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Abstract: In symmetric cryptosystems, we use the same keys to encrypt and de-
crypt data, our question is how to share this common keys? Using the commutativity
of the multiplication of circular matrices and sensibility to initial conditions in chaotic
logistic maps through two different channels, we give some new techniques for creat-
ing and sharing two keys and use them to increase the level of security during the
encryption and decryption of texts or digital images.

Keywords: Toeplitz matrices; circular matrices; logistic maps; chaos; cryptography;
BB84 protocol; Diffie-Hellman protocol.

Mathematics Subject Classification (2010): 70K55, 37D45.

1 Introduction

The main goal of this work is the creation of two keys through two different channels.
For the first key, based on the same techniques as in our previous work [1], we set a
t ∈ [−1, 1] and we create a circular matrix generated by the vector (a(t), b(t), c(t)) such
that a = t2 + 1, b = t and c = −t. This choice is made so that the trace and the
determinant of the generated circular matrix are strictly positive, which allows us to
calculate the initial parameters of a logistic sequence as follows:

µ =
det T

det T + 1
+ 3 and x0 =

trT
trT + 1

. (1)

This choice checks the chaotic case because µ ∈]3, 4[ and x0 ∈]0, 1[. These two parameters
will be shared through a quantum channel by the exchange protocol BB84.
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So, the key K created will be the circular matrix generated by the vector
V (y1, · · · , yn), where

∀i ∈ N, yi = [1015xi] mod (p) ∈ (Z/pZ)∗;

p is a prime number such that ∀i ∈ N, p > yi and xi are the terms of the logistic
sequence

∀n ∈ N, xn+1 = µxn(1− xn).

Then K = ⟨y1, y2, · · · , yn⟩.

The creation of the second key will be done using the first key K and based on the
commutativity of the multiplication of circular matrices.

These two keys K and C will be used for the encryption and decryption of digital
images.

2 Toeplitz Matrices of Order 3

In 1911, Otto Toeplitz introduced theToeplitz matrices after the study of the quadratic
forms

∑
φi,jxiyj , for which the coefficients of these forms verify the particular property

φi,j = φi−j , and thus obtained associated matrices T = (φi,j)i,j on diagonal and on-
diagonal and sub-diagonal constants that are now called the Toeplitz matrices [3,4]. More
recently, the particular structure with diagonals and on-diagonals and/or sub-diagonals
constants of the Toeplitz matrices appears in various problems as a result of the different
methods of resolution used or by the methods of raising data at regular time interval or
space which will make appear systems with diagonal matrices and on-constant diagonals
and sub-constant diagonals.

Definition 2.1 We call the Toeplitz matrix, any matrix T ∈ Mn(R) with diagonal
and on-diagonal and sub-diagonal constants, that is to say, any matrix of the form

T =


t0 t1 · · · t−(n−1)

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 · · · t1 t0

 , where ti ∈ R for all i ∈ {−(n− 1), · · · , n− 1}.

We can distinguish two particular cases in the following remark.

Remark 2.1

1. If tn−j = t−j for j ∈ {0, · · · , n}, the matrix T is said to be a circular matrix.

2. If tn−j = −t−j for j ∈ {0, · · · , n}, so we are talking about an anti-circular matrix.

The particular case of circular and anti-circular matrices is interesting in the context
of diagonalization. Indeed, these matrices with a particular structure can be diagonal-
ized using the FFT (Fast Fourier Transform) with a lower complexity than any matrix
without a particular structure.

The shape of a circular matrix is given in the following definition.
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Definition 2.2 A circular matrix is a Toeplitz matrix given by

Cn = Cn(c1, · · · , cn) =


c1 c2 · · · cn

cn c1
. . .

...
...

. . .
. . . c2

c2 · · · cn c1

 ∈ Mn(R).

3 The Abelian Group of Circular Matrices of Order 3 with Some Conditions

The aim of this section is to create an abelian group of circular matrices of order 3 with
matricial composition, we denote it by C3(I), where I ⊂ R such that the elements of C3

are invertible, see [7, 9].

Definition 3.1 A square matrix C of order 3 is said to be circular if and only if it
is generated by one vector V (a, b, c). Such a matrix is of the form

C = ⟨V ⟩ = ⟨a, b, c⟩ =

a b c
c a b
b c a

 . (2)

We know that an abelian group must verify the commutativity, the associativity, the
existence of a neutral element and the invertibility of all elements.

Theorem 3.1 (Commutativity in C3) For any A,B ∈ C3 , we have AB = BA.

Proof. By definition, A and B ∈ C3 means that there exist V (a, b, c) and V ′(a′, b′c′)
such that

A =

a b c
c a b
b c a

 and B =

a′ b′ c′

c′ a′ b′

b′ c′ a′

 .

We have

AB =

a b c
c a b
b c a

a′ b′ c′

c′ a′ b′

b′ c′ a′


=

aa′ + bc′ + cb′ ab′ + ba′ + cc′ ac′ + bb′ + ca′

ca′ + ac′ + bb′ cb′ + aa′ + bc′ cc′ + ab′ + ba′

ba′ + cc′ + ab′ bb′ + ca′ + ac′ bc′ + cb′ + aa′


( addition and multiplication are commutatives in R)

=

a′a+ c′b+ b′c b′a+ a′b+ c′c c′a+ b′b+ a′c
a′c+ c′a+ b′b b′c+ a′a+ c′b c′c+ b′a+ a′b
a′b+ c′c+ b′a b′b+ a′c+ c′a c′b+ b′c+ a′a


=

a′ b′ c′

c′ a′ b′

b′ c′ a′

a b c
c a b
b c a


= BA.

Theorem 3.2 (Associativity in C3) For any A,B and C ∈ C3 we have

A(BC) = (AB)C = ABC.
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It is easy to verify the equality with a useful calculus.

Theorem 3.3 The identity matrix I3 is the neutral element in C3 for matrix multi-
plication.

We know that the Toeplitz matrices are not always invertible, and to have the invert-
ibilty, we must impose some conditions on its terms.

For a matrix to be invertible, it is necessary and sufficient that its determinant is not
null.

We choose the vector V = (a, b,−b), where a = t2+1 and b = t. The matrix becomes

T =

 a b −b
−b a b
b −b a

 =

t2 + 1 t −t
−t t2 + 1 t
t −t t2 + 1

 . (3)

Then, the determinant of T is

det(T ) = a3 + b3 + c3 − 3abc
= t6 + 6t4 + 6t2 + 1.

We can see that det(T ) is a function of t.

Proposition 3.1 The function

f : R → R
t 7→ f(t) = det(T ) = t6 + 6t4 + 6t2 + 1

is strictly positive (f > 0).

Proof. By plotting the function f with GeoGebra, we get the following graph (Figure
1).

Figure 1: The graph of f(t) = det(T ) on R.

We observe that the curve of the function f is always on the x-axis, which shows that
f is strictly positive.
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Theorem 3.4 The matrix T in (3) is invertible and the inverse T −1 is given by

T −1 =
1

t6 + 6t4 + 6t2 + 1

t4 + 3t2 + 1 −t3 + t2 − t t3 + t2 + t
t3 + t2 + t t4 + 3t2 + 1 −t3 + t2 − t
−t3 + t2 − t t3 + t2 + t t4 + 3t2 + 1

 . (4)

Proof. The existence of the inverse matrix is ensured by Proposition 3.1.

To calculate it, we use the formula T −1 =
1

det T
Com(tT ), the desired result is

obtained.

Theorem 3.5 The set C3 menu by the law of matrix composition forms an abelian
group.

Proof. The demonstration is immediate according to Theorems 3.1, 3.2, 3.3 and
3.4.

4 Logistic Maps

In mathematics, a logistic map is a real simple sequence, but its recurrence is not linear,
see [2, 10,11].

Definition 4.1 A logistics map (xn)n∈N is a non-linear real sequence defined by its
first term x0 ∈ [0, 1] and the following recurring formula:

xn : N → R
n 7→ xn+1 = µxn(1− xn) , µ ∈ [0, 4].

(5)

Depending on the value of the parameter µ ∈ [0, 4], to ensure that the values of X re-
main in [0, 1], it generates either a convergent sequence, a series subjected to oscillations,
or a chaotic sequence.

4.1 The chaotic case ( µ ∈ [3.57, 4])

We are interested in the chaotic case, where µ ∈ [3.57, 4].

Most values above 3.57 have a chaotic character, but there are some isolated values
of µ with a behaviour that is not. For example, from 1+

√
8 (about 3.82), a small range

of µ values has an oscillation between three values and for a slightly larger µ, between
six values, then twelve, etc. Other ranges offer oscillations between 5 values, etc. All
periods of oscillation are present, again independently of the initial population.

The horizontal axis bears the values of the parameter µ (noted r), while the vertical
axis shows the possible adhesion values.

4.2 Sensitivity to the initial conditions

The most important property of the logistic maps is sensitivity to the initial conditions.
This results in a radical change in the sequence behaviour as soon as there is a very small
change in the initial value x0.
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Figure 2: A bifurcation diagram of a logistic map.

5 Application in Cryptography

In general, cryptography is a writing technique where an encrypted message is written
using secret codes or encryption keys. Cryptography is primarily used to protect a
message considered confidential. This method is used in many areas such as the secret
army, information technology, privacy, etc. There are many cryptographic algorithms
that can be used to encrypt (and decrypt for the recipient) the message, see [8, 14].

Definition 5.1 [Cryptosystem] A cryptosystem is a term used in cryptography to
refer to a set of cryptographic algorithms and all possible plain texts, encrypted texts
and keys.

Definition 5.2 [Components of a cryptosystem] A basic cryptosystem consists of
the following variants:

1. Plain text: This is the data (text or images) that we want to protect during
transmission.

2. Encryption Algorithm: This is a mathematical process that produces encryp-
tion for all data in clear and key encryption. It is a cryptographic algorithm that
takes the plain text and an encryption key as an input and produces an encrypted
text.

3. Encrypted text: This is the scrambled version of the plain text produced by
the encryption algorithm using a specific encryption key. The encrypted text is not
protected. It circulates on a public channel. It can be intercepted or compromised
by anyone with access to the communication channel.

4. Decryption algorithm: This is a mathematical process, which produces a
single clear text for any given digit and decryption key. It is a cryptographic
algorithm that takes a number and a decryption key as an entry, and produces a
plain text. The decryption algorithm essentially reverses the encryption algorithm
and is therefore closely related to it.
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5. Encryption key: This is a value known to the sender. The sender enters the
encryption key into the encryption algorithm with the plain text to calculate the
encrypted text.

6. Decryption key: This is a known value of the receiver. The decryption key is
linked to the encryption key, but it is not always identical. The receiver enters the
decryption key into the decryption algorithm with encryption to calculate the plain
text.

5.1 Asymmetric and symmetric cryptograpy

Definition 5.3 [Asymmetric cryptography] In the case of asymmetric encryption,
each user has two keys:

• The private key, which must be kept secret;

• The public key, which is available to all other users.

These two keys are mathematically linked.

Definition 5.4 [Symmetric cryptography] It is about multiple people using the same
key to encrypt and decrypt messages.

The main problem of this system is the exchange of a single key between different
people. So we must ask the question: How can this unique key be shared, allowing each
person to encrypt and decrypt safely?

5.2 Key exchange protocols

Definition 5.5 A key exchange protocol (or key negotiation, or key establishment,
or key distribution) is a mechanism through which multiple participants agree on a
cryptographic key.

The invention of public key cryptography in the 1970′s produced the first key exchange
protocol that can be demonstrated to be secure, even when communications are made
over an unprotected channel, without the use of trusted third parties. One of the first
protocols of this type, due to Whitfield Diffie and Martin Hellman, is now the most used
on the Internet, see [5, 12].

5.3 Diffie and Hellman key exchange protocol

Diffie and Hellman proposed in 1976 a completely secure key exchange protocol. The
problem was as follows.

Two persons want to exchange an encrypted message using an algorithm requiring a
key K. They want to exchange this key, but they do not have a secure channel for it.
Diffie and Hellman’s key exchange protocol addresses this problem when K is an integer.
The idea of Diffie and Hellman is based on modular arithmetic, and on the following
postulate

Being given integers p, a and x with p prime and 0 < a < p, in (Z/pZ)∗, it is easy to
calculate the integer y = ax mod (p). But, if we know y = ax mod (p), a and p, it is
very difficult to find x since p is big enough. This problem is called the discrete logarithm
problem on (Z/pZ)∗.
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5.4 Steps of the key exchange protocol

We resume five steps of the key exchange protocol in the following table.

Figure 3: Steps of the key exchange protocol

5.5 Our contribution

In Subsection 5.3, we saw that in the Diffie-Hellman key exchange protocol, the integer
a was public and our variables were integers that belong to the commutative group
(Z/pZ)∗.

According to the same techniques as in our last paper [1], we propose to work in the
set of the circular matrices and more. The integer a will be replaced by a secrete matrix
built with a safe exchange of parameters using a quantum protocol BB84 and also using
logistic maps.

Our new technique will be given through the following steps.

Two persons Salah and Brahim want to create a common secrete key.
Step 1: Creating the first common secrete key

• Using the famous exchange quantum protocol BB84 through the quantum channel,
Salah and Brahim share two parameters: t ∈ [−1, 1] and p ∈ N ( p prime), see [6,13].

1. Each one calculates

a = t2 + 1, b = t and c = −t. (6)

2. Creates the circulate matrix T of order 3 generated by the vector V = (a, b, c).
So,

T =

a b c
c a b
b c a

 , with ∀t ∈ [−1, 1], det(T ) > 0. (7)

• Using the famous logistic maps

xn+1 = µxn(1− xn), 3 < µ < 4 and 0 < x0 < 1. (8)
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Proposition 5.1 We can choose

µ =
det(T )

det(T ) + 1
+ 3 and x0 =

tr(T )

tr(T ) + 1
.

Proof.

– From Section 3, we have det(T ) > 0, so, det(T ) < det(T ) + 1, then

0 <
det(T )

det(T ) + 1
< 1.

by adding 3 to all terms of the inequality, we get

3 <
det(T )

det(T ) + 1
+ 3 < 4,

so, the choice of µ is good.

– We have

tr(T ) = 3a = 3t2 + 3 > 0,

then

0 <
tr(T )

tr(T ) + 1
< 1,

so, the choice of x0 is good too.

The first key K created will be the circular matrix generated by the vector
V (y1, · · · , yn), where

∀i ∈ N, yi = [1015xi] mod (p) ∈ (Z/pZ)∗;

p is a prime number such that ∀i ∈ N, p > yi and xi are the terms of the logistic
sequence

∀n ∈ N, xn+1 = µxn(1− xn).

Now Salah and Brahim can build the following circular matrix of order n using the
terms of the previous logistic map.

We denote by K the first shared key

K = ⟨y1, y2, · · · , yn⟩ =


y1 y2 · · · yn
yn y1 · · · yn−1

...
...

. . .
...

y2 y3 · · · y1

 .

Step 2: Creating the second common secrete key
We take the first shared key K created in the first step, then

• Salah chooses twice private circular matrices (M1,M2), calculates and sends to
Brahim the cipher

KA = M1KM2.
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• Likewise, Brahim chooses twice private circular matrices (M3,M4), calculates and
sends to Salah the cipher

KB = M3KM4.

• Salah receives KB and calculates

CA = M1KBM2.

• Also, Brahim receives KA and calculates

CB = M3KAM4.

Proposition 5.2 We have

CA = CB := C Same key shared.

Proof. By construction, we have

CA = M1KBM2

= M1M3KM4M2 , because KB = M3KM4

= M3M1KM2M4 , by commutativity
= M3KAM4 , because KA = M1KM2

= CB .

So, we have managed to build a matrix C which will be the secret common key
between two interlocutors. It will also be used to encrypt and decrypt a text or image.

Figure 4: Diagram explaining the mechanism of creating a common key C.

In the following table (see Table 1), we show the time required to run the key K,
using Matlab R 2018a (9.4.0.813654) 64-bit (Win64) on PC Intel(R) Core(TM) i5-6400
CPU @ 2.70GHz 2.71 GHz RAM 12Go.

For µ = 3.61 and x0 = 0.73, we get the following results.
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Size of the key K 64× 64 128× 128 256× 256 512× 512 1024× 1024
Time required (second) 0.000042 0.000147 0.000697 0.003108 0.024277

Table 1: Execution time of the proposed method to generate the key K.

In the following table (see Table 2), we show the time required to run the key C,
using Matlab R 2018a (9.4.0.813654) 64-bit (Win64) on PC Intel(R) Core(TM) i5-6400
CPU @ 2.70GHz 2.71 GHz RAM 12Go.

For this, we use three logistic maps with the parameters (µ = 3.61, x0 = 0.73),
(µ′ = 3.65, X ′

0 = 0.77) and (µ′′ = 3.67, X ′′
0 = 0.82), we get the following results.

Size of the key C 64× 64 128× 128 256× 256 512× 512 1024× 1024
Time required (second) 0.000286 0.001477 0.005092 0.031820 0.186870

Table 2: Execution time of the proposed method to generate the key C.

6 Encryption and Decryption of Some Digital Images Using Our Method

In this paragraph, we test our method on some images of different sizes, using the key
created in Section 5.1, see [1, 8, 14].

Salah wants to send Brahim an image m of size n× n. To encrypt and decrypt this
image, they must proceed as follows.

• Salah converts the image m to a matrix M of the same size as m.

• Image Encryption:

Salah encrypts the image M to the matrix H as follows:

CMK = H,

where K and C are the common keys created in the previous Section 5.1 (K, C
and H have the same size). Then he sends H to Brahim.

• Image Decryption:

Brahim receives H and deciphers it as follows:

C−1HK−1 = M

because
C−1HK−1 = C−1CMKK−1 = M.

• Brahim converts the matrix M into an image, it gets the initial image.

To study the effectiveness of our image encryption, we analyse its security. The
proposed method should withstand several types of attacks, as it is symmetrical, the
keys that would be used during encryption and decryption must be transmitted through
the secured and other unsecured channels. For the implementation of the proposed
scheme, we choose n ∈ {64, 128, 256, 512, 1024}.
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7 Performance and Safety Analysis

7.1 The key space

The secret key K is probabilistic because the transmitter and receiver use any circular
matrices (C1 and C2) to obtain a common key K.

If we use the proposed key generation method with (n = 256), xi ∈ {0, · · · , 255},
this provides 256256 possible keys (the elements used are not null) for the C1 key, we
have 256256 possible keys for the key C2, as well as we have 1560 possible keys to get the
key K (with fifteen decimal digits after the comma), the one-dimensional logistic map
used has interesting properties such as periodicity and significant dependence on initial
values, but it has low security, to overcome the inconvenience of its small key space, we
must use several logistic maps to generate the K key in the first phase. The proposed
schema key space size is greater than 256256 × 256256 × 1560 and the key space is large
enough for a brute force attack or comprehensive attack is not possible.

7.2 Statistical analysis

The proposed image encryption scheme is examined using different statistical measures.
These measures involve histogram, information entropy analysis and correlation analysis.

Each of these measures is described in detail in the subsections.
We use five test images: Pict6464.jpg, Pict128128.jpg, Pict256256.jpg, Pict512512.jpg

and Pict10241024.jpg.

Histogram

Figure 5: Encrypted and decrypted Pict256256.jpg images and their histograms.

In image processing, the histogram of an image normally represents a histogram of
the pixel intensity values. This is a graph showing the pixel variety in an image at each
other intensity value in that image.

For an 8 − bit gray-scale image, there are 256 different possible extremes, so the
histogram will graphically display 256 numbers showing the distribution of pixels among
these gray-scale values.
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The histogram of the encryption system image must be uniform as it shows in our
encryption diagram in Figure 5. The histogram of our encrypted images is almost uniform
and significantly different from the histogram of simple images that makes statistical
attacks difficult.

Information Entropy Analysis

Entropy is one of the best functions for calculating and measuring the random character
of the encrypted image. Ideally, the information entropy should be 8− bits for gray-scale
images. If an encryption generates an output digit image with lower entropy at 8− bits,
then there would be a possibility of predictability, which could threaten its security. The
entropy of the information is calculated using the previous equation.

Simulation results for entropy analysis for the images used are presented in the table.

Encrypted image Size (µ, x0) (µ′, x′
0) (µ′′, x′′

0) Entropy

64× 64 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.2955

128× 128 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.7326

200× 200 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.8159

256× 256 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.7050

300× 300 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.2768

Table 3: Entropy results for some encrypted images.

Correlation analysis of two adjacent pixels

Correlation determines the connection between two variables. In other terms, correlation
is a measure that determines the level of similarity between two variables. The correlation
coefficient is a useful evaluation to judge the encryption quality of any cryptosystem. Any
image cryptosystem is said to be good if the encryption method hides all attributes and
features of a plain text image, and the encrypted image is totally random and extremely
uncorrelated.

For a regular image, each pixel is highly associated with its nearby pixels. An ideal en-
cryption technique should generate the cipher images with no such correlation in the adja-
cent pixels. We have examined the correlation of two adjacent pixels in the original image
and encrypted image in several images like Pict6464.jpg, Pict128128.jpg, Pict256256.jpg,
Pict512512.jpg and Pict10241024.jpg. We find their correlation very close to 1, we mean
there is a perfect match between the original and decrypted images.
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8 Concluding Remarks

This paper deals with clear image encryption and decryption techniques. A new technique
has been proposed using logistic maps.

We merged between the creation of circulant matrices of order n generated by a vector
in the components being the first n elements of a logistic map taken in order from a given
rank.

Two parameters in (1) of our logistic map will be generated also by a circulant matrix
of order 3 whose components are parametric curves of order 3 chosen in a way that insures
the invertibility, so the existence of a non-zero determinant that insures that µ and x0

in (1) satisfy µ ∈]3, 4[ and x0 ∈]0, 1[ for any t ∈]− 1, 1[.
These choices assure us that the chaotic case of our system mentioned earlier is very

sensitive to changes in the initial value x0 or the parameter µ that, in our work, change
mutually for each t ∈]− 1, 1[ without loosing stability.
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