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Abstract: In this paper, we propose a method for solving a non monotone affine
variational inequality problem (AVI). We consider an equivalent optimization model,
which is formulated as a DC program, and we apply DCA for solving it. The process
consists of solving a successive convex quadratic program. The effeciency of the pro-
posed approach is illustrated by the numerical experiments on several test problems
in terms of the quality of the obtained solutions and their convergence.
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1 Introduction

The variational inequality problem (VIP) remains a prominent and highly sought-after
research focus within the realm of numerical optimization. Our objective is to develop a
more comprehensive and less restrictive theoretical framework while devising appropriate
algorithms to address it. Both the affine variational inequality problem (AVI) and the
standard linear complementarity problem bear a close connection to the Karush-Kuhn-
Tucker conditions commonly encountered in quadratic programming. Let us define some
essential notations: We denote by Rn and Rm the finite-dimensional Euclidean spaces,
and Rn×n and Rm×n represent, respectively, the spaces of (n×n)-matrices and (m×n)-
matrices. The following constitutes an affine variational inequality problem (AVI):{

Find x ∈ C
such that ⟨Mx+ q, y − x⟩ ≥ 0, for all y ∈ C.

(1)
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Here (M,A, q, b) ∈ D = Rn×n × Rm×n × Rn × Rm represents the data of the problem,
the convex polyhedron C = {x ∈ Rn : Ax ≥ b} is the constraint set of the problem and
⟨x, y⟩ = xT y denotes the usual scalar product in Rn. If C = Rn

+, then the AVI becomes
the linear complementarity problem

xT (Mx+ q) = 0,Mx+ q ≥ 0, x ≥ 0. (2)

This problem is often denoted as the Linear Complementarity Problem (LCP). Over time,
a multitude of methods have been put forth to address the affine variational inequality
problem (AVI), as documented in references [2, 4, 6, 7, 10, 13]. While the AVI is not in-
herently framed as an optimization problem, the literature contains several optimization
models and methodologies designed to tackle it. Broadly speaking, the resultant opti-
mization problem of the AVI is non-convex, rendering it extremely challenging to solve
using global approaches, particularly in large-scale settings. In this paper, we delve into
a novel and highly effective local optimization strategy for addressing the affine varia-
tional inequality problem (AVI). This approach leverages DC programming (Difference
of Convex functions programming) and DCA (DC Algorithms). The foundations of DC
programming and DCA were initially laid by Pham Dinh Tao in a preliminary form
in 1985 and have since undergone extensive development, particularly in the works of
Tao Pham Dinh, as documented in references [14, 15, 18–20], and in related works cited
therein. These methods have now become classics and are widely adopted by many re-
searchers, as evidenced by references [10,11,17,21,22]. The motivation behind our work
stems from the successful application of DCA (DC Algorithms) to numerous large-scale
non-convex programs, both smooth and non-smooth, across various domains in applied
sciences. The DCA has proven itself to be a reliable approach, often yielding global
solutions and demonstrating superior robustness and efficiency compared to standard
methods.

In our study, we adopt an optimization perspective for the affine variational inequality
problem (AVI). We demonstrate that this optimization problem can be cast as a DC
(Difference of Convex functions) program, making it amenable to DCA.

A DC program involves the minimization of a DC function, typically expressed as
f = g− h, over a convex set. Here, g and h are convex functions that constitute the DC
components. It is noteworthy that the construction of DCA revolves around the convex
DC components, namely g and h, ”rather than the DC function f” itself.

In this work, we propose a suitable DC formulation for optimizing the AVI and inves-
tigate the implications of this DC decomposition in terms of the mentioned properties. To
evaluate the efficiency of both the optimization model and the corresponding DC formu-
lation, as well as the resulting DCA schemes, we conduct tests using several benchmark
datasets.

The paper is structured as follows.

Section 2: This section delves into the relationship between a quadratic program and
the affine variational inequality (AVI).

Section 3: This section provides a brief introduction to DC programming and DCA,
offering insights into the solution methods for addressing the optimization problem as-
sociated with the AVI using DC programming and DCA.

Section 4: In this section, we present the numerical results obtained from experiments
conducted on several test problems, providing insights into the practical performance of
the proposed methods.
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2 Optimization and AVI

The relationship between optimization and the Affine Variational Inequality (AVI) lies
in the fact that the AVI can be formulated as an optimization problem, while the AVI
is not explicitly an optimization problem, it can often be transformed into a quadratic
optimization problem when the matrix M is symmetric (see [1,5,6,9]), and this opens the
door for applying various optimization techniques to find solutions efficiently. Researchers
leverage optimization principles and methodologies to tackle the AVI and obtain solutions
that meet certain criteria or objectives. The AVI problem is equivalent to the first-order
conditions of the following quadratic program:

min
x∈C

f (x) =
1

2
xTMx+ qTx. (3)

3 Overview of DC Programs and DCA

DC programming and DCA indeed serve as fundamental tools in both smooth and non-
smooth non-convex programming, including global optimization. These methods are
particularly valuable when dealing with optimization problems where the objective func-
tion is expressed as the difference between two convex functions, either over the entire
space Rn or within a specified set C ⊂ Rn. In a general sense, a DC program can be
represented by the following mathematical form:

α = min
x∈Rn

(f (x) = g (x)− h (x)) , (4)

where both g(x) and h(x) are convex functions. The necessary local optimality condition
for the primal DC program (4) is

∂h(x∗) ⊂ ∂g(x∗), (5)

where ∂h(x) and ∂g(x) denote the sub-differential of h(x) and g(x) at the point x.
A point x∗ satisfies the generalized Kuhn-Tucker condition (a critical point of g − h)

if
∂g(x∗) ∩ ∂h(x∗) = ∅. (6)

The DCA (DC Algorithm) is the algorithmic framework employed to address these
DC programming problems. It iteratively approximates the non-convex objective func-
tion using convex components, optimizes the convexified subproblems, and updates the
solution until convergence is achieved. The DCA has demonstrated its utility in handling
challenging non-convex optimization problems, making it a valuable tool in various fields
of applied mathematics and optimization. Based on optimality conditions and duality in
the DCA, the idea of the DCA is quite simple: each iteration k of the DCA approximates
the concave part −h by its affine majorization, which corresponds to taking

yk ∈ ∂h(xk),

and minimizes the resulting convex function, which is equivalent to determining the
unique solution of the problem (4):

xk+1 ∈ ∂g∗(yk)

with g∗ being the conjugate function of g. The generic form of a DC algorithm is stated
as follows.
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Algorithm 3.1 Initialization: Let x ∈ Rn be the best guess, k −→ 0.
Repeat.
Calculate yk ∈ ∂h(xk).
Calculate xk+1 ∈ argmin(g (x)− h

(
xk

)
−

〈
x− xk, yk

〉
: x ∈ Rn).

k −→ k + 1
Until convergence of

{
xk

}
.

The convergence characteristics of the DCA and its underlying theoretical foundation
can be found in the following cited sources [14,16,19,20].

3.1 DCA for addressing AVI

In the context of a general non-convex quadratic program, various DC formulations have
been introduced in [14, 16]. In this paper, we employ the following DC decomposition,
which appears to be the most intuitive: f (x) = g (x)− h (x) , where g (x) = κC (x) +

ρ

2
∥x∥2 + ⟨q, x⟩ ,

h (x) =
ρ

2
∥x∥2 − 1

2
⟨Mx, x⟩ ,

and ρ ≥ λmax .

In this context, λmax represents the largest eigenvalue of the matrix M , while κC (.)
represents the indicator function associated with the set C. It is evident that both g and
h are convex functions, rendering problem (1) a DC program in the standard form

min
x∈Rn

{g (x)− h (x)} . (7)

Following the generic DCA scheme, along with its properties and theoretical foundation
detailed in [9, 12,15,16], at each step k ≥ 0, the computation of yk is performed as

yk =
(
∇h

(
xk

))T
= (ρI −M)xk (8)

and subsequently, the unique solution denoted as xk+1 is determined for the convex
minimization problem

min
x∈Rn

{
g (x)−

[
h
(
xk

)
+
〈
x− xk, yk

〉]}
.

So, at every step k ≥ 0, the point is computed as follows:

xk+1 = Pc

(
xk − 1

ρ

(
Mxk − q

))
.

This is the unique solution corresponding to the problem (7). The latter can be
equivalently expressed as

min

{∥∥∥∥x− 1

ρ

(
yk − q

)∥∥∥∥2 , Ax ≥ b

}

with yk = (ρI −M)xk.
The primary operation at each iteration of the algorithm involves solving a quadratic

program. The application of the DCA to (7) can be outlined as follows.
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Algorithm 3.2 Step 0. Let ϵ > 0 be a sufficiently small positive number,
Let x0 ∈ C be a starting point, set k = 0,
For k = 0, 1, . . .
Step 1. Compute yk = (ρI −M)xk,
Step 2. Compute xk+1 as an optimal solution of the following optimization program:

min

{∥∥∥∥x− 1

ρ

(
yk − q

)∥∥∥∥2 , Ax ≥ b

}
If either

∥∥xk+1 − xk ∥≤ ε or ∥ f(xk+1)− f(xk)
∥∥ ≤ ε , then stop,

otherwise, set k = k + 1 and go to Step 1.

The main operation at each iteration of the algorithm consists of solving one quadratic
program.

3.2 Convergence of the algorithm

Theorem 3.1 [14]
1) The DCA generates the sequence {xk} in C such that the sequence {f(xk)} is decreas-
ing.
2) If the optimal value of problem (7) is finite, then the sequence {xk} converges to x∗

satisfying the necessary local optimality condition ∂h (x∗) ⊂ ∂g (x∗) .

4 Computational Results

To provide a better understanding of our algorithm’s performance, we implemented it
in Matlab and applied it to a set of examples that have been previously studied in the
literature. We designate the initial point as x0. These examples were tested with various
values of ρ and x0. In our implementation, we set the tolerance parameter to ϵ = 10−6.

Example 4.1 [12] Consider the following AVI problem, where its data is given by

M =

[
1 0
0 − 2

]
, A =

 1 0
0 1

−1 − 1

 , q =

(
−1
0

)
, b =

 0
0

−2

 .

The optimal solution set of Example 4.1 is Sol(M,A, q, b) =
{
(0, 2)

T
, (1, 0)

T
}
.

In the implementation, we take ρmax = 1 and we use two starting points such as
x0
1 = (0.5, 0.5)

T
and x0

2 = (−10,−10)
T
. The numerical results obtained by the algorithm

are summarized in Table 1.

Example 4.2 [12] The data of the AVIs is given by

M =

[
1 0
0 − 1

]
, A =

 1 2
1 2
1 0

 , q =

(
−1
0

)
, b =

 0
0
2

 .

The optimal solution set is given by Sol(M,A, q, b) =
{
(2,−1)

T
, (2, 1)

T
, (2, 0)

T
}
.

We take ρmax = 1 and the initial points x0
1 = (4, 0)

T
and x0

2 = (−0.5,−10)
T
. The

obtained numerical results are then summarized in Table 2.

Example 4.3 [18] The data of the AVIs is deduced from a non-convex quadratic
program, where
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x0
1 x0

2

ρ 4 iter CPU (s) iter CPU (s)
-1 7 0.0389 8 0.0422
0.5 3 0.0155 12 0.0630
1 3 0.0178 13 0.0701
1.5 4 0.0289 16 0.0773
2 4 0.0184 19 0.0724
4 6 0.0525 30 0.2047
10 12 0.0853 60 0.3669
100 103 0.5227 476 3.5156

Table 1: Example 4.1.

x0
1 x0

2

ρ 4 iter CPU (s) iter CPU (s)
0.01 2 0.0224 3 0.0278
0.1 2 0.0246 3 0.0583
0.5 2 0.0095 3 0.01992
1 2 0.0093 5 0.0390
2 3 0.1899 8 0.0457
10 12 0.1395 26 0.1926
100 111 0.6902 210 0.7789

Table 2: Example 4.2.

M =



263 − 97 62 217 52 621 935 258 − 61 − 10
−97 299 − 17 9 4 − 123 − 17 − 40 − 3 37
62 − 17 178 71 − 118 − 83 − 110 9 − 56 42
217 9 71 143 − 5 842 228 42 58 − 41
52 − 4 − 118 − 5 177 102 − 15 120 13 − 52
621 − 123 − 83 842 102 219 574 22 73 − 53
935 − 17 − 110 228 − 15 574 457 154− 25 84
258 − 40 9 42 120 22 154 473 18 − 29

−61 − 3 − 56 58 13 73 − 25 18 − 4 − 79
−10 37 42 − 41 − 52 − 53 84 − 29 − 79 224


,

A =

(
I
−I

)
, b = (0, 0, 0, 0, 0,−1,−1,−1,−1,−1)

T
,

and

q = (−20,−314, 46,−83.45,−128.7, 41.3, 43.85, 341.8, 34.05,−34.6)
T
.

The optimal solution set of Example 3 is given by

Sol(M,A, q, b) =
{
(0, 1, 0.5, 0, 0.75, 0, 0, 0.6, 1, 0.49)

T
}
.

Here ρmax = 2081.7 and the initial starting points are given by

x0
1 = (−1, . . . ,−1)

T
and x0

2 = (0.5, . . . , 0.5)
T
. The obtained numerical results for this

problem are summarized in Table 3.
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x0
1 x0

2

ρ 4 iter CPU (s) iter CPU (s)
500 40 0.02951 97 0.06440
1000 81 0.2974 262 0.0308
2000 4 0.0646 3 0.0545
2081.7 4 0.0652 3 0.0581
2500 7 0.1137 4 0.0711
3000 7 0.1178 7 0.1216

Table 3: Example 4.3.

Example 4.4 [8] (Variable Size Example). Consider the following quadratic pro-
gram: 

min

[
−

n∑
i=1

x2
i

]
Such that

n∑
i=1

x ≥ j, j = 1, 2, ..., n,

xi ≥ 0, i = 1, 2, ..., n.

The data of the corresponding variational problem are

M =



−2 0 0 . . . 0
0 −2 0 . . . 0
0 0 −2 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . −2


, q =



0
0
0
.
.
.
0


,

A =



−1 0 0 . . . 0
−1 −2 0 . . . 0
−1 −2 −3 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
−1 −2 −3 . . . n
1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1



, b =



−1
−2
−3
.
.
.
−n
0
0
0
.
.
.
0



.

The results of this example are quoted in the following table for various values of the
dimension n.
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n iteration number CPU (s)
5 2 0.01026
10 2 0.0292
50 2 0.0751
100 2 0.1048
300 2 0.4333
700 2 2.2656
1000 2 6.1662
1500 2 19.3652
3000 2 207.7703

Table 4: Example 4.4.

5 Conclusion

Our investigation is centered around a nonconvex programming approach that relies on
DC programming and DCA algorithms to tackle a non-monotone Affine Variational In-
equality problem (AVIP). To address the AVIP, we formulated an optimization model
and leveraged DCA algorithms for its resolution. Employing a suitable decomposition
for this model, we devised a straightforward DCA algorithmic scheme, involving the suc-
cessive solution of convex quadratic programs. Our numerical experiments, conducted on
a variety of test problems, provided compelling evidence for the efficiency and effective-
ness of the proposed approach. We successfully applied our approach to solve the model
presented above, and it has demonstrated its capability to be employed in addressing
large-scale mathematical problems.

References

[1] M. Achache. A new primal-dual path-following method for convex quadratic programming.
Computational & Applied Mathematics 25 (2006) 97–110.

[2] M. Achache. Complexity analysis and numerical implementation of a short-step primal-dual
algorithm for linear complementarity problems. Applied Mathematics and computation 216
(2010) 1889–1895.

[3] N. Anane, Z. Kebaili and M. Achache. A DC Algorithm for Solving non-Uniquely Solvable
Absolute Value Equations. Nonlinear Dynamics and Systems Theory 23 (2) (2023) 119–128.

[4] Y. Censor, A.N. Iusem and A.S. Zenios. An interior-point method with Bregman func-
tions for the variational inequality problem with paramonotone operators. Mathematical
Programming 81 (1998) 373–400.

[5] D. den Hertog, B. Roos and T. Terlaky. A Polynomial Method of Weighted Centers for
Convex Quadratic Programming. Journal of Information and Optimization Sciences 12
(1991) 187–205.

[6] F. Facchinei and J.S. Pang. Finite-dimensional Variational Inequalities and Complementar-
ity Problems, vol. I, II. In: Springer Series in Operations Research. Springer-Verlag, New
York, 2003.

[7] F. Fukushima. Equivalent differentiable optimization problems and descent methods for
asymmetric variational inequality problems. Mathematical Programming 53 (3) (1992) 99–
110.



418 A. NOUI, Z. KEBAILI AND M. ACHACHE

[8] Li Ge and Sanyang Liu. An accelerating algorithm for globally solving non convex quadratic
programming. Journal of Inequalities and Applications 178 (2018).

[9] P.T. Harker and B. Xiao. A polynomial-time algorithm for affine variational inequalities.
Applied Mathematical Letters. 3 (4) (1991) 31–34.

[10] Z. Kebaili and M. Achache. On solving non monotone affine variational inequalities problem
by DC programmingand DCA. Asian-European Journal of Mathematics 1 (1) (2010) 1–8.

[11] N. Krause and Y. Singer. Leveraging the margin more carefully In: Proceedings of the
21st International Conference on Machine Learning, ICML, 2004, Banff, Alberta, Canada,
(2004) p. 63. ISBN:1-58113-828-5.

[12] G.M. Lee and N.N. Tam. Continuity of the Solution Map in Parametric Affine Variational
Inequalities. Set-Valued Analysis 15 (2007) 105–123.

[13] Gui-Hua Lin and Zun-Quan Xia. Some improved convergence results for variational in-
equality problems. Journal of Interdisciplinary Mathematics 2 (1) (1999) 81–88.

[14] H.A. Le Thi and T. Pham Dinh. On solving linear complementarity problems by DC pro-
gramming and DCA. Computational Optimization and Applications 50 (3) (2011) 507–524.

[15] H.A. Le Thi and T. Pham Dinh. Solving a Class of Linearly Constrained Indefinite
Quadratic Problems by D.C. Algorithms. Journal of global optimization 11 (3) (1997)
253–285.

[16] H.A. Le Thi and T. Pham Dinh. The DC (Difference of Convex Functions) Programming
and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems.
Annals of Operations Research 133 (3) (2005) 23–46.

[17] Y. Liu, X. Shen and H. Doss. Multicategory ψ-learning and support vector machine: Com-
putational tools. Journal of Computational and Graphical Statistics 14 (2005) 219–236.

[18] A. Malek and N. Hosseinipour-Mahani. Solving a class of non-convex quadratic problems
based on generalized KKT conditions and neurodynamic optimization technique. Kyber-
netika 51 (5) (2015) 890–908.

[19] T. Pham Dinh and H.A. Le Thi. Convex analysis approach to dc programming. Theory,
algorithms and applications. Acta Math. Vietnam 22 (1) (1997) 289–355.

[20] T. Pham Dinh and H.A. Le Thi. A DC optimization algorithm for solving the trust-region
subproblem. SIAM Journal on Optimization 8 (2) (1998) 476–505.
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