Implicit Finite Difference Scheme
	Stability of the Approximate Scheme
	Convergence of the Approximate Scheme
	Solvability of the Approximate Scheme
	Examples and Numerical Experiments
	Conclusion and Perspectives

