
NONLINEAR DYNAMICS AND SYSTEMS THEORY
An International Journal of Research and Surveys

Volume 24                           Number 4                                 2024

   CONTENTS

© 2024,  InforMath Publishing Group                ISSN 1562-8353                    Printed in Ukraine
To receive contents and abstracts by e-mail, visit our Website at:   http://www.e-ndst.kiev.ua

Nonlinear Dynamics
and

Systems Theory
An International Journal of Research and Surveys

Volume 24, Number 4, 2024                                    ISSN   1562-8353

N
O

N
LIN

E
A

R
 D

Y
N

A
M

IC
S
 &

 S
Y
S
TE

M
S
 TH

E
O

R
Y
                                  V

o
lu

m
e 2

4
,   N

o
. 4

,   2
0

2
4

InforMath Publishing Group
http://www.e-ndst.kiev.ua

EDITOR-IN-CHIEF  A.A.MARTYNYUK 
S.P.Timoshenko Institute of Mechanics 

National Academy of Sciences of Ukraine, Kiev, Ukraine

MANAGING EDITOR  I.P.STAVROULAKIS
Department of Mathematics, University of Ioannina, Greece

REGIONAL EDITORS

S.G. GEORGIEV, Paris, France
A.OKNIŃSKI, Kielce, Poland

Europe

M.BOHNER, Rolla, USA
HAO WANG, Edmonton, Canada

USA and Canada 

T.A.BURTON, Port Angeles, USA
, Ensenada, MexicoC.CRUZ-HERNANDEZ

Central and South America

 M.ALQURAN, Irbid, Jordan
Jordan and Middle East

T.HERLAMBANG, Surabaya, Indonesia
Indonesia and New Zealand

Existence of Solution for a General Class of Strongly Nonlinear Elliptic 

Problems .................................................................................................................................... 321 
 Y. Akdim and M. Ouboufettal 
 

Optimization of Hotel Y Management through Application of Occupancy 

Forecasting by Support Vector Machine and K-Nearest Neighbors Methods ..................................... 331 
 M. Y. Anshori, I. H. Santoso, P. Katias, T. Herlambang, H. Arof, 

 B. Suharto and K. Oktafianto 
 

A New Numerical Scheme for Solving Time-Fractional Variable-Order Partial 

Differential Equations .................................................................................................................. 340 
 Soufiane Benyoussef, Oumkeltoum Benhamouda, Mohamed Dalah 

 and Khaled Zennir 
 

Application of Discrete Event Simulation and System Dynamics Modeling in 

Optimizing the Performance of OutPatient Department ................................................................... 354 
 Amina Boukoftane, Muhammad Ahmed Kalwar, Nadia Oukid, 

 Khaled Zennir, Muhammad Saad Memon and Muhammad Ali Khan 
 

Sharing Keys Using Some Toeplitz Matrices and Logistic Maps ...................................................... 366 
 Benzeghli Brahim and Adoui Salah 
 

Analysis and Existence of Rumor Spreading with Campaign and Punishment 

Control  ................................................................................................................................... 380 
 Irma Fitria, Subchan Subchan, Dinda Anisa Maulina and 

 Alvian Alif Hidayatullah 
 

Square Root Ensemble Kalman Filter for Forefinger Motion Estimation as 

Post-Stroke Patients’ Medical Rehabilitation .................................................................................. 392 
 T. Herlambang, F. A. Susanto, H. Nurhadi, K. Oktafianto, H. Arof 

 and R. S. Marjianto 

 

On the Synchronization of a Novel Chaotic System with Two Control Methods ................................ 400 
 Lakehal Nadjet and Fareh Hannachi 
 

An Efficient DCA Algorithm for Solving Non-Monotone Affine Variational 

Inequality Problem ...................................................................................................................... 410 
 A. Noui, Z. Kebaili and M. Achache 
 

A Novel Numerical Approach for Solving Nonlinear Volterra Integral Equation 

with Constant Delay .................................................................................................................... 419 
 K. Rouibah, S. Kaouache and A. Bellour 
 



(1) General. Nonlinear Dynamics and Systems Theory (ND&ST) is an international journal 
devoted to publishing peer-refereed, high quality, original papers, brief notes and review 
articles focusing on nonlinear dynamics and systems theory and their practical applications in 
engineering, physical and life sciences. Submission of a manuscript is a representation that the 
submission has been approved by all of the authors and by the institution where the work was 
carried out. It also represents that the manuscript has not been previously published, has not 
been copyrighted, is not being submitted for publication elsewhere, and that the authors have 
agreed that the copyright in the article shall be assigned exclusively to InforMath Publishing 
Group by signing a transfer of copyright form. Before submission, the authors should visit the 
website:  

http://www.e-ndst.kiev.ua 
for information on the preparation of accepted manuscripts. Please download the archive 
Sample_NDST.zip  containing example of article file (you can edit only the file 
Samplefilename.tex).  
(2) Manuscript and Correspondence. Manuscripts should be in English and must meet 
common standards of usage and grammar. To submit a paper, send by e-mail a file in PDF 
format directly to 

Professor A.A. Martynyuk, Institute of Mechanics,  
Nesterov str.3, 03057, Kiev-57, Ukraine 

e-mail:  journalndst@gmail.com 
or to one of the Regional Editors or to a member of the Editorial Board. Final version of the 
manuscript must typeset using LaTex program which is prepared in accordance with the style 
file of the Journal. Manuscript texts should contain the title of the article, name(s) of the 
author(s) and complete affiliations. Each article requires an abstract not exceeding 150 words. 
Formulas and citations should not be included in the abstract. AMS subject classifications and 
key words must be included in all accepted papers. Each article requires a running head 
(abbreviated form of the title) of no more than 30 characters. The sizes for regular papers, 
survey articles, brief notes, letters to editors and book reviews are: (i) 10-14 pages for regular 
papers, (ii) up to 24 pages for survey articles, and (iii) 2-3 pages for brief notes, letters to the 
editor and book reviews. 
(3)  Tables, Graphs and Illustrations. Each figure must be of a quality suitable for direct 
reproduction and must include a caption. Drawings should include all relevant details and 
should be drawn professionally in black ink on plain white drawing paper. In addition to a 
hard copy of the artwork, it is necessary to attach the electronic file of the artwork (preferably 
in PCX format). 
(4)  References. Each entry must be cited in the text by author(s) and number or by number 
alone. All references should be listed in their alphabetic order. Use please the following style: 

Journal: [1] H. Poincare, Title of the article. Title of the Journal volume  
(issue) (year) pages. [Language] 

Book: [2] A.M. Lyapunov, Title of the Book. Name of the Publishers, Town, year. 

Proceeding: [3] R. Bellman, Title of the article. In: Title of the Book. (Eds.).  
Name of the Publishers, Town, year, pages. [Language] 

(5)  Proofs and Sample Copy. Proofs sent to authors should be returned to the Editorial 
Office with corrections within three days after receipt. The corresponding author will receive 
a sample copy of the issue of the Journal for which his/her paper is published. 
(6)  Editorial Policy. Every submission will undergo a stringent peer review process. An 
editor will be assigned to handle the review process of the paper. He/she will secure at least 
two reviewers’ reports. The decision on acceptance, rejection or acceptance subject to revision 
will be made based on these reviewers’ reports and the editor’s own reading of the paper.   

INSTRUCTIONS FOR CONTRIBUTORS

© 2024,  InforMath Publishing Group, ISSN 1562-8353 print, ISSN 1813-7385 online, Printed in Ukraine
No  part  of  this  Journal  may  be  reproduced  or  transmitted  in  any  form  or  by  any  means  without 
permission from InforMath Publishing Group.

Nonlinear Dynamics and Systems Theory
An International Journal of Research and Surveys

 EDITOR-IN-CHIEF    A.A.MARTYNYUK 
The S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 

Nesterov Str. 3, 03057, Kyiv-57, UKRAINE / e-mail: journalndst@gmail.com

MANAGING EDITOR    I.P.STAVROULAKIS 
Department of Mathematics, University of Ioannina 

451 10 Ioannina, HELLAS (GREECE) / e-mail: ipstav@cc.uoi.gr 

ADVISORY EDITOR    A.G.MAZKO,
Institute of Mathematics of NAS of Ukraine, Kiev (Ukraine) 

e-mail: mazko@imath.kiev.ua 

REGIONAL  EDITORS
S.G. GEORGIEV, France, e-mail: svetlingeorgiev1@gmail.com

 A. OKNINSKI, Poland, e-mail: fizao@tu.kielce.pl
M. BOHNER, USA, e-mail: bohner@mst.edu

HAO WANG, Edmonton, Canada, e-mail: hao8@ualberta.ca
T.A. BURTON, USA, e-mail: taburton@olypen.com

C. CRUZ-HERNANDEZ, Mexico, e-mail: ccruz@cicese.mx
M. ALQURAN, Jordan, e-mail: marwan04@just.edu.jo

T. HERLAMBANG, Indonesia, e-mail: teguh@unusa.ac.id

EDITORIAL BOARD

ADVISORY  COMPUTER  SCIENCE  EDITORS
A.N.CHERNIENKO and A.S.KHOROSHUN,  Kiev, Ukraine

ADVISORY  LINGUISTIC  EDITOR
S.N.RASSHYVALOVA,  Kiev, Ukraine

Adzkiya, D. (Indonesia)
Artstein, Z. (Israel)
Awrejcewicz, J. (Poland)
Braiek, N. B. (Tunisia)
Chen Ye-Hwa (USA)
De Angelis, M. (Italy)
Denton, Z. (USA)
Djemai, M. (France)
Dshalalow, J. H. (USA)
Gajic Z. (USA)
Georgiou, G. (Cyprus)
Honglei Xu (Australia)
Jafari, H. (South African Republic)
Khusainov, D. Ya. (Ukraine)

Kloeden, P. (Germany)
Kokologiannaki, C. (Greece)
Kouzou A. (Algeria)
Krishnan, E. V. (Oman)
Kryzhevich, S. (Poland)
Limarchenko, O. S. (Ukraine)
Lopez Gutierrez R. M. (Mexico)
Lozi, R. (France)
Peterson, A. (USA)
Radziszewski, B. (Poland)
Shi Yan (Japan)
Sivasundaram, S. (USA)
Staicu V. (Portugal)
Vatsala, A. (USA)



NONLINEAR DYNAMICS AND SYSTEMS THEORY
An International Journal of Research and Surveys

Published by InforMath Publishing Group since 2001

Volume 24 Number 4 2024

CONTENTS

Existence of Solution for a General Class of Strongly Nonlinear Elliptic
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Y.Akdim and M.Ouboufettal

Optimization of Hotel Y Management through Application of Occupancy
Forecasting by Support Vector Machine and K-Nearest Neighbors Methods . . . . . . . 331

M.Y. Anshori, I. H. Santoso, P. Katias, T. Herlambang, H. Arof,
B. Suharto and K. Oktafianto

A New Numerical Scheme for Solving Time-Fractional Variable-Order Partial
Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Soufiane Benyoussef, Oumkeltoum Benhamouda, Mohamed Dalah
and Khaled Zennir

Application of Discrete Event Simulation and System Dynamics Modeling in
Optimizing the Performance of OutPatient Department . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Amina Boukoftane, Muhammad Ahmed Kalwar, Nadia Oukid,
Khaled Zennir, Muhammad Saad Memon and Muhammad Ali Khan

Sharing Keys Using Some Toeplitz Matrices and Logistic Maps . . . . . . . . . . . . . . . . . . . 366
Benzeghli Brahim and Adoui Salah

Analysis and Existence of Rumor Spreading with Campaign and Punishment
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Irma Fitria, Subchan Subchan, Dinda Anisa Maulina and
Alvian Alif Hidayatullah

Square Root Ensemble Kalman Filter for Forefinger Motion Estimation as
Post-Stroke Patients’ Medical Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

T. Herlambang, F. A. Susanto, H. Nurhadi, K. Oktafianto, H. Arof
and R. S. Marjianto

On the Synchronization of a Novel Chaotic System with Two Control Methods . . . . 400
Lakehal Nadjet and Fareh Hannachi

An Efficient DCA Algorithm for Solving Non-Monotone Affine Variational
Inequality Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

A. Noui, Z. Kebaili and M. Achache

A Novel Numerical Approach for Solving Nonlinear Volterra Integral Equation
with Constant Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

K.Rouibah, S.Kaouache and A.Bellour

Founded by A.A. Martynyuk in 2001.

Registered in Ukraine Number: KB No 5267 / 04.07.2001.



NONLINEAR DYNAMICS AND SYSTEMS THEORY

An International Journal of Research and Surveys

Impact Factor from SCOPUS for 2022: SJR – 0.293, SNIP – 0.784 and CiteScore – 1.5

Nonlinear Dynamics and Systems Theory (ISSN 1562–8353 (Print), ISSN 1813–
7385 (Online)) is an international journal published under the auspices of the S.P. Timo-
shenko Institute of Mechanics of National Academy of Sciences of Ukraine and Curtin
University of Technology (Perth, Australia). It aims to publish high quality original
scientific papers and surveys in areas of nonlinear dynamics and systems theory and
their real world applications.

AIMS AND SCOPE

Nonlinear Dynamics and Systems Theory is a multidisciplinary journal. It pub-
lishes papers focusing on proofs of important theorems as well as papers presenting new
ideas and new theory, conjectures, numerical algorithms and physical experiments in
areas related to nonlinear dynamics and systems theory. Papers that deal with theo-
retical aspects of nonlinear dynamics and/or systems theory should contain significant
mathematical results with an indication of their possible applications. Papers that em-
phasize applications should contain new mathematical models of real world phenomena
and/or description of engineering problems. They should include rigorous analysis of
data used and results obtained. Papers that integrate and interrelate ideas and methods
of nonlinear dynamics and systems theory will be particularly welcomed. This journal
and the individual contributions published therein are protected under the copyright by
International InforMath Publishing Group.

PUBLICATION AND SUBSCRIPTION INFORMATION

Nonlinear Dynamics and Systems Theory will have 6 issues in 2024, printed
in hard copy (ISSN 1562–8353) and available online (ISSN 1813–7385), by InforMath
Publishing Group, Nesterov str., 3, Institute of Mechanics, Kiev, MSP 680, Ukraine,
03057. Subscription prices are available upon request from the Publisher, EBSCO In-
formation Services (mailto:journals@ebsco.com), or website of the Journal: http:

//e-ndst.kiev.ua. Subscriptions are accepted on a calendar year basis. Issues are sent
by airmail to all countries of the world. Claims for missing issues should be made within
six months of the date of dispatch.

ABSTRACTING AND INDEXING SERVICES

Papers published in this journal are indexed or abstracted in: Mathematical Reviews /
MathSciNet, Zentralblatt MATH / Mathematics Abstracts, PASCAL database (INIST–
CNRS) and SCOPUS.

mailto:journals@ebsco.com
http://e-ndst.kiev.ua
http://e-ndst.kiev.ua


Nonlinear Dynamics and Systems Theory, 24 (4) (2024) 321–330

Existence of Solution for a General Class of Strongly

Nonlinear Elliptic Problems

Y.Akdim ∗ and M.Ouboufettal

LAMA Laboratory, Department of Mathematics, Faculty of Sciences Dhar El Mahraz,
University Sidi Mohamed Ben Abdellah, P.O. Box 1796 Atlas Fez, Morocco.

Received: April 27, 2020; Revised: May 30, 2024

Abstract: In this paper, we study the existence of solution for a general class of
strongly nonlinear elliptic problems associated with the differential inclusion β(u) +
A(u)+g(x, u,Du) ∋ f , where A is a Leray-Lions operator from W 1,p

0 (Ω) into its dual,
β is a maximal monotone mapping such that 0 ∈ β(0), while g(x, s, ξ) is a nonlinear
term which has a growth condition with respect to ξ and no growth with respect to
s but it satisfies a sign condition on s. The right-hand side f is assumed to belong
to L∞(Ω).

Keywords: inclusion problems; Leray-Lions operator; maximal monotone mapping;
Sobolev spaces; truncation.

Mathematics Subject Classification (2010): 35J60, 35J70, 70K99.

1 Introduction

Let Ω be a bounded domain in RN (N ≥ 1) with sufficiently smooth boundary ∂Ω. Our
aim is to show the existence of solutions for the following strongly nonlinear elliptic
inclusion:

(E, f)


β(u) +A(u) + g(x, u,Du) ∋ f in D′(Ω),

u ∈ W 1,p
0 (Ω), g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω),

where A is a Leray-Lions operator from W 1,p
0 (Ω) into its dual W−1,p′

(Ω) (1 < p < ∞)
defined as A(u) = −div(a(x, u,Du)), f ∈ L∞(Ω), β is a maximal monotone mapping

∗ Corresponding author: mailto:youssef.akdim@usmba.ac.ma

© 2024 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua321
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322 Y. AKDIM AND M.OUBOUFETTAL

such that 0 ∈ β(0) and g is a nonlinear lower term having ”natural growth” (of order p)
with respect to Du, with respect to u, we do not assume any growth restrictions, but we
assume the ”sign condition” g(x, s, ξ)s ≥ 0.

The particular instances of the problem (E, f) have been studied for β ≡ 0, Boccardo,
Gallouët and Murat in [7] have proved the existence of at least one solution for the
problem. Let us point out that another work in this direction can be found in [6].

For g ≡ 0, it is known (cf. [5,10,18,20]) that the problem (E, f) has a solution in the
standard sense, the so-called weak solution, that is, a couple (u, b) ∈ W 1,p

0 (Ω) × L1(Ω)
such that b ∈ β(u) a.e. in Ω and∫

Ω

bφ+

∫
Ω

a(x, u,Du) ·Dφ =

∫
Ω

fφ, ∀φ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

In another important work [2], Akdim and Allalou have proved the existence of a
renormalized solution for an elliptic problem of diffusion-convection type in the frame-
work of weighted variable exponent Sobolev spaces

(E)


β(u)− div(a(x,Du) + F (u)) ∋ f in Ω,

u = 0 on ∂Ω.

We also refer the reader to [1,3,4,8,12,13,17,19] for more results on problems in this
direction. One of the motivations for studying (E, f) comes from applications to electro-
rheological fluids (see [16] for more details) as an important class of non-Newtonian fluids.

The present paper is organized as follows. In Section 2, we give assumptions and
the statement of result. The proof of the theorem is given in Section 3, it consists of
the following steps. First, we define approximation equations. We then prove an a
priori estimate in W 1,p

0 (Ω) for the solutions uε of these approximate equations. Finally,
we prove that the truncations Tk(uε) are relatively compact in the strong topology of
W 1,p

0 (Ω), a result which allows us to pass to the limit and obtain the existence result. In
the last Section 4, we will present an example for illustrating our abstract result.

2 Assumptions and Main Result

2.1 Assumptions

Let Ω be a bounded domain in RN (N ≥ 1) with sufficiently smooth boundary ∂Ω and
1 < p < ∞ be fixed.

Let A be a nonlinear operator from W 1,p
0 (Ω) into its dual W−1,p′

(Ω) ( 1p + 1
p′ = 1)

defined by A(u) = −div(a(x, u,Du)), where a : Ω× R× RN → RN is the Carathéodory
function satisfying the following assumptions:
(H1)

a(x, s, ξ) · ξ ≥ λ|ξ|p, where λ > 0, (1)

|a(x, s, ξ)| ≤ α(k(x) + |s|p−1 + |ξ|p−1), where k(x) ∈ Lp′
(Ω), k ≥ 0, α > 0, (2)

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0 for ξ ̸= η ∈ RN . (3)
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Let g : Ω× R× RN → R be the Carathéodory function such that
(H2)

g(x, s, ξ)s ≥ 0, (4)

|g(x, s, ξ)| ≤ h(|s|)(c(x) + |ξ|p), (5)

where h : R+ → R+ is a continuous increasing function and c(x) is a positive function
which is in L1(Ω).

Let β : R → 2R be a set valued, maximal monotone mapping such that 0 ∈ β(0) and
consider
(H3) f ∈ L∞(Ω).

2.2 Main result

Consider the strongly nonlinear elliptic inclusion problem with the Dirichlet boundary
conditions

(E, f)


β(u) +A(u) + g(x, u,Du) ∋ f in D′(Ω),

u ∈ W 1,p
0 (Ω), g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω).

Definition 2.1 A weak solution to (E, f) is a pair of functions (u, b) ∈ W 1,p
0 (Ω) ×

L1(Ω) satisfying b(x) ∈ β(u(x)) a.e. in Ω, g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω)
and

b− div(a(x, u,Du)) + g(x, u,Du) = f in D
′
(Ω).

Our objective is to prove the following existence theorem.

Theorem 2.1 Under the assumptions (H1) − (H3), there exists at least one weak
solution of (E, f) in the sense of Definition 2.1.

3 Proof of Theorem 2.1

Step 1: Approximate problems

From now on, we will use the standard truncation function Tk, k ≥ 0, defined for all
s ∈ R by Tk(s) = max{−k,min{s, k}}.

Let 0 < ε ≤ 1, we introduce the approximate problem

(Eε, f)


βε(T 1

ε
(uε))− div(a(x, uε, Duε)) + gε(x, uε, Duε) = f,

uε ∈ W 1,p
0 (Ω),

where

gε(x, s, ξ) =
g(x, s, ξ)

1 + ε|g(x, s, ξ)|

satisfies

gε(x, s, ξ)s ≥ 0, |gε(x, s, ξ)| ≤ |g(x, s, ξ)|, |gε(x, s, ξ)| ≤
1

ε
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and where βε : R → R is the Yosida approximation of β. Note that, for any u ∈ W 1,p
0 (Ω),

we have

⟨βε(u), u⟩ ≥ 0, |βε(u)| ≤
1

ε
|u| and lim

ε→0
βε(u) = β(u).

We refer the reader to [9] for more details about the maximal monotone mapping.

Since |βε(T 1
ε
(uε))| ≤

1

ε2
and gε is bounded for any fixed ε > 0, there exists at least

one solution uε of (Eε, f) (cf. [14], [15]), i.e., for each 0 < ε ≤ 1 and f ∈ W−1,p′
(Ω),

there exists at least one solution uε ∈ W 1,p
0 (Ω) such that∫

Ω

βε(T 1
ε
(uε))φ+

∫
Ω

a(x, uε, Duε) ·Dφ+

∫
Ω

gε(x, uε, Duε)φ = ⟨f, φ⟩ (6)

holds for all φ ∈ W 1,p
0 (Ω), where ⟨., .⟩ denotes the duality pairing between W 1,p

0 (Ω) and

W−1,p′
(Ω).

Step 2: A priori estimates

Taking uε as a test function in (6), we obtain∫
Ω

βε(T 1
ε
(uε))uε +

∫
Ω

a(x, uε, Duε) ·Duε +

∫
Ω

gε(x, uε, Duε)uε =

∫
Ω

fuε, (7)

as the first term on the left-hand side is nonnegative and since gε verifies the sign condi-
tion, by (1), we have

λ||uε||pW 1,p
0 (Ω)

≤ C||f ||L∞(Ω)||uε||W 1,p
0 (Ω),

where C is a positive constant coming from the Hölder and Poincaré inequalities, then

||uε||W 1,p
0 (Ω) ≤ C1. (8)

Moreover, from (7) and (8), we infer that

0 ≤
∫
Ω

gε(x, uε, Duε)uε ≤ C2. (9)

For δ > 0, we define H+
δ : R −→ R by

H+
δ (r) =


1 if r > δ,
r

δ
if 0 ≤ r ≤ δ,

0 if r < 0.

Clearly, H+
δ is an approximation of sign+

0 .
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We use the test function φ = H+
δ (βε(T 1

ε
(uε))− k) in (6), we obtain∫

Ω

βε(T 1
ε
(uε))H

+
δ (βε(T 1

ε
(uε))− k) +

∫
Ω

a(x, uε, Duε) ·D(H+
δ (βε(T 1

ε
(uε))− k))

+

∫
Ω

gε(x, uε, Duε)H
+
δ (βε(T 1

ε
(uε))− k) =

∫
Ω

fH+
δ (βε(T 1

ε
(uε))− k).

By using (1) and the fact that βε is monotone increasing with βε(0) = 0, we have∫
Ω

a(x, uε, Duε)(H
+
δ )

′

(βε(T 1
ε
(uε))− k)β

′

ε(T 1
ε
(uε)) ·Duε ≥ 0.

Since gε verifies the sign condition, we obtain∫
Ω

gε(x, uε, Duε)H
+
δ (βε(T 1

ε
(uε))− k) ≥ 0.

Consequently, we get∫
Ω

(βε(T 1
ε
(uε))− k)H+

δ (βε(T 1
ε
(uε))− k) ≤

∫
Ω

(f − k)H+
δ (βε(T 1

ε
(uε))− k).

Taking δ → 0 yields ∫
Ω

(βε(T 1
ε
(uε))− k)+ ≤

∫
Ω

(f − k)+. (10)

Similarly, one can show∫
Ω

(βε(T 1
ε
(uε)) + k)− ≤

∫
Ω

(f + k)−. (11)

Combining (10) and (11) gives∫
Ω

(|βε(T 1
ε
(uε))| − k)+ ≤

∫
Ω

(|f | − k)+.

Choosing k > ||f ||∞, we obtain

||βε(T 1
ε
(uε))||∞ ≤ ||f ||∞. (12)

Step 3: Basic convergence results

By (12), there exists b ∈ L∞(Ω) such that

βε(T 1
ε
(uε))

∗
⇀ b in L∞(Ω). (13)

Since uε remains bounded in W 1,p
0 (Ω), we can extract a subsequence, still denoted

by uε, such that

uε ⇀ u weakly in W 1,p
0 (Ω)

and
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uε → u a.e. in Ω.

We already know that for any fixed k ∈ R∗+,

Tk(uε) ⇀ Tk(u) weakly in W 1,p
0 (Ω).

Our objective is to prove that

Tk(uε) → Tk(u) strongly in W 1,p
0 (Ω).

We shall use in (6) the test function

vε = φ(zε),

where

zε = Tk(uε)− Tk(u) and φ(s) = seλs
2

.

We get∫
Ω

βε(T 1
ε
(uε))vε +

∫
Ω

a(x, uε, Duε) ·Dvε +

∫
Ω

gε(x, uε, Duε)vε =

∫
Ω

fvε.

From now on, we denote by η1(ε), η2(ε), ... various sequences of real numbers which
converge to zero when ε tends to zero.

Since vε converges to zero weakly∗ in L∞(Ω), we have∫
Ω

fvε → 0,

this implies that

η1(ε) =

∫
Ω

βε(T 1
ε
(uε))vε +

∫
Ω

a(x, uε, Duε) ·Dvε +

∫
Ω

gε(x, uε, Duε)vε → 0.

Note that∫
Ω

βε(T 1
ε
(uε))vε =

∫
{|uε|≤k}

βε(T 1
ε
(uε))vε +

∫
{|uε|>k}

βε(T 1
ε
(uε))vε.

The fact that the second term on the right-hand side is nonnegative and
χ{|uε|≤k}βε(T 1

ε
(uε)) is uniformly bounded, together with the Lebesgue dominated con-

vergence theorem provide that∫
{|uε|≤k}

βε(T 1
ε
(uε))vε → 0.

This implies that∫
Ω

a(x, uε, Duε) ·Dvε +

∫
Ω

gε(x, uε, Duε)vε ≤ η2(ε).

Using the same arguments as in [7], we obtain

0 ≤
∫
Ω

[a(x, Tk(uε), DTk(uε))− a(x, Tk(uε), DTk(u))] ·D(Tk(uε)− Tk(u)) ≤ η3(ε).
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Finally, a result in [8] (see also [11]) implies

Tk(uε) → Tk(u) strongly in W 1,p
0 (Ω). (14)

Step 4: Passing to the limit

In virtue of (14), we have for the subsequence

Duε → Du a.e. in Ω,

which with

uε → u a.e. in Ω

yields, since a(x, uε, Duε) is bounded in (Lp′
(Ω))N ,

a(x, uε, Duε) ⇀ a(x, u,Du) weakly in (Lp′
(Ω))N (15)

as well as
gε(x, uε, Duε) → g(x, u,Du) a.e. in Ω. (16)

We now use the classical trick in order to prove that gε(x, uε, Duε) is uniformly equi-
integrable.

For any measurable subset E of Ω and for any m ∈ R+, we have∫
E

|gε(x, uε, Duε)| =
∫
E∩{|uε|≤m}

|gε(x, uε, Duε)|+
∫
E∩{|uε|>m}

|gε(x, uε, Duε)|

≤
∫
E

|gε(x, Tm(uε), DTm(uε))|+
1

m

∫
E

gε(x, uε, Duε)uε.

Using (5) and (9), we obtain∫
E

|gε(x, uε, Duε)| ≤ h(m)

∫
E

(c(x) + |DTm(uε)|p) +
C2

m
.

Since the sequence (DTm(uε)) converges strongly in (Lp(Ω))N , the above inequality
implies the equi-integrability of gε(x, uε, Duε).

In view of (16), we thus have

gε(x, uε, Duε) → g(x, u,Du) strongly in L1(Ω). (17)

From (13), (15) and (17), we can pass to the limit in (6):∫
Ω

βε(T 1
ε
(uε))φ+

∫
Ω

a(x, uε, Duε) ·Dφ+

∫
Ω

gε(x, uε, Duε)φ =

∫
Ω

fφ,

we obtain∫
Ω

bφ+

∫
Ω

a(x, u,Du) ·Dφ+

∫
Ω

g(x, u,Du)φ =

∫
Ω

fφ for any φ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Moreover, since gε(x, uε, Duε)uε ≥ 0, gε(x, uε, Duε)uε → g(x, u,Du)u a.e. in Ω and

0 ≤
∫
Ω

gε(x, uε, Duε)uε ≤ C,

by Fatou’s lemma, we have
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g(x, u,Du)u ∈ L1(Ω).

Step 5: Subdifferential argument

It remains to prove that u(x) ∈ D(β(x)) and b(x) ∈ β(u(x)) for almost all x ∈ Ω.
Since β is a maximal monotone graph, there exists a convex, l.s.c and proper function

j : R → [0,∞] such that β(r) = ∂j(r) for all r ∈ R.

According to [9], for 0 < ε ≤ 1, jε : R → R defined by jε(r) =

∫ r

0

βε(s)ds has the

following properties:

i) For any 0 < ε ≤ 1, jε is convex and differentiable for all r ∈ R so that j′ε(r) = βε(r)
for all r ∈ R and any 0 < ε ≤ 1.

ii) jε(r) → j(r) for all r ∈ R as ε → 0.

From i), it follows that for any 0 < ε ≤ 1,

jε(r) ≥ jε(T 1
ε
(uε)) + (r − T 1

ε
(uε))βε(T 1

ε
(uε)) (18)

holds for all r ∈ R and almost everywhere in Ω.
Let E ⊂ Ω be an arbitrary measurable set and χE be its characteristic function. Let

hl : R → R be defined by hl(r) = min(1, (l + 1− |r|)+) for each r ∈ R.
We fix ε0 > 0, multiplying (18) by hl(uε)χE , integrating over Ω and using ii), we

obtain

j(r)

∫
E

hl(uε) ≥
∫
E

jε0(Tl+1(uε))hl(uε) + (r − Tl+1(uε))hl(uε)βε(T 1
ε
(uε)) (19)

for all r ∈ R and all 0 < ε < min(ε0,
1

l
). As ε → 0, taking into account that E is

arbitrary, we obtain from (19)

j(r)hl(u) ≥ jε0(Tl+1(u))hl(u) + bhl(u)(r − Tl+1(u)) (20)

for all r ∈ R and almost everywhere in Ω.
Passing to the limit with l → ∞ and then with ε0 → 0 in (20) finally yields

j(r) ≥ j(u(x)) + b(x)(r − u(x)) (21)

for all r ∈ R and almost everywhere in Ω, hence u ∈ D(β) and b ∈ β(u) for almost
everywhere in Ω.

With this last step, the proof of Theorem 2.1 is concluded.

4 Example

Let Ω be a bounded domain of RN (N ≥ 1). Let us consider the Carathéodory functions

a(x, s, ξ) = |ξ|p−2ξ,

g(x, s, ξ) = ρs|s|r|ξ|p, ρ > 0, r > 0,
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and β is the maximal monotone mapping defined by

β(s) = (s− 1)+ − (s+ 1)−.

It is easy to show that the Carathéodory function a(x, s, ξ) satisfies the growth con-
dition (2), the coercivity condition (1) and the strict monotonicity condition (3). Also,
the Carathéodory function g(x, s, ξ) satisfies the conditions (4) and (5).

Finally, the hypotheses of Theorem 2.1 are satisfied, therefore, for all f ∈ L∞(Ω), the
following problem

β(u)−∆p(u) + g(x, u,Du) ∋ f in D′(Ω),

u ∈ W 1,p
0 (Ω), g(x, u,Du) ∈ L1(Ω), g(x, u,Du)u ∈ L1(Ω),

has at least one solution.

5 Conclusion

This paper focuses on establishing the existence of solution for a general class of strongly
nonlinear elliptic problems associated with the differential inclusion β(u) + A(u) +
g(x, u,Du) ∋ f , where A is a Leray-Lions operator from W 1,p

0 (Ω) into its dual, β is
a maximal monotone mapping such that 0 ∈ β(0), while g(x, s, ξ) is a nonlinear term
which has a growth condition with respect to ξ and no growth with respect to s but it
satisfies a sign condition on s. The right-hand side f is assumed to belong to L∞(Ω). In
the future, we aim to expand this study for a measure or L1 sources.
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Dunod, Paris; Gauthier-Villars, Paris, 1969.
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are Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN). This paper
optimizes hotel management through the application of occupancy forecasting by us-
ing the SVM and K-NN methods. The simulation results by the RapidMiner software
and both methods using 90% of training data and 10% of testing data show that the
RMSE produced by the SVM method is 0.011, while the RMSE produced by the
KNN method is 0.116. Thus, the SVM method has higher accuracy than the K-NN.
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1 Introduction

Almost all countries in the world, including Indonesia [1], strive to develop their tourism
potential to earn as much foreign exchange as possible. The role of tourism is very
important for a country/region because it has a very broad multiplier effect. Efficiently
managed hotels are able to win the competition. Therefore, making the right forecasting
and estimation model is of a great help for hotel managers to manage hotels effectively and
efficiently, so software development is needed for forecasting and estimation systems [2–4].

In general, forecasting can be grouped into quantitative forecasting and qualitative
forecasting. Qualitative forecasting which is based on intuition and empirical experience
becomes subjective. Subjective forecasting is difficult to implement due to the limitations
of the human brain in analyzing information and causal relationships that affect the
business. If such qualitative forecasting is done by several people separately, the results
are likely to have considerable variation. On the other hand, if it is carried out jointly,
it is likely that there is no similarity in the forecasting results, or an influential person
in the group determines the results [5].

Some previous research used Forecast to help predict the desired number or data.
In 2021, the one conducted by Rini et al. [6] used forecast to predict the number of
dengue cases, in 2022, Anshori [7] forecasted the number of restaurants to be closed
using ANFIS, while Susanto et al. [2] used Backpropagation Neural Network. In 2023,
Anshori [1], did a hotel forecast using Linear Support Vector Machine [8, 9]. As for the
estimation methods, many were applied in the fields of robotics such as AUV motion,
mobile robots and finger arm robots [10,11].

Some reliable forecasting methods among others are Support Vector Machine (SVM)
and K-Nearest Neighbors (K-NN). SVM is a machine learning method able to analyze
data and sort it into one of two categories [12]. SVM works to find the best hyperplane
or decision boundary function to separate two or more classes in the input space. The
hyperplane can be a line in two dimensions and can be a flat plane in multiple planes.
Meanwhile, K-NN is an algorithm functioning to classify data based on training data sets,
taken from K-Nearest Neighbors. With k, the number of nearest neighbors, the study
in this paper is to optimize hotel management through the application of occupancy
forecasting by the SVM and K-NN methods [13].

2 Occupancy Data of Hotel Y

Occupancy data of hotel Y are presented in Tables 1-3.

3 Algorithm of K-Nearest Neighbors

K-Nearest Neighbors is a classification algorithm for data grouping into several classes
based on the closest distance or similarity of the data to the training data. K-NN performs
classification based on the closest distance calculated from Euclidean. Euclidean Distance
is a calculation used to find the distance between 2 points in Euclidean space. Euclidean
distance calculation is shown in the equation

Euc =
√

(x2 − x1)2 + (y2 − y1)2. (1)

Notes:
d(x1, xj) : Euclidean distance;
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2017 2018 2019
Room Occ Room Room Occ Room Room Occ Room

Available (%) Sold Available (%) Sold Available (%) Sold

January 7,006 48,6% 3,262 7,006 46,6% 3,262 7,006 50,5% 3,536
February 4,480 63.7% 2,853 6,328 61.3% 3,880 6,328 63,6% 4,027
March 7,006 72.3% 5,066 7,006 72.3% 5,066 7,006 66,6% 4,663
April 6,780 64.9% 4,402 6,780 64.9% 4,402 6,780 69,9% 4,736
May 7,006 63.4% 4,444 7,006 63.4% 4,444 7,006 57.5% 4,025
June 6,780 61.2% 4,150 6,780 61.2% 4,150 6,780 75,3% 5,106
July 7,006 76.4% 5,351 7,006 76.4% 5,351 7,006 74,6% 5,223

August 7,006 73.8% 5,172 7,006 73.8% 5,172 7,006 61,6% 4,316
September 6,780 70.6% 4,787 6,780 70.6% 4,787 6,780 58,7% 3,977
October 7,006 81.7% 5,723 7,006 81.7% 5,723 7,006 72,3% 5,068
November 6,780 80.3% 5,443 6,780 80.3% 5,443 6,780 79,7% 5,406
December 7,006 70.6% 4,943 7,006 70.6% 4,943 7,006 77,1% 5,401

Table 1: The occupancy data of Hotel Y for 2017–2019.

2020 2021 2022
Room Occ Room Room Occ Room Room Occ Room

Available (%) Sold Available (%) Sold Available (%) Sold

January 7,006 49.8% 3,487 7,006 44.5% 3,118 7,006 51,1% 3,582
February 6,554 59.8% 3,921 6,328 50.9% 3,224 6,328 49,5% 3,132
March 7,006 42.7% 2,992 7,006 65.9% 4,614 7,006 57.4% 4,023
April 6,780 16.8% 1,140 6,780 61.9% 4,200 6,780 42,6% 2,891
May 7,006 18.7% 1,308 7,006 52.8% 3,698 7,006 76,4% 5,353
June 6,780 27.0% 1,830 6,780 70.6% 4,790 6,780 65,7% 4,455
July 7,006 37.1% 2,600 7,006 32.0% 2,242 7,006 60,6% 4,246

August 7,006 46.1% 3,227 7,006 40.6% 2,845 7,006 52,1% 3,650
September 6,780 45.3% 3,070 6,780 68.7% 4,658 6,780 53,4% 3,618
October 7,006 62.0% 4,341 7,006 80.7% 5,652 7,006 62,2% 4,360
November 6,780 76.9% 5,212 6,780 71.0% 4,816 6,780 68,6% 4,652
December 7,006 66.8% 4,682 7,006 81.0% 5,672 7,006 71,2% 4,985

Table 2: The occupancy data of Hotel Y for 2020–2022.

2023
Room Occ Room

Available (%) Sold

January 7,006 48,1% 3,372
February 6,328 52,1% 3,294
March 7,006 57,4% 4,023
April 6,780 36,0% 2,441
May 7,006 62,0% 4,345

Table 3: The occupancy data of Hotel W for 2023.

xi : record data to i;
xj : record data to j;
ar : data to-r from i, j.
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3.1 Algorithm of Support Vector Machine

Since then, SVMs have been used in text, hypertext and image classification. SVMs can
work with handwritten characters and the algorithm has been used in biology labs to
perform tasks such as protein sorting. SVMs work to find the best hyperplane or decision
boundary function to separate two or more classes in the input space. The hyperplane
can be a line in two dimensions and can be a flat plane in multiple planes.

Figure 1: Support Vector Machine Model.

The algorithm of SVM is shown in Figure 2.

3.2 Implementation of the K-Nearest Neighbors Algorithm on data

The implementation of the K-NN algorithm on hotel occupancy data in the RapidMiner
software is shown in Figure 3.

3.3 Implementation of Support Vector Machine Algorithm on Data

The application of the SVM method to the occupancy data model is shown in Figure 4.

4 Simulation Results

In this paper, the simulation used two algorithms, where both the SVM and K-NN
methods were compared when using several types of training data and testing data.
There are 3 types of training and testing data grouping cases, that is, the first case
(case 1) in which the training data is 70% and the testing data is 30%, the second case
in which the training data is 80% and the testing data is 20%, and the third case in
which the training data is 90% and the testing data is 10%. After modeling in the
RapidMiner software using the occupancy data of Hotel Y, the SVM and K-NN methods
were implemented, resulting in Figures 5 – 7.

Figure 5 is as an explanation related to case 1, with 70% of training data and 30% of
the testing data. It can be seen that the forecasting results by the SVM method have a
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Figure 2: Algorithm of Support Vector Machine.

Figure 3: Implementation of the K-NN algorithm on occupancy data of hotel Y.

smaller error than those by the K-NN because the simulation-resulted graph shows that
the SVM method has almost the same value as the real data. It can be seen in Table 2
that the RMSDE by the SVM method is 0.014 and that by the K-NN method is 0.137.
So, the SVM method has a smaller error of about 0.1.

Figure 6 is as an explanation related to the first case (case 1) with 80% of training
data and 20% of testing data, it can be seen that the forecasting results by the SVM
method have a smaller error than those by the K-NN because the simulation-resulted
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Figure 4: Implementation of the SVM Algorithm on occupancy data of Hotel Y.

Figure 5: Simulation Results of hotel Y occupancy forecast using 70% of training data and
30% of testing data.

graph shows that the SVM method has almost the same value as the real data. It can
be seen in Table 2 that the RMSE by the SVM method is 0.029 and that by the K-NN
method is 0.134. So, the SVM method has a smaller error of about 0.1.

Figure 7 is as an explanation related to the first case (case 1), with 90% of training
data and 10% of testing data. It can be seen that the results of forecasting by the SVM
method have a smaller error than those by K-NN because the simulation-resulted graph
shows that the SVM method has almost the same value as the real data. It can be seen
in Table 2 that the RMSE by the SVM method is 0.011 and the RMSE by the K-NN
method is 0.116. So, the SVM method has a smaller error of about 0.1.

Table 4 above shows that the SVM method has a higher accuracy and a smaller error
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Figure 6: Simulation results of hotel Y occupancy forecast using 80% of training data and 20%
of testing data.

Figure 7: Simulation results of hotel Y occupancy forecast occupancy using 90% of training
data and 10% of testing data.

SVM KNN
70% 80% 90% 70% 80% 90%

Training Training Training Training Training Training
data and data and data and data and data and data and

30% Testing 20% Testing 10% Testing 30% Testing 20% Testing 10% Testing
data data data data data data

RMSE of 0.014 0.029 0.011 0.137 0.134 0.116
Forecasting results

Table 4: The RMSE comparison using SVM and K-NN.

than the K-NN for all three cases. When compared, overall, it is clear that using SMV in
case 3 shows the smallest RMSE value. When considering the SMV method alone, case
3 has the smallest RMSE value because the training data is larger than those of cases 1
and 2. Likewise, for the K-NN, case 3 has a smaller RMSE value than cases 1 and 2.
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5 Conclusion

Based on the results of the discussion above and the forecasting results as in the graph
above, it can be concluded that the SVM method has a higher accuracy and a smaller
error than the K-NN method for all three cases. When compared, as a whole, using SMV
in case 3 shows the smallest RMSE value. When considering the SVM method alone,
case 3 has the smallest RMSE value because the training data is larger than those of
cases 1 and 2. Likewise, for K-NN, case 3 has a smaller RMSE value than cases 1 and 2.
Thus, the SVM method is highly reliable for hotel occupancy forecasting.
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1 Introduction

In viscous boundary problems, there is a viscodynamic operator in the Biot poroviscoelas-
tic theory which may be formulated with a fractional derivative (see [9, 10, 13, 14]). The
power law and stretched exponential temporal responses of nonideal capacitors can also
be shown to relate to the electro-elastic and electro-visco-elastic models. A fractional-
order differential equation is a generalized form of an integer-order differential equation.
This one is useful in many areas, e.g., for the depiction of physical, mechanical and bio-
logical models of several phenomena in pure mathematics and applied science. Numerical
analysis (see for more details [5, 15, 16]) is a very important branch of mathematics in
which we analyse and solve sevaral problems which require calculations with different
techniques. The important role of numerical methods for fractional calculus is how to
apply numerical methods for fractional integrals and fractional derivatives (see [2,4,14]),
for example, finite element methods (FEM), finite difference methods, Multi-Grid meth-
ods (MGM) for fractional partial and ordinary differential equations. The development of
fractional differential equations and their solutions are carried out by using the Simulink
Matlab Program (see for more details [1,3,7,17]), which calculates the approximate solu-
tions of fractional differential equations of order α by using the implicit finite difference
scheme (IFDS). The structure of this paper is organized as follows. Section 2 includes
the basic concepts of the implicit finite difference scheme (IFDS) and we present the
steps of discretization and development of the scheme and several techniques of the pro-
posed approach. Section 3 discusses the stability of the approximate scheme presented
in Section 2. In Section 4, we prove the convergence of the approximate scheme for the
fractional differential equations of order α. In Section 5, we focus on the solvability of
the approximate scheme. Finally, Section 6 includes the examples of specific algorithms
for a variety of boundary and initial conditions and conclusions are presented in Section
7.

2 Discretization and Development of the Implicit Finite Difference Scheme

In this section, we apply the NSFD to obtain the numerical solution for the linear partial
differential equations with time-fractional derivative

∂αu
∂tα + a(x, t)∂

2u
∂x2 (x, t) + c(x, t)∂u∂x = f(x, t) 0 < x < L, t > 0, 0 < α < 1,

u(0, t) = q(t),

u(L, t) = p(t),

u(x, 0) = s(x).

(1)

Let ϕ1(h) and ϕ2(k) be two strictly positive functions and [0, L] be the interval of in-
terest. For the numerical scheme, define xi = iϕ1(h), where i = 0,M and tj =
jϕ2(k), where j = 0, N . The parameters ϕ1(h) and ϕ2(k) are the space and time steps,
respectively. Now, let us assume that

u(xi, tj) = uj
i and f(xi, tj) = f j

i , (2)

and
a(xi, tj) = aji and c(xi, tj) = cji ,

where uj
i is the numerical approximation of u(xi, tj) and f j

i is the numerical approxima-
tion of f(xi, tj).
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There exist different approaches to fractional derivatives [11]. For simplification, we
consider the interval [0, t],

∂α(x,t)u(x, t)

∂tα(x,t)
=

{
1

Γ(1−α(x,t))

∫ t

0
uξ(x,ξ)

(t−ξ)α(x,t) dξ if 0 < α < 1,

ut(x, t) if α(x, t) = 1.
(3)

Initially, as the boundary value problem needs to be discretized to be able to solve (1), it
is first necessary to discretize the variable-order time-fractional derivative (3) as follow:

∂α(xi,tj+1)u(xi, tj+1)

∂tαxi,tj+1)
=

1

Γ(1− α(xi, tj+1))

∫ tj+1

0

uξ(xi, ξ)

(tj+1 − ξ)α(xi,tj+1)
dξ

=
1

Γ(1− α(xi, tj+1))

j∑
s=0

∫ (s+1)k

sk

uξ(xi, ξ)

(tj+1 − ξ)α(xi,tj+1)
dξ.

Then we obtain

∂α(xi,tj+1)u(xi, tj+1)

∂tα(xi,tj+1)
=

1

Γ(1− α(xi, tj+1))

j∑
s=0

∫ (s+1)ϕ2(k)

sϕ2(k)

(
∂u

∂ξ

)s+1

i

dξ

(tj+1 − ξ)α(xi,tj+1)
.

The first-order spatial derivative can be approximated by the following expression:(
∂u

∂ξ

)s+1

i

=
us+1
i − us−1

i

ϕ2(k)
+ ∆(ϕ2(k)). (4)

Adopting the discrete scheme given in (9), we discretize the variable-order time-fractional
derivative as

∂α(xi,tj+1)u(xi, tj+1)

∂tα(xi,tj+1)
=

1

Γ(1− α(xi, tj+1))

j∑
s=0

us+1
i − us−1

i

ϕ2(k)

∫ (j−s+1)ϕ2(k)

(j−s)ϕ2(k)

dη

ηα(xi,tj+1)

=
1

Γ(1− α(xi, tj+1))

j∑
n=0

uj−n+1
i − uj−n

i

ϕ2(k)

∫ (n+1)ϕ2(k)

nϕ2(k)

dy

ηα(xi,tj+1)
,

then we get

∂α(xi,tj+1)u(xi, tj+1)

∂tα(xi,tj+1)
=

ϕ2(k)
−α(xi,tj+1)

(1− α(xi, tj+1))Γ(1− α(xi, tj+1))
×

j∑
n=0

(uj−n+1
i − uj−n

i )[(n+ 1)1−α(xi,tj+1) − n1−α(xi,tj+1)].

Let η = tj+1−ξ and having in mind that Γ(1+α) = αΓ(β) and expanding the summation
for n = 0, we find

∂α(xi,tj+1)u(xi, tj+1)

∂tα(xi,tj+1)
=

ϕ2(k)
−α(xi,tj+1)

Γ(2− α(xi, tj+1))

[
uj+1
i − uj

i +

j∑
n=1

(uj−n+1
i − uj−n

i )× (5)

[(n+ 1)1−α(xi,tj+1) − n1−α(xi,tj+1)]

]
,
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where δj+1
i (n) = (n+1)1−α(xi,tj+1)−n1−α(xi,tj+1), ∀j = 0, N − 1. We will use the central

difference approximation of space derivative is as follows:

∂u(xi, tj+1)

∂x
=

uj+1
i+1 − uj+1

i−1

ϕ1(h)
+ ∆(ϕ1(h)). (6)

The second-order spatial derivative can be approximated by the following expression:

∂2u(xi, tj+1)

∂x2
=

uj+1
i+1 − 2uj+1

i + uj+1
i−1

ϕ2
1(h)

+ ∆(ϕ2
2(h)). (7)

Using approximations (5), (6) and (7), the semi-linear diffusion equation (1), we obtain

ϕ2(k)
−α(xi,tj+1)

Γ(2− α(xi, tj+1))

[
uj+1
i −uj

i+

j∑
n=1

(uj−n+1
i −uj−n

i )δj+1
i (n)]

]
+aji

uj+1
i+1 − 2uj+1

i + uj+1
i−1

ϕ2
1(h)

+

(8)

+cji
uj+1
i+1 − uj+1

i−1

ϕ1(h)
= f j+1

i , ∀i = 1,M − 1 and ∀j = 1, N − 1,

where

rj+1
i = aji

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

ϕ2
1(h)

, wj+1
i = cji

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

ϕ1(h)

ρj+1
i = ϕ2(k)

α(xi,tj+1)Γ(2− α(xi, tj+1)).

The initial and boundary conditions are u0(xi) = si, ∀i = 0,M, and uj+1
0 =

qj+1, uj+1
M = pj+1, ∀j = 0, N − 1. We obtain the following approximate scheme for

equation (1):

(rj+1
i − wj+1

i )uj+1
i−1 + (1− 2rj+1

i )uj+1
i + (rj+1

i + wj+1
i )uj+1

i+1

= uj
i −

∑j
n=1(u

j−n+1
i

uj−n
i )δj+1

i (n) + ρj+1
i f j+1

i , ∀i = 1,M − 1 and ∀j = 1, N − 1,

uj+1
0 = qj+1, uj+1

M = pj+1, ∀j = 0, N − 1,

u0
i = si, ∀i = 0,M.

(9)

The coefficients δj+1
i (n) (j = 0, .., N − 1; i = 0, ..,M) satisfy the following properties:

• P1: δj+1
i (0) = 1.

• P2: 0 < δj+1
i (0) < 1.

3 Stability of the Approximate Scheme

In this section, we use the method of Fourier analysis to discuss the stability of the
approximate scheme (9). Consider the following equation:

(rj+1
i − wj+1

i )uj+1
i−1 + (1− 2rj+1

i )uj+1
i + (rj+1

i + wj+1
i )uj+1

i+1 =

uj
i −

∑j
n=1(u

j−n+1
i − uj−n

i )δj+1
i (n) + ρj+1

i f j+1
i ,

∀i = 1,M − 1 and ∀j = 1, N − 1.

(10)
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Now, we define the following function:

uj(x) =

{
uj
i , if xi− 1

2
< x < xi+ 1

2
, ∀i = 1,M − 1,

0 otherwise,

uj(x) has the Fourier series expansion

uj(x) =

+∞∑
p=−∞

ξj(p)e
2πp
L x, ∀j = 0, N,

where

ξj(p) =
1

L

∫ L

0

uj(x)e−
2πp
L xdx.

Assume that the solution of the equation (9) has the form

νji = ξje
µθhi, (11)

where θ = 2πp
L , µ2 = −1. Now, replacing (11) in equation (10), we have

ξj+1(r
j+1
i (eµθh + eµθh) + wj+1

i (eµθh − e−µθh) + 1− 2rj+1
i )

= ξj −
j∑

n=1

(ξj−n+1 − ξj−n)δ
j+1
i (n), (12)

then we get

ξj+1(1− 4rj+1
i sin2(

θh

2
) + 2µwj+1

i sin(θh)) = ξj −
j∑

n=1

(ξj−n+1 − ξj−n)δ
j+1
i (n). (13)

One can see that equation (13) can be rewritten as

ξj+1 =
ξj −

∑j
n=1(ξj−n+1 − ξj−n)δ

j+1
i (n)

1− 4rj+1
i sin2( θh2 ) + 2µwj+1

i sin(θh)
, (14)

then we have the following result.

Theorem 3.1 The implicit finite difference scheme (9) is unconditionally stable for
0 < β < 1 if

∃C > 0 ∥uj∥2 = |ξj | ≤ C∥u0∥2 = C|ξ0|, j = 1, N.

Proof. We use proof by recurrence for j = 1, in view of (14),

|ξ1| =
∣∣∣∣ ξ0

1− 4r1i sin
2( θh2 ) + 2µw1

i sin(θh)

∣∣∣∣=
|ξ0|√

16[(r1i )
2 − (w1

i )
2] sin4( θh2 ) + 8[2(w1

i )
2 − r1i ] sin

2( θh2 ) + 1
= C0

i |ξ0| ≤ C|ξ0|

such that C = max0≤i≤M C0
i . We assume that the following statement is true:

|ξj | ≤ C|ξ0|, j = 1, 2, ..., N, (15)
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and we prove that the following statement is true:

|ξj+1| ≤ C|ξ0|, j = 0, N − 1, (16)

we have

|ξj+1| =
∣∣∣∣ ξ0 −

∑j
n=1(ξj−n+1 − ξj−n)δ

j+1
i (n)

1− 4rj+1
i sin2( θh2 ) + 2µwj+1

i sin(θh)

∣∣∣∣=
|ξ0 −

∑j
n=1(ξj−n+1 − ξj−n)δ

j+1
i (n)|√

16[(rj+1
i )2 − (wj+1

i )2] sin4( θh2 ) + 8[2(wj+1
i )2 − rj+1

i ] sin2( θh2 ) + 1

= Cj
i |ξ0 −

j∑
n=1

(ξj−n+1 − ξj−n)δ
j+1
i (n)|

≤ Cj |ξ0|+
j∑

n=1

(|ξj−n+1|+ |ξj−n)||δj+1
i (n)| ≤ Cj(2N − 1)|ξ0| ≤ C|ξ0|

such that

Cj
i =

1√
16[(rj+1

i )2 − (wj+1
i )2] sin4( θh2 ) + 8[2(wj+1

i )2 − rj+1
i ] sin2( θh2 ) + 1

,

∀i = 0,M and ∀j = 0, N − 1,

Cj = max
0≤i≤M

Cj
i , C = (2N − 1) max

0≤i≤M
Cj , ∀j = 0, N − 1.

So we find |ξj+1| ≤ C|ξ0|, j = 0, 1, .., N − 1. The approximate scheme (9) is uncondition-
ally stable, which concludes the proof of Theorem 3.1.

4 Convergence of the Approximate Scheme

In this section, we use the method of Fourier analysis to discuss the convergence of the
approximation error

eji = u(xi, tj)− uj
i . (17)

Replacing (17) in equation (10), we obtain

(rj+1
i − wj+1

i )ej+1
i−1 + (1− 2rj+1

i )ej+1
i + (rj+1

i + wj+1
i )ej+1

i+1

= eji −
j∑

n=1

(ej−n
i − ej−n−1

i )δj+1
i (n) + ϵji (18)

for all i = 1,M − 1 and j = 1, N − 1. Then the error eji takes the following form:

ϵji = ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))[∆(ϕ2((k)) + ∆(ϕ1(h))].

Now, we define the grid function ej(x) by

ej(x) =

{
eji , if xi− 1

2
< x < xi+ 1

2
, ∀i = 1,M − 1 and ∀j = 1, N − 1,

0, otherwise,



346 S. BENYOUSSEF. O. BENHAMOUDA, M. DALAH AND KH. ZENNIR

and

ϵj(x) =

{
ϵji , if xi− 1

2
< x < xi+ 1

2
, ∀i = 1,M − 1 and ∀j = 1, N − 1,

0, otherwise.

Then en(x) and ϵn(x) have the Fourier series expansions

ej(x) =

+∞∑
p=−∞

γj(p)e
2πm
L x, ϵj(x) =

+∞∑
p=−∞

λj(p)e
2πp
L x, ∀j = 0, N, (19)

and

γj(p) =
1

L

∫ L

0

ej(x)e−
2πp
L xdx, , λj(p) =

1

L

∫ L

0

ϵj(x)e−
2πp
L xdx, (20)

then∫ L

0

|ej(x)|2dx =

+∞∑
p=−∞

|γj(p)|2 and

∫ L

0

|ϵj(x)|2dx =

+∞∑
p=−∞

|γj(p)|2, ∀j = 0, N.

Now, we take the norm in the two previous relations, then we get

∥ej∥22 =

M−1∑
i=1

|ϕ1(h)e
j
i |
2 =

+∞∑
p=−∞

|γj(p)|2, ∀j = 0, N, (21)

and

∥ϵj∥22 =

M−1∑
i=1

|hϵji |
2 =

+∞∑
m=−∞

|λj(p)|2, ∀j = 0, N. (22)

Now, we suppose
eji = γje

µτhi and rji = λje
µτhi. (23)

Replacing (23) in equation (18), we find

γj+1(r
j+1
i (eµθh + eµθh) + wj+1

i (eµθh − e−µθh) + 1− 2rj+1
i )

= γj −
j∑

n=1

(γj−n+1 − γj−n)δ
j+1
i (n) + λj . (24)

Equation (24) can be rewritten as

γj+1 =
γj −

∑j
n=1(γj−n+1 − γj−n)δ

j+1
i (n) + λj

1− 4rj+1
i sin2( θh2 ) + 2µwj+1

i sin(θh)
. (25)

Theorem 4.1 The implicit finite difference scheme (9) is convergent for 0 < α < 1
if

∥ej∥2 = |γj | ≤ C∗(ϕ1(h) + ϕ2(k)), ∀j = 1, N,

such that
ϕ1(h) + ϕ2(k) −→ 0 when (h, k)→ (0, 0).
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Proof. We use the proof by recurrence for j = 1, we have

|γ1| =
∣∣∣∣ γ0 + λ0

1− 4rj+1
i sin2( θh2 ) + 2µwj+1

i sin(θh)

∣∣∣∣
=

|γ0 + λ0|
|1− 4rj+1

i sin2( θh2 ) + 2µwj+1
i sin(θh)|

=
|γ0 + λ0|√

16[(r1i )
2 − (w1

i )
2] sin4( θh2 ) + 8[2(w1

i )
2 − r1i ] sin

2( θh2 ) + 1

≤ |γ0|+ |λ0|√
16[(r1i )

2 − (w1
i )

2] sin4( θh2 ) + 8[2(w1
i )

2 − r1i ] sin
2( θh2 ) + 1

=
|λ0|√

16[(r1i )
2 − (w1

i )
2] sin4( θh2 ) + 8[2(w1

i )
2 − r1i ] sin

2( θh2 ) + 1
,

we have γ0 = e0i = u(xi, 0)− u0
i = 0. By the convergence of the series on the right-hand

side of (22), there is a positive constant C1 such that

∃C1 > 0 : |ϵ0i | ≤ C1(ϕ1(h) + ϕ2(k)), ∀i = 0,M,

then we have

∃C1 > 0 : ∥ϵ0∥2 = |λ0| ≤ C1
√
L(ϕ1(h) + ϕ2(k)).

Subsequently, we obtain

|γ1| ≤
C1

√
L√

16[(r1i )
2 − (w1

i )
2] sin4( θh2 ) + 8[2(w1

i )
2 − r1i ] sin

2( θh2 ) + 1
(ϕ1(h) + ϕ2(k))

≤ C∗(ϕ1(h) + ϕ2(k)).

Let us write

C∗ = max
0≤i≤M

C1

√
L√

16[(r1i )
2 − (w1

i )
2] sin4( θh2 ) + 8[2(w1

i )
2 − r1i ] sin

2( θh2 ) + 1
.

We assume that the following statement is true:

|γj | ≤ C∗(ϕ1(h) + ϕ2(k)), ∀j = 1, N, (26)

and we prove that the following statement is true:

|γj+1| ≤ C∗(ϕ1(h) + ϕ2(k)), ∀j = 1, N, (27)
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then we have

|γj+1| =
∣∣∣∣ γj −∑j

n=1(γj−n+1 − γj−n)δ
j+1
i (n) + λj

1− 4rj+1
i sin2( θh2 ) + 2µwj+1

i sin(θh)

∣∣∣∣
=

|γj −
∑j

n=1(γj−n+1 − γj−n)δ
j+1
i (n) + λj |

|1− 4rj+1
i sin2( θh2 ) + 2µwj+1

i sin(θh)|

=
|γj −

∑j
n=1(γj−n+1 − γj−n)δ

j+1
i (n) + λj |√

16[(rj+1
i )2 − (wj+1

i )2] sin4( θh2 ) + 8[2(wj+1
i )2 − rj+1

i ] sin2( θh2 ) + 1

≤
|γj |+

∑j
n=1(|γj−n+1|+ |γj−n|)|δj+1

i (n)|+ |λj |√
16[(rj+1

i )2 − (wj+1
i )2] sin4( θh2 ) + 8[2(wj+1

i )2 − rj+1
i ] sin2( θh2 ) + 1

≤ C∗(2N − 1)(ϕ1(h) + ϕ2(k)) + |λj |√
16[(rj+1

i )2 − (wj+1
i )2] sin4( θh2 ) + 8[2(wj+1

i )2 − rj+1
i ] sin2( θh2 ) + 1

.

By the convergence of the series on the right-hand side of (22), there is a positive constant
C1 such that

∃C1 > 0 : ∥ϵji | ≤ C1(ϕ2(k) + ϕ1(h)), ∀i = 0,M and ∀j = 0, N,

we obtain

∃C1 > 0 : ∥ϵj∥2 = |λj | ≤ C1

√
L(ϕ2(k) + ϕ1(h)), ∀j = 0, N.

So

|γj+1| ≤ Cj
i

(
(2N − 1)C∗ + C1

√
L

)
(ϕ2(k) + ϕ1(h))

≤ C

(
C∗ +

C1

√
L

2N − 1

)
(ϕ2(k) + ϕ1(h))

= C∗(ϕ2(k) + ϕ1(h)),

then we have

Cj
i =

1√
16[(rj+1

i )2 − (wj+1
i )2] sin4( θh2 ) + 8[2(wj+1

i )2 − rj+1
i ] sin2( θh2 ) + 1

∀i = 0,M and ∀j = 0, N − 1,

where
Cj = max

0<i<M
Cj

i , and C = (2N − 1) max
0<i<M

Cj , ∀j = 0, N − 1,

such that the constant L is given by

L =

(
C∗(1− C)(2N − 1)

C1C

)2

.

So we find
|γj | ≤ C∗(ϕ1(h) + ϕ2(k)),∀j = 1, N. (28)

Therefore the implicit finite difference scheme (9) is convergent, which concludes the
proof of Theorem 4.1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (4) (2024) 340–353 349

5 Solvability of the Approximate Scheme

We have the second result on the solvability of the approximate scheme which is given
by Theorem 4.1.

Theorem 5.1 The approximate scheme (9) is uniquely solvable.

It can be seen that the corresponding homogeneous linear algebraic equations for the
approximate scheme

ϕ2(k)
−α(xi,tj+1)

Γ(2− α(xi, tj+1))

[
uj+1
i − uj

i +

j∑
n=1

(uj−n+1
i − uj−n

i )δj+1
i (n)]

]
+aji

uj+1
i+1 − 2uj+1

i + uj+1
i−1

ϕ3(h)

+cji
uj+1
i+1 − uj+1

i−1

ϕ1(h)
= f j+1

i ,

∀i = 1,M − 1 and ∀j = 1, N − 1,

where

rj+1
i = aji

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

ϕ2
1(h)

, wj+1
i = cji

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

ϕ1(h)

ρj+1
i = ϕ2(k)

α(xi,tj+1)Γ(2− α(xi, tj+1)),

are 

(rj+1
i − wj+1

i )uj+1
i−1 + (1− 2rj+1

i )uj+1
i + (rj+1

i + wj+1
i )uj+1

i+1

= uj
i −

∑j
n=1(u

j−n+1
i+1

uj−n
i )δj+1

i (n) + ρj+1
i f j+1

i , ∀i = 1,M − 1 and ∀j = 1, N − 1,

uj+1
0 = qj+1, uj+1

M = pj+1, ∀j = 0, N − 1,

u0
i = si, ∀i = 0,M.

(29)

Proof. Similar to the proof of Theorem 3.1, we can also verify the solutions of
the equations (25) satisfy ∥uj∥2 ≤ C∥u0∥, ∀j = 1, N, we have u0 = 0, so we get
uj = 0, ∀j = 1, N. This indicates that the equations (29) have only zero solutions, the
approximate scheme (9) is uniquely solvable, which concludes the proof of Theorem 5.1.

6 Examples and Numerical Experiments

Here, we present different numerical experiments to support the theoretical and numerical
analyses of the previous sections. The following variable-order time-fractional diffusion
equation is considered:

∂αu
∂tα + ∂2u

∂x2 (x, t) +
∂u
∂x = f(x, t) 0 < x < L, t > 0, 0 < α < 1,

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = 10x2(1− x),

(30)

where N=M=Nx=50, 100, 150, 200, and we have tested our numerical approximations

by two values of α(x, t). First, we have α(x, t) = sin(x.t)2

4 . But, in the second part,
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α(x, t) =

√
(cos(x.t)2+

√
x.t

4 and the function f(x, t) are used to test our approaches, where
the function f(x, t) is given by

f(x, t) = 20x2(1− x)

[
t2−α(x,t)

Γ(3− α(x, t))
+

t1−α(x,t)

Γ(2− α(x, t))

]
+10(−3x2 − 4x+ 2)(1 + t)2.

The exact solution is given by

u(x, t) = 10x2(1− x)(t+ 1)2.

By the implicit finite-difference scheme discretization method, the derivatives can be
approximated as follows.

First, we choose the dominator functions in the following form:

ϕ1(h) = h and ϕ2(k) = 2(ek − 1).

Let now [0, 1] be the interval of inerest we discretise the domain first. We define

xi = iϕ1(h) where i = 0, Nx and tj = jϕ2(k) where j = 0, Nx,

where ϕ2(k) represents the time step size and ϕ1(h) represents the space step length. Let
us assume that

f(xi, tj+1) = f j+1
i = 20x2

i (1− xi)

[
t
2−α(xi,tj+1)
j+1

Γ(3− α(xi, tj+1))
+

t
1−α(xi,tj+1)
j+1

Γ(2− α(xi, tj+1))

]
+ (31)

+10(−3x2
i − 4xi + 2)(1 + tj+1)

2,

qj+1 = 0, (32)

pj+1 = 0, (33)

where uj
i is the numerical approximation of u(xi, tj) and f j

i is the numerical approxima-
tion of f(xi, tj).
We obtain the following approximate scheme for equation (30):

(rj+1
i − wj+1

i )uj+1
i−1 + (1− 2rj+1

i )uj+1
i + (rj+1

i + wj+1
i )uj+1

i+1

= uj
i −

∑j
n=1(u

j−n+1
i+1

uj−n−1
i )δj+1

i (n) + ρj+1
i f j+1

i , ∀i = 1, Nx − 1 and ∀j = 1, Nx − 1,

uj+1
0 = qj+1, uj+1

Nx
= pj+1, ∀j = 0, Nx − 1,

u0
i = si, ∀i = 0, Nx,

(34)

where

rj+1
i = aji

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

ϕ2
1(h)

, wj+1
i = cji

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

ϕ1(h)

ρj+1
i = ϕ2(k)

α(xi,tj+1)Γ(2− α(xi, tj+1)), (35)

and
δj+1
i (n) = (n+ 1)1−α(xi,tj+1) − n1−α(xi,tj+1), ∀j = 0, Nx − 1.

In this example, we have tested the numerical solution when N=M=Nx=50, 100, 150,

200 and α(x, t) = sin(x.t)2

4 . But, in the second part of our test, α(x, t) =

√
(cos(x.t)2+

√
x.t

4
when N=M=Nx=50, 100, 150, 200. Finally, various numerical tests are presented in
both one dimension and for general meshes to illustrate the capacity of the schemes and
compare theoretical and experimental results.
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Fig 1. Numerical Solution when \alpha=\sin(x*t)^2/4 and Nt=Nx=50
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Fig 2. Numerical Solution when \alpha=\sin(x*t)^2/4 and Nt=Nx=100
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Fig 3. Numerical Solution when \alpha=\sin(x*t)^2/4 and Nt=Nx=150
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Figure 2: Exact solution when α(x, t) = sin(x.t)2
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Figure 4: Exact solution when α(x, t) =

√
cos(x.t)2+

√
x.t

4
.

7 Conclusion and Perspectives

In this work, we have discussed implicit discretization techniques by using an approach to
forward fractional derivatives and the first-order spatial derivative can be approximated
by the forward operator. These are particularly useful whenever the implicit scheme
requires a time step. As in the implicit schemes, the values at interior grid points at new
time levels cannot be obtained before computing the values at boundaries, an iteration
procedure is employed to handle the nonlocal boundary condition. However, the discus-
sion indicates that it is always important to explore the various algorithms when trying
to solve a numerical problem and there is a vast literature available to do this. The nu-
merical test applied to these methods gives acceptable results and suggests convergence
to the exact solution when h goes to zero, see [6, 8, 12,18].

References

[1] A.A. Alikhanov. A new difference scheme for the time fractional diffusion equation. J.
Comput. Phys. 280 (2015) 424–438.

[2] B.K. AL-Saltani. Solution of delay fractional differential equations by using linear multistep
method. J. Kerbala Univ. 5 (4) (2007) 217–222.

[3] J. J. Benito, F. Urena and L. Gavete. Influence of several factors in the generalized finite
difference method. Appl. Math. Model. (2001).

[4] V.Daftardar-Gejji, Y. Sukale and S.Bhalekar. Solving fractional delay differential equa-
tions: A new approach. Fract. Calcu. Appl. Anal. 18 (2015) 400–418.

[5] V.Daftardar-Gejji and H. Jafari. An iterative method for solving non linear functional equa-
tions. J. Math. Anal. Appl. 316 (2006) 753–763.

[6] M. Djaghout, A. Chaoui and Kh. Zennir. On Discretization of the Evolution p-Bi-Laplace
Equation. Numer. Analys. Appl. 15 (2022) 303–315.

[7] K.Diethelm. An improvement of a nonclassical numerical method for the computation of
fractional derivatives. J. Vibr. Acoust. 131 (1) (2009) Article ID 014502.

[8] M. D. Johansyah, I. Sumiati, E. Rusyaman, Sukono, M. Muslikh, M. A. Mohamed and
A. Sambas, Numerical Solution of the Black-Scholes Partial Differential Equation for the
Option Pricing Model Using the ADM-Kamal Method. Nonl. Dynam. Sys. Theory 23 (3)
(2023) 295–309.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (4) (2024) 340–353 353

[9] L.Galeone and R.Garrappa. Explicit methods for fractional differential equations and their
stability properties. J. Comput. Appl. Math. 228 (2) (2009) 548–560.

[10] M.M. Khader and A. S. Hendy. The approximate and exact solutions of the fractional-order
delay differential equations using Legendre seudospectral method. Inter. J. Pure and Appl.
Math. 74 (3) (2012) 287–297.

[11] A.A. Kilbas, H.M. srivastava and J. J. Trujillo. Theory and Application of Fractional Dif-
ferential Equation. Oxford, New York, 2006.

[12] M. Labid and N. Hamri. Chaos Anti-Synchronization between Fractional-Order Lesser Date
Moth Chaotic System and Integer-Order Chaotic System by Nonlinear Control. Nonl. Dy-
nam. Sys. Theory 23 (2) (2023) 207–213.

[13] F.Mainardi. Fractional Calculus and Waves in Linear Visco-elasticity: An Introduction to
Mathematical Models. Imperial College Press, London, 2010.

[14] B. P. Moghaddam and ZS. Mostaghim. A numerical method based on finite difference for
solving fractional delay differential equations. J. Taibah Univ. Sci. 7 (3) (2013) 120–127.

[15] B. P. Moghaddam and ZS. Mostaghim. Modified finite difference method for solving frac-
tional delay differential equations. Boletim da Sociedade Paranaense de Matematica 35
(2017) 49–58.

[16] A. Piskarev. Fractional equations and difference schemes. In: Proc. Int. Conference : Com-
putational Methods in Applied Mathematics. Javaskyla, Finland, 2016.

[17] T.Young and M. J. Mohlenkamp. Introduction to Numerical Methods and Matlab Program-
ming for Engineers, 2011.

[18] A. Zarour and M. Dalah. Analysis and Numerical Approximation of the Variable-Order
Time-Fractional Equation. Nonl. Dynam. Sys. Theory 24 (2) (2024) 205–216.



Nonlinear Dynamics and Systems Theory, 24 (4) (2024) 354–365

Application of Discrete Event Simulation and System

Dynamics Modeling in Optimizing the Performance of

OutPatient Department

Amina Boukoftane 1∗, Muhammad Ahmed Kalwar 2, Nadia Oukid 1,
Khaled Zennir 3, Muhammad Saad Memon 4 and Muhammad Ali Khan 4

1 Department of Mathematics, University of Blida 1, B.P. 270, LAMDA-RO Laboratory,
Blida, Algeria.

2 Department of Industrial Engineering and Management, Mehran UET, Jamshoro, Sindh,
Pakistan.

3 Department of Mathematics, College of Sciences, Qassim University, Saudi Arabia
4 Department of Industrial Engineering and Management, Mehran UET, Hyderabad, Sindh,

Pakistan

Received: January 31, 2024; Revised: May 31, 2024

Abstract: This research is aimed to optimize the length of queues and the waiting
time of patients at the general OutPatient Department (OPD). A Discrete Event
Simulation (DES) model was developed to model the queuing system of OPD and a
system dynamics (SD) model was developed to conduct the cost calculations of the
OPD. Both models were constructed by using the same data. Since the association
of variables, waiting time, number of patients, number of servers at various service
channels and opportunity cost, with one another is non-linear, this was the reason the
authors used the SD approach for calculations. The present research is a reflection
of how the performance of OPDs can be optimized by using the DES and SD mod-
elling techniques. The present research contributes to giving a direction to hospitals
to optimize their performance by using the DES and SD modelling and simulation
techniques.

Keywords: queuing system; nonlinear systems; outpatient department; waiting time;
length of the queue; Nash equilibrium.

Mathematics Subject Classification (2010): 81T80, 93C10, 93C65.

∗ Corresponding author: mailto:boukoftaneam@yahoo.fr

© 2024 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua354

mailto: boukoftaneam@yahoo.fr
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (4) (2024) 354–365 355

1 Introduction

Hospitals are described as complicated systems with certain benefits that are expensive
for the general public [1]. Patient overcrowding in waiting areas, emergency rooms, in-
tensive care units, and outpatient departments (OPDs) is presently one of the hospital’s
biggest concerns [2]. This is due to the absence of end-to-end queuing system admin-
istration in numerous hospital departments [2]. The main issue is the queue, which is
unquestionably caused by improper administration of queuing systems [1]. When the
number of servers is less than the number of entities to be served in the system, then
a queue is formed [3]. Addressing issues regarding health care including resource uti-
lization, epidemiologic concerns, patient flows, and allocation of resources, in DES, has
proven to be a reliable tool for healthcare systems [4].

The SD modeling approach is used to model the variables that are non-linearly corre-
lated with one another. Numerous authors have worked on the DES modeling approach
and studied patient flows in the clinical setting. Torri et al. [5] studied activities work-
flow at the Department of Laboratory Medicine of the ”San Paolo” Hospital in Naples.
Williams et al. [6] used a DES modeling approach for the determination of bed require-
ments at the critical care unit in the United Kingdom. Melman et al. [7] utilized the
DES modeling approach to define the patient flows in emergency surgery and elective
surgery during the COVID-19 pandemic. Numerous authors have worked on the optimal
allocation of resources in healthcare settings by using DES modeling and simulation; they
have worked on the minimization of waiting time [8,9]. Whereas in the present research,
the DES and SD modeling approaches were used to evaluate and analyze the current
queuing system of the OPD.

In the present research, a queuing system of the OPD of an anonymous hospital was
studied and the number of required resources was suggested accordingly to the congestion
at the various service channels. Moreover, the Nash equilibrium was used to decide the
best scenario analyzed by the DES and SD modeling approaches.

2 Research Methodology

2.1 Data collection

Data collection was the first step of the present research; it included the arrival rate of
patients at the OPD and their service rate at the reception and triage; furthermore, the
service rate of patients by various doctors available at the OPD was also collected. The
second step was the model development in Anylogic software, it was conducted using the
DES modeling (see Figure 4) and SD modeling techniques.

The arrival rate of patients was collected as the number of patients who arrived at
the OPD per hour. The arrival rate of patients was then put into the custom distribution
function of Anylogic software. The service rate of patients at the reception was collected
as the time to serve one patient, the service rate was also put into the custom distribution
function for various stages of service. Some distribution functions are given below.

Resource pools were used to include the set of resources (receptionists, nurses, various
types of doctors) and the parameters were used to initialize the number of the various
resources (see Figure 3).
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Figure 1: The arrival rate of the patients
at the clinic.

Figure 2: Service rate of patients at recep-
tion.

Figure 3: Parameters, datasets, custom distribution functions, and resource pools as used
during the model development.

2.2 Model development

2.2.1 Development of DES model

In the gravity of consideration to the discussion in the process workflow of the OPD, the
flow of patients, the DES model was developed (see Figure 4). Several elements from
the process modeling library were in the model given in Figure 4. The ‘Source’ was used
for the arrival of patients, and the number of patients arriving at the OPD per hour
was already put in the custom distribution function; therefore, the input of the source
in the model was put to be the ‘Patient Arrival Distribution’. After the entrance of the
patients into the OPD, their entrance time was noted by using the ‘time measure start ’
from the process modeling library of Anylogic.

Figure 4: The discrete event simulation model designed in Anylogic.

The receptionist from the resource pool (Receptionists) was then seized (As-
sign Receptionist) at the reception and the queue is formed; the condition was applied
to the queue that if the waiting time of the patient in the reception queue exceeds 60
minutes, then he/she balks. The ‘Delay’ function (Reception) was used to serve the
patients at the reception and the service distribution of patients was put to be the ‘Ser-
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vice Distribution At Reception’ (see Figures 2-3). The total time spent by the patients at
the reception (waiting time + reception service time) was calculated by the ‘time measure
end’ function from the process modeling library. Similarly to reception, the time spent
by the patients at various service channels (triage, gastrologists, ENT specialists, cardi-
ologists, pediatricians, and general physicians) was calculated using the ‘time measure
end ’ function. After the patients are served at the reception, then the nurses are seized
at triage to serve the patients. As per the data collection, 36.68% of patients visited
the OPD for health issues related to gastrology, 12.47% of the patients because of ENT
issues, 27.68% of the patients visited the OPD because of issues associated with cardi-
ology, 13.95% of patients visit the OPD because of issues associated with their children;
moreover, 9.23% visit the OPD to consult general physicians. After the patients were
served from the triage, they were sent to a specific type of doctor as per the nature of
their health issue. The decision of sending a particular patient to a specific type of doctor
was made based on the above-discussed percentages. At the end of the queuing system,
the time spent by the patients in the queue to consult the doctor and the consultation
time of patients were recorded. When a patient is served from all the service channels,
he/she departed from the OPD.

2.2.2 Development of system dynamics model

The system dynamics model was also developed in the present research. The stock and
flow diagram was developed (see Figure 5) using the flow of patients through various
service channels. Various distributions used in the DES model were put in the flows
of the system dynamics model. The input in the Arrival rate flow was put to be the
Patient arrival distribution, the flow, i.e., the service rate at reception was initialized
with the distribution function of the service Distribution at reception, the service rate at
triage was initialized with the service distribution at triage. The Service distributions of
patients by various types of doctors were also put in the same way.

Figure 5: The system dynamics model synchronized with the discrete event model.

The set of equations represents the various stocks used in Figure 5.

Pa (t) =

∫ t

t0

φardt+ Pa (t0) , (1)

Psr (t) =

∫ t

t0

[φar − φsrr] dt+ Psr (t0) , (2)
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Pst (t) =

∫ t

t0

[φsrr − φsrt] dt+ Pst (t0) , (3)

Psg (t) =

∫ t

t0

[φsrt − φsrg] dt+ Psg (t0) , (4)

Psent (t) =

∫ t

t0

[φsrt − φsrent] dt+ Psent (t0) , (5)

Psc (t) =

∫ t

t0

[φsrt − φsrc] dt+ Psc (t0) , (6)

Psgp (t) =

∫ t

t0

[φsrt − φsrgp] dt+ Psgp (t0) , (7)

Psp (t) =

∫ t

t0

[φsrt − φsrp] dt+ Psp (t0) . (8)

The total number of patients served at the OPD was calculated by (9), the cost of
receptionists per hour was calculated by (10), (11) was for the calculation of the cost
of nurses per hour, the service cost of doctors was calculated by using (12), the total
expected cost was calculated by using (13), (14) was for the calculation of revenue, and
(15) was for the calculation of profit.

Nps = φsrg + φsrent + φsrc + φsrgp + φsrp (9)

Crph =
Crpm

DwTh
Nrecep, (10)

Cnph =
Cnurpm

DwTh
Nnur, (11)

Csd = NpsCsdocpp, (12)

Cex = Crph + Cnph + Csd, (13)

R = NpsCcheck, (14)

P = (R− Cex). (15)

2.3 Model initialization

The DES model was initialized in two scenarios as given in Figure 6. Scenario 1 represents
the present situation of the OPD and Scenario 2 is the suggested situation for the OPD.
Since the performance of the OPD was based on the number of resources and length of
the queue after each human resource (receptionist, nurse, gastrologist, ENT specialist,
cardiologist, pediatrician, and general physician), it was dependent on the availability of
the number of human resources. The discussion model initialization was applied to both
models because they are integrated.

3 Results and Discussions

Under this heading, the results of the present situation of the OPD were discussed and
after increasing the number of several resources, the queue length and various other
parameters were discussed in detail.
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Figure 6: Initialization of the DES model.

3.1 Arrival rate of patients

The arrival rate of patients as indicated by Figure 7 was taken from the output of the
flow, i.e., the ‘Arrival Rate’ of the system dynamics model given in Figure 5. A look at
Figure 7 indicates that the arrival rate of patients at the OPD was between 80 to 165
patients per hour, which means that this number of patients arrives at the reception and
passed through all the service channels. Note: the x-axis of the figure indicates the model

Figure 7: The arrival rate of patients obtained after simulating the SD model.

time in hours and the y-axis indicates the number of patients arriving at the OPD.

3.1.1 Results of Scenario 1

The main problem at the OPD was the congestion of the patients at every service channel.
At the reception, even after the availability of 5 receptionists, the queue length of the
patients mostly fluctuates between 5 to 10 patients; at one point, the queue length at
reception reached 18 patients as indicated by Figure 8. According to the simulation
results from Anylogic software, the patients spent an average time of 0.053 hours at
the reception including waiting time in the queue and service time of the receptionist.
Furthermore, the minimum and maximum time of patients at the reception was taken out
to be 0.196 hours and 0.026 hours, respectively. In the existing scenario (Scenario 1), the
headcount of nurses was 7 and the queue length of triage indicates that around 10 to 20
patients were in the queue in 382 simulated hours of the OPD, and sometimes even more
patients wait in the queue; at one point, the simulation results (see Figure 8) indicate
around 45 people in the queue of triage. Furthermore, according to the simulation results,
the patients spent an average time of 0.089 hours at the triage including waiting time in
the queue and service time of the nurse. The minimum and maximum time of patients
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Figure 8: Length of queue at reception and triage.

at the triage was 0.402 hours and 0.035 hours respectively.

Figure 9: Length of the queue for various types of doctors.

Five types of doctors were available at the OPD. In the existing scenario (Scenario
1), the queue of patients who came to consult gastrologists contained 3 patients on
average throughout the simulation time. Similarly, the queues for the ENT specialists
and pediatricians are short, which indicates that enough doctors (gastrologits, ENT
Specialists, and pediatricians) were there to provide the consultation to the patients.
The patients spent an average of 0.032 hours, a maximum time of 0.124 hours, and a
minimum of 0.02 hours only to consult a gastrologist; the time spent by the patients to
consult an ENT specialist (average = 0.1 hours, minimum = 0.063 hours, and maximum
= 0.436 hours) and pediatrician (average = 0.092 hours, minimum = 0.052 hours, and
maximum = 0.386 hours) was quite less; this is the reason the queue length for the
mentioned doctors was significantly short as given in Figure 9

The queue length for general physicians indicated that as per the flow of patients
arriving at the OPD to consult general physicians, the availability of doctors was larger
than the requirement. The patients spent an average of 0.036 hours. The time of patients
(waiting time in the queue to see a general physician plus the consultation time) indicates
that the patients got free quickly from the cabins of general physicians. In this regard,
the authors suggested decreasing the number of general physicians as per the current
workload. Furthermore, the queue length for cardiologists indicates that the availability
of doctors was less than the requirement as per the flow of patients arriving at the OPD
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to consult cardiologists; this is the reason the queue gets long and patients wait longer
to see the doctor. The patients spent 0.29 hours on average, 0.083 hours minimally, and
1.197 hours maximally consulting the cardiologists. The waiting time of patients in the
queue and the doctors consultation time were significantly greater as compared to those
for the rest of the doctors, this is the reason for the long queue after cardiologists.

Figure 10: The expected cost, revenues, and profits of the OPD in Scenario 1.

With 5 receptionists, 7 nurses, and 12 doctors, the expected cost, revenues, and profits
can be noticed as given in Figure 10. The average expected cost (calculated from the
downloaded data into Microsoft Excel), revenue, and profit were calculated to be PKR
61.06.71, PKR 7479.68, and PKR 1362.86, respectively. Moreover, the waiting cost of
patients was calculated to be PKR 77.96.

3.2 Results of Scenario 2

The queue length at reception and triage was found to be greater in Scenario 1 as indi-
cated by Figure 14. The authors suggested an increase in the number of receptionists and
nurses. In this regard, the numbers of one receptionist and one nurse were increased in
Scenario 2 and the DES model was simulated; the results of the simulation are presented
in Figure 11 in terms of the queue length at reception and triage.

Figure 11: Length of queue at reception and triage.

The length of the queue at reception decreased from 10 to 15 patients to 4 to 6
patients (see Figure 11). Moreover, the patients spent 0.038 hours on average, their
minimum time was 0.026 hours, and their maximum time was 0.105 hours. The average
time of patients spent at reception decreased from 0.053 hours (Scenario 1) to 0.038 hours
(Scenario 2). The length of the queue at triage decreased from 10 to 20 patients to 5 to
9 patients (see Figure 11). Moreover, the patients spent 0.057 hours on average, their
minimum time was 0.035 hours, and their maximum time was 0.162 hours. The average
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time of patients spent at triage decreased from 0.089 hours (Scenario 1) to 0.057 hours
(Scenario 2). The maximum time of patients at triage also decreased significantly from
0.402 hours (Scenario 1) to 0.162 hours (Scenario 2). Increasing of the numbers of one
receptionist and one nurse increased the service rate of both service channels significantly.
The number of general physicians decreased from 2 to 1 and the number of cardiologists
increased from 4 to 5 in Scenario 2; this suggestion was made considering the length of
the queue for both types of doctors. The queue length for the general physicians was very
short, therefore, the number of doctors was reduced and the number of cardiologists was
increased because of the greater length of the queue of patients. In Scenario 2, there are
some patients in the queue (see Figure 12), whereas, in Scenario 1, the queue length was
either 0 or 1, which means the general physicians were under-utilized. The patient’s time
incurred in the queue for general physicians and the time incurred in the consultation
increased (average = 0.047 hours, minimum = 0.026 hours, and maximum = 0.214 hours)
as compared to Scenario 1.

Figure 12: Length of the queue for general
physicians after decreasing by one doctor.

Figure 13: Length of the queue for cardi-
ologists after increasing the number of one
doctor.

The length of the queue for cardiologists decreased from 10 to 20 patients to 4 to
10 patients (see Figure 13). Since the number of doctors increased, the system time of
patients at the service channel decreased significantly. The patients spent 0.123 hours
(instead of 0.29 hours) on average, their minimum time was 0.083 hours, and their max-
imum time was 0.365 hours (instead of 1.197 hours). The average time of patients spent
seeing a cardiologist decreased by 57.58% in Scenario 2 just by increasing the number of
one cardiologist.

Figure 14: The expected cost, revenues, and profits of the OPD in Scenario 2.

The variation in the expected cost, revenues, and profits were noticed as given in
Figure 14. The average expected cost (calculated from the downloaded data into Mi-
crosoft Excel), revenue, and profit were calculated to be PKR 6350.60, PKR 7454.67,
and PKR 1123.88, respectively. The average opportunity cost of a patient in Scenario 2
was calculated to be PKR 39.90.
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4 Calculation of Nash Equilibrium

We summarize the possible metaphorical or analogical transpositions from game theory
to the strategic OPD model from the five fundamental concepts of game theory (see Table
4). Player strategies are defined based on payment functions. It is from the expected

Concept of game theory Useful transposition to the strategic OPD model
strategy Scenarios 1 and 2

decision tree Concept of bifurcation
players Patients

payment functions Taking into account the advantages of other patients
Equilibrium the notion of indeterminacy causing instability. the result of the strategy is random

Table 3: Concepts of Game Theory.

gains, and taking into account the expected gains of other players. The player examines
the consequences attached to the system of possibilities, consequences that do not depend
solely on his own decisions. The equilibrium is a situation where everyone’s expectations
are realized [10].

4.1 Discussion of equilibrium in the OPD model

Let us discuss the Nash equilibrium for 2 patients and which will be generalized for n
patients, we will study the Nash equilibrium according to the cost and waiting time,
it is in our interest to minimize it, according to Scenario 1 (S1) and Scenario 2 (S2)
described in this paper. For Scenario 2 (suggested situation of the OPD), the cost of
service increases, but the waiting time of the patients decreases and this is the major
interest of patients. According to the cost, we have C2 > C1, where Ci is the patient
service cost according to the scenario i; i = 1, 2, the different situations are given in
Table 4. The Nash equilibrium i is (C1 , C1), it is clear that if, for example, patient

patient2 patient2
S1 S2

Patient 1 S1 (C1, C1) (C1, C2)
Patient 1 S2 (C2, C1) (C2, C2)

Table 4: Cost matrix of both scenarios.

1 follows the scenario S2 and patient 2 follows S1, patient 1 can follow S1 in order to
minimize the service cost, so (C2 , C1) is not a Nash equilibrium.

If we consider now the waiting time of patients Ti, i = 1, 2 , T2 < T1, we obtain the
following. By the same methodology, the Nash equilibrium is (T2 , T2), we conclude that

patient2 patient2
S1 S2

patient 1 S1 (T1, T1) (T1, T2)
patient 1 S2 (T2, T1) (T2, T2)

Table 5: Waiting time matrix of both scenarios.

the Nash equilibrium confirms the results of the two scenarios and we can generalize it
for n patients.
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4.2 Price of anarchy

The price of anarchy is a concept in algorithmic game theory that measures how far a
system where all agents act to optimize their interests can be from an optimal situation
from the global point of view. We define in our model a set of n patients, two strategies
(2 scenarios), and utilities Ui : S → R, where S = S1 × S2. We can define a measure
of the efficiency of each outcome which we call a welfare function W : S → R, W (s) =∑

i∈N Ui(S). We can define a subset Equils⊂S to be the set of strategies in equilibrium.
If, instead of a welfare which we want to maximize, the function measure of efficiency is
a cost function Cost : S → R which we want to minimize, then

P0A =
maxs∈Equil Cost (s)

mins∈S Cost(s)
. (16)

According to the table of costs defined above, the cost function is

C (S1, S2) = u1 (S1, S2) + u2 (S1, S2) . (17)

The worst (and the only) Nash equilibrium will be when both patients follow S2 and the
resulting cost is Cequil = 2C2 as calculated by (18). However, the highest social welfare
occurs when both patients follow S1 , in this case, the cost is Cmin = 2C1. Thus the
P0A in this situation will be

CEquil/Cmin = C2/C1. (18)

If, instead of a welfare which we want to maximize, the function measure of efficiency
is a waiting time function T : S → R which we want to minimize, the worst Nash
equilibrium will be when both patients follow S1 and the result is Tequil = 2C1. In this
case, P0A=C1/C2. We have studied an OPD situation with two scenarios for which we
calculated the equilibrium and the price of anarchy for the two scenarios and for two
patients, something that can be generalized for n patients.

5 Conclusion

At the selected OPD, the queue used to be longer at the reception and triage and car-
diologists, whereas it was shorter for the general physicians. Due to the long queues,
the system time of patients was longer and they led the OPD to be congested with
patients. In this regard, the numbers of one receptionist, one nurse, and one cardiol-
ogist were suggested to be increased. Furthermore, due to the short queue of patients
to general physicians, one general physician was reduced. The results of the simulation
indicated a significant drop in the waiting time of patients in the system and optimiza-
tion of the length of the queues at the various service channels of the OPD by using the
DES. The SD and DES techniques helped researchers to conduct an in-depth analysis of
OPD’s current situation and the way it can be optimised at a quite reasonable cost. The
present research contributes to providing substantial guidelines to hospital management
to optimize OPD’s performance.

Appendix Pa (t) = Patients Arrived, Psr (t) = Patients Served at Reception, Pst (t) =
Patients Served at Triage, Psg (t) = Patients Served by Gastrologis, Psent (t) = Patients
Served by EN, Psc (t) = Patients Served by Cardiologist, Psgp (t) = Patients Served
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by General Physician, Psp (t) = Patients Served by Pediatrician.φar = Arrival Rate,
φsrr = Service Rate at reception, φsrt = Service Rate at Triage,φsrg = Service Rate of
Gastrologist, φsrent = Service Rate of ENT Specialist, φsrc = Service Rate of Cardiologis,
φsrgp = Service Rate of General Physician, φsrp = Service Rate of Pediatrician. Nps =
Number of Patients Served, Crph = Salary of Receptionist per Hour, Cnph = Salary of
Nurse per Hour, Csd = Service Cost of Doctors, Cex = Expected Cost,R = Revenue, P
= Profit. Nrecep = Number of Receptionists, Nnur = Number of Nurses, Crpm = Salary
of Receptionist per Month, Cnurpm = Salary of Nurse per Month, Csdocpp = Service Cost
of Doctor per Patient, Ccheck = Checkup Charges per Patient. Dw = Working Days, Th

= Working Hours.
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Abstract: In symmetric cryptosystems, we use the same keys to encrypt and de-
crypt data, our question is how to share this common keys? Using the commutativity
of the multiplication of circular matrices and sensibility to initial conditions in chaotic
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1 Introduction

The main goal of this work is the creation of two keys through two different channels.
For the first key, based on the same techniques as in our previous work [1], we set a
t ∈ [−1, 1] and we create a circular matrix generated by the vector (a(t), b(t), c(t)) such
that a = t2 + 1, b = t and c = −t. This choice is made so that the trace and the
determinant of the generated circular matrix are strictly positive, which allows us to
calculate the initial parameters of a logistic sequence as follows:

µ =
det T

det T + 1
+ 3 and x0 =

trT
trT + 1

. (1)

This choice checks the chaotic case because µ ∈]3, 4[ and x0 ∈]0, 1[. These two parameters
will be shared through a quantum channel by the exchange protocol BB84.
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So, the key K created will be the circular matrix generated by the vector
V (y1, · · · , yn), where

∀i ∈ N, yi = [1015xi] mod (p) ∈ (Z/pZ)∗;

p is a prime number such that ∀i ∈ N, p > yi and xi are the terms of the logistic
sequence

∀n ∈ N, xn+1 = µxn(1− xn).

Then K = ⟨y1, y2, · · · , yn⟩.

The creation of the second key will be done using the first key K and based on the
commutativity of the multiplication of circular matrices.

These two keys K and C will be used for the encryption and decryption of digital
images.

2 Toeplitz Matrices of Order 3

In 1911, Otto Toeplitz introduced theToeplitz matrices after the study of the quadratic
forms

∑
φi,jxiyj , for which the coefficients of these forms verify the particular property

φi,j = φi−j , and thus obtained associated matrices T = (φi,j)i,j on diagonal and on-
diagonal and sub-diagonal constants that are now called the Toeplitz matrices [3,4]. More
recently, the particular structure with diagonals and on-diagonals and/or sub-diagonals
constants of the Toeplitz matrices appears in various problems as a result of the different
methods of resolution used or by the methods of raising data at regular time interval or
space which will make appear systems with diagonal matrices and on-constant diagonals
and sub-constant diagonals.

Definition 2.1 We call the Toeplitz matrix, any matrix T ∈ Mn(R) with diagonal
and on-diagonal and sub-diagonal constants, that is to say, any matrix of the form

T =


t0 t1 · · · t−(n−1)

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 · · · t1 t0

 , where ti ∈ R for all i ∈ {−(n− 1), · · · , n− 1}.

We can distinguish two particular cases in the following remark.

Remark 2.1

1. If tn−j = t−j for j ∈ {0, · · · , n}, the matrix T is said to be a circular matrix.

2. If tn−j = −t−j for j ∈ {0, · · · , n}, so we are talking about an anti-circular matrix.

The particular case of circular and anti-circular matrices is interesting in the context
of diagonalization. Indeed, these matrices with a particular structure can be diagonal-
ized using the FFT (Fast Fourier Transform) with a lower complexity than any matrix
without a particular structure.

The shape of a circular matrix is given in the following definition.
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Definition 2.2 A circular matrix is a Toeplitz matrix given by

Cn = Cn(c1, · · · , cn) =


c1 c2 · · · cn

cn c1
. . .

...
...

. . .
. . . c2

c2 · · · cn c1

 ∈ Mn(R).

3 The Abelian Group of Circular Matrices of Order 3 with Some Conditions

The aim of this section is to create an abelian group of circular matrices of order 3 with
matricial composition, we denote it by C3(I), where I ⊂ R such that the elements of C3

are invertible, see [7, 9].

Definition 3.1 A square matrix C of order 3 is said to be circular if and only if it
is generated by one vector V (a, b, c). Such a matrix is of the form

C = ⟨V ⟩ = ⟨a, b, c⟩ =

a b c
c a b
b c a

 . (2)

We know that an abelian group must verify the commutativity, the associativity, the
existence of a neutral element and the invertibility of all elements.

Theorem 3.1 (Commutativity in C3) For any A,B ∈ C3 , we have AB = BA.

Proof. By definition, A and B ∈ C3 means that there exist V (a, b, c) and V ′(a′, b′c′)
such that

A =

a b c
c a b
b c a

 and B =

a′ b′ c′

c′ a′ b′

b′ c′ a′

 .

We have

AB =

a b c
c a b
b c a

a′ b′ c′

c′ a′ b′

b′ c′ a′


=

aa′ + bc′ + cb′ ab′ + ba′ + cc′ ac′ + bb′ + ca′

ca′ + ac′ + bb′ cb′ + aa′ + bc′ cc′ + ab′ + ba′

ba′ + cc′ + ab′ bb′ + ca′ + ac′ bc′ + cb′ + aa′


( addition and multiplication are commutatives in R)

=

a′a+ c′b+ b′c b′a+ a′b+ c′c c′a+ b′b+ a′c
a′c+ c′a+ b′b b′c+ a′a+ c′b c′c+ b′a+ a′b
a′b+ c′c+ b′a b′b+ a′c+ c′a c′b+ b′c+ a′a


=

a′ b′ c′

c′ a′ b′

b′ c′ a′

a b c
c a b
b c a


= BA.

Theorem 3.2 (Associativity in C3) For any A,B and C ∈ C3 we have

A(BC) = (AB)C = ABC.
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It is easy to verify the equality with a useful calculus.

Theorem 3.3 The identity matrix I3 is the neutral element in C3 for matrix multi-
plication.

We know that the Toeplitz matrices are not always invertible, and to have the invert-
ibilty, we must impose some conditions on its terms.

For a matrix to be invertible, it is necessary and sufficient that its determinant is not
null.

We choose the vector V = (a, b,−b), where a = t2+1 and b = t. The matrix becomes

T =

 a b −b
−b a b
b −b a

 =

t2 + 1 t −t
−t t2 + 1 t
t −t t2 + 1

 . (3)

Then, the determinant of T is

det(T ) = a3 + b3 + c3 − 3abc
= t6 + 6t4 + 6t2 + 1.

We can see that det(T ) is a function of t.

Proposition 3.1 The function

f : R → R
t 7→ f(t) = det(T ) = t6 + 6t4 + 6t2 + 1

is strictly positive (f > 0).

Proof. By plotting the function f with GeoGebra, we get the following graph (Figure
1).

Figure 1: The graph of f(t) = det(T ) on R.

We observe that the curve of the function f is always on the x-axis, which shows that
f is strictly positive.
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Theorem 3.4 The matrix T in (3) is invertible and the inverse T −1 is given by

T −1 =
1

t6 + 6t4 + 6t2 + 1

t4 + 3t2 + 1 −t3 + t2 − t t3 + t2 + t
t3 + t2 + t t4 + 3t2 + 1 −t3 + t2 − t
−t3 + t2 − t t3 + t2 + t t4 + 3t2 + 1

 . (4)

Proof. The existence of the inverse matrix is ensured by Proposition 3.1.

To calculate it, we use the formula T −1 =
1

det T
Com(tT ), the desired result is

obtained.

Theorem 3.5 The set C3 menu by the law of matrix composition forms an abelian
group.

Proof. The demonstration is immediate according to Theorems 3.1, 3.2, 3.3 and
3.4.

4 Logistic Maps

In mathematics, a logistic map is a real simple sequence, but its recurrence is not linear,
see [2, 10,11].

Definition 4.1 A logistics map (xn)n∈N is a non-linear real sequence defined by its
first term x0 ∈ [0, 1] and the following recurring formula:

xn : N → R
n 7→ xn+1 = µxn(1− xn) , µ ∈ [0, 4].

(5)

Depending on the value of the parameter µ ∈ [0, 4], to ensure that the values of X re-
main in [0, 1], it generates either a convergent sequence, a series subjected to oscillations,
or a chaotic sequence.

4.1 The chaotic case ( µ ∈ [3.57, 4])

We are interested in the chaotic case, where µ ∈ [3.57, 4].

Most values above 3.57 have a chaotic character, but there are some isolated values
of µ with a behaviour that is not. For example, from 1+

√
8 (about 3.82), a small range

of µ values has an oscillation between three values and for a slightly larger µ, between
six values, then twelve, etc. Other ranges offer oscillations between 5 values, etc. All
periods of oscillation are present, again independently of the initial population.

The horizontal axis bears the values of the parameter µ (noted r), while the vertical
axis shows the possible adhesion values.

4.2 Sensitivity to the initial conditions

The most important property of the logistic maps is sensitivity to the initial conditions.
This results in a radical change in the sequence behaviour as soon as there is a very small
change in the initial value x0.
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Figure 2: A bifurcation diagram of a logistic map.

5 Application in Cryptography

In general, cryptography is a writing technique where an encrypted message is written
using secret codes or encryption keys. Cryptography is primarily used to protect a
message considered confidential. This method is used in many areas such as the secret
army, information technology, privacy, etc. There are many cryptographic algorithms
that can be used to encrypt (and decrypt for the recipient) the message, see [8, 14].

Definition 5.1 [Cryptosystem] A cryptosystem is a term used in cryptography to
refer to a set of cryptographic algorithms and all possible plain texts, encrypted texts
and keys.

Definition 5.2 [Components of a cryptosystem] A basic cryptosystem consists of
the following variants:

1. Plain text: This is the data (text or images) that we want to protect during
transmission.

2. Encryption Algorithm: This is a mathematical process that produces encryp-
tion for all data in clear and key encryption. It is a cryptographic algorithm that
takes the plain text and an encryption key as an input and produces an encrypted
text.

3. Encrypted text: This is the scrambled version of the plain text produced by
the encryption algorithm using a specific encryption key. The encrypted text is not
protected. It circulates on a public channel. It can be intercepted or compromised
by anyone with access to the communication channel.

4. Decryption algorithm: This is a mathematical process, which produces a
single clear text for any given digit and decryption key. It is a cryptographic
algorithm that takes a number and a decryption key as an entry, and produces a
plain text. The decryption algorithm essentially reverses the encryption algorithm
and is therefore closely related to it.



372 BENZEGHLI BRAHIM AND ADOUI SALAH

5. Encryption key: This is a value known to the sender. The sender enters the
encryption key into the encryption algorithm with the plain text to calculate the
encrypted text.

6. Decryption key: This is a known value of the receiver. The decryption key is
linked to the encryption key, but it is not always identical. The receiver enters the
decryption key into the decryption algorithm with encryption to calculate the plain
text.

5.1 Asymmetric and symmetric cryptograpy

Definition 5.3 [Asymmetric cryptography] In the case of asymmetric encryption,
each user has two keys:

• The private key, which must be kept secret;

• The public key, which is available to all other users.

These two keys are mathematically linked.

Definition 5.4 [Symmetric cryptography] It is about multiple people using the same
key to encrypt and decrypt messages.

The main problem of this system is the exchange of a single key between different
people. So we must ask the question: How can this unique key be shared, allowing each
person to encrypt and decrypt safely?

5.2 Key exchange protocols

Definition 5.5 A key exchange protocol (or key negotiation, or key establishment,
or key distribution) is a mechanism through which multiple participants agree on a
cryptographic key.

The invention of public key cryptography in the 1970′s produced the first key exchange
protocol that can be demonstrated to be secure, even when communications are made
over an unprotected channel, without the use of trusted third parties. One of the first
protocols of this type, due to Whitfield Diffie and Martin Hellman, is now the most used
on the Internet, see [5, 12].

5.3 Diffie and Hellman key exchange protocol

Diffie and Hellman proposed in 1976 a completely secure key exchange protocol. The
problem was as follows.

Two persons want to exchange an encrypted message using an algorithm requiring a
key K. They want to exchange this key, but they do not have a secure channel for it.
Diffie and Hellman’s key exchange protocol addresses this problem when K is an integer.
The idea of Diffie and Hellman is based on modular arithmetic, and on the following
postulate

Being given integers p, a and x with p prime and 0 < a < p, in (Z/pZ)∗, it is easy to
calculate the integer y = ax mod (p). But, if we know y = ax mod (p), a and p, it is
very difficult to find x since p is big enough. This problem is called the discrete logarithm
problem on (Z/pZ)∗.
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5.4 Steps of the key exchange protocol

We resume five steps of the key exchange protocol in the following table.

Figure 3: Steps of the key exchange protocol

5.5 Our contribution

In Subsection 5.3, we saw that in the Diffie-Hellman key exchange protocol, the integer
a was public and our variables were integers that belong to the commutative group
(Z/pZ)∗.

According to the same techniques as in our last paper [1], we propose to work in the
set of the circular matrices and more. The integer a will be replaced by a secrete matrix
built with a safe exchange of parameters using a quantum protocol BB84 and also using
logistic maps.

Our new technique will be given through the following steps.

Two persons Salah and Brahim want to create a common secrete key.
Step 1: Creating the first common secrete key

• Using the famous exchange quantum protocol BB84 through the quantum channel,
Salah and Brahim share two parameters: t ∈ [−1, 1] and p ∈ N ( p prime), see [6,13].

1. Each one calculates

a = t2 + 1, b = t and c = −t. (6)

2. Creates the circulate matrix T of order 3 generated by the vector V = (a, b, c).
So,

T =

a b c
c a b
b c a

 , with ∀t ∈ [−1, 1], det(T ) > 0. (7)

• Using the famous logistic maps

xn+1 = µxn(1− xn), 3 < µ < 4 and 0 < x0 < 1. (8)
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Proposition 5.1 We can choose

µ =
det(T )

det(T ) + 1
+ 3 and x0 =

tr(T )

tr(T ) + 1
.

Proof.

– From Section 3, we have det(T ) > 0, so, det(T ) < det(T ) + 1, then

0 <
det(T )

det(T ) + 1
< 1.

by adding 3 to all terms of the inequality, we get

3 <
det(T )

det(T ) + 1
+ 3 < 4,

so, the choice of µ is good.

– We have

tr(T ) = 3a = 3t2 + 3 > 0,

then

0 <
tr(T )

tr(T ) + 1
< 1,

so, the choice of x0 is good too.

The first key K created will be the circular matrix generated by the vector
V (y1, · · · , yn), where

∀i ∈ N, yi = [1015xi] mod (p) ∈ (Z/pZ)∗;

p is a prime number such that ∀i ∈ N, p > yi and xi are the terms of the logistic
sequence

∀n ∈ N, xn+1 = µxn(1− xn).

Now Salah and Brahim can build the following circular matrix of order n using the
terms of the previous logistic map.

We denote by K the first shared key

K = ⟨y1, y2, · · · , yn⟩ =


y1 y2 · · · yn
yn y1 · · · yn−1

...
...

. . .
...

y2 y3 · · · y1

 .

Step 2: Creating the second common secrete key
We take the first shared key K created in the first step, then

• Salah chooses twice private circular matrices (M1,M2), calculates and sends to
Brahim the cipher

KA = M1KM2.
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• Likewise, Brahim chooses twice private circular matrices (M3,M4), calculates and
sends to Salah the cipher

KB = M3KM4.

• Salah receives KB and calculates

CA = M1KBM2.

• Also, Brahim receives KA and calculates

CB = M3KAM4.

Proposition 5.2 We have

CA = CB := C Same key shared.

Proof. By construction, we have

CA = M1KBM2

= M1M3KM4M2 , because KB = M3KM4

= M3M1KM2M4 , by commutativity
= M3KAM4 , because KA = M1KM2

= CB .

So, we have managed to build a matrix C which will be the secret common key
between two interlocutors. It will also be used to encrypt and decrypt a text or image.

Figure 4: Diagram explaining the mechanism of creating a common key C.

In the following table (see Table 1), we show the time required to run the key K,
using Matlab R 2018a (9.4.0.813654) 64-bit (Win64) on PC Intel(R) Core(TM) i5-6400
CPU @ 2.70GHz 2.71 GHz RAM 12Go.

For µ = 3.61 and x0 = 0.73, we get the following results.
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Size of the key K 64× 64 128× 128 256× 256 512× 512 1024× 1024
Time required (second) 0.000042 0.000147 0.000697 0.003108 0.024277

Table 1: Execution time of the proposed method to generate the key K.

In the following table (see Table 2), we show the time required to run the key C,
using Matlab R 2018a (9.4.0.813654) 64-bit (Win64) on PC Intel(R) Core(TM) i5-6400
CPU @ 2.70GHz 2.71 GHz RAM 12Go.

For this, we use three logistic maps with the parameters (µ = 3.61, x0 = 0.73),
(µ′ = 3.65, X ′

0 = 0.77) and (µ′′ = 3.67, X ′′
0 = 0.82), we get the following results.

Size of the key C 64× 64 128× 128 256× 256 512× 512 1024× 1024
Time required (second) 0.000286 0.001477 0.005092 0.031820 0.186870

Table 2: Execution time of the proposed method to generate the key C.

6 Encryption and Decryption of Some Digital Images Using Our Method

In this paragraph, we test our method on some images of different sizes, using the key
created in Section 5.1, see [1, 8, 14].

Salah wants to send Brahim an image m of size n× n. To encrypt and decrypt this
image, they must proceed as follows.

• Salah converts the image m to a matrix M of the same size as m.

• Image Encryption:

Salah encrypts the image M to the matrix H as follows:

CMK = H,

where K and C are the common keys created in the previous Section 5.1 (K, C
and H have the same size). Then he sends H to Brahim.

• Image Decryption:

Brahim receives H and deciphers it as follows:

C−1HK−1 = M

because
C−1HK−1 = C−1CMKK−1 = M.

• Brahim converts the matrix M into an image, it gets the initial image.

To study the effectiveness of our image encryption, we analyse its security. The
proposed method should withstand several types of attacks, as it is symmetrical, the
keys that would be used during encryption and decryption must be transmitted through
the secured and other unsecured channels. For the implementation of the proposed
scheme, we choose n ∈ {64, 128, 256, 512, 1024}.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (4) (2024) 366–379 377

7 Performance and Safety Analysis

7.1 The key space

The secret key K is probabilistic because the transmitter and receiver use any circular
matrices (C1 and C2) to obtain a common key K.

If we use the proposed key generation method with (n = 256), xi ∈ {0, · · · , 255},
this provides 256256 possible keys (the elements used are not null) for the C1 key, we
have 256256 possible keys for the key C2, as well as we have 1560 possible keys to get the
key K (with fifteen decimal digits after the comma), the one-dimensional logistic map
used has interesting properties such as periodicity and significant dependence on initial
values, but it has low security, to overcome the inconvenience of its small key space, we
must use several logistic maps to generate the K key in the first phase. The proposed
schema key space size is greater than 256256 × 256256 × 1560 and the key space is large
enough for a brute force attack or comprehensive attack is not possible.

7.2 Statistical analysis

The proposed image encryption scheme is examined using different statistical measures.
These measures involve histogram, information entropy analysis and correlation analysis.

Each of these measures is described in detail in the subsections.
We use five test images: Pict6464.jpg, Pict128128.jpg, Pict256256.jpg, Pict512512.jpg

and Pict10241024.jpg.

Histogram

Figure 5: Encrypted and decrypted Pict256256.jpg images and their histograms.

In image processing, the histogram of an image normally represents a histogram of
the pixel intensity values. This is a graph showing the pixel variety in an image at each
other intensity value in that image.

For an 8 − bit gray-scale image, there are 256 different possible extremes, so the
histogram will graphically display 256 numbers showing the distribution of pixels among
these gray-scale values.



378 BENZEGHLI BRAHIM AND ADOUI SALAH

The histogram of the encryption system image must be uniform as it shows in our
encryption diagram in Figure 5. The histogram of our encrypted images is almost uniform
and significantly different from the histogram of simple images that makes statistical
attacks difficult.

Information Entropy Analysis

Entropy is one of the best functions for calculating and measuring the random character
of the encrypted image. Ideally, the information entropy should be 8− bits for gray-scale
images. If an encryption generates an output digit image with lower entropy at 8− bits,
then there would be a possibility of predictability, which could threaten its security. The
entropy of the information is calculated using the previous equation.

Simulation results for entropy analysis for the images used are presented in the table.

Encrypted image Size (µ, x0) (µ′, x′
0) (µ′′, x′′

0) Entropy

64× 64 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.2955

128× 128 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.7326

200× 200 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.8159

256× 256 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.7050

300× 300 (3.61, 0.73) (3.65, 0.77) (3.67, 0.82) 7.2768

Table 3: Entropy results for some encrypted images.

Correlation analysis of two adjacent pixels

Correlation determines the connection between two variables. In other terms, correlation
is a measure that determines the level of similarity between two variables. The correlation
coefficient is a useful evaluation to judge the encryption quality of any cryptosystem. Any
image cryptosystem is said to be good if the encryption method hides all attributes and
features of a plain text image, and the encrypted image is totally random and extremely
uncorrelated.

For a regular image, each pixel is highly associated with its nearby pixels. An ideal en-
cryption technique should generate the cipher images with no such correlation in the adja-
cent pixels. We have examined the correlation of two adjacent pixels in the original image
and encrypted image in several images like Pict6464.jpg, Pict128128.jpg, Pict256256.jpg,
Pict512512.jpg and Pict10241024.jpg. We find their correlation very close to 1, we mean
there is a perfect match between the original and decrypted images.
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8 Concluding Remarks

This paper deals with clear image encryption and decryption techniques. A new technique
has been proposed using logistic maps.

We merged between the creation of circulant matrices of order n generated by a vector
in the components being the first n elements of a logistic map taken in order from a given
rank.

Two parameters in (1) of our logistic map will be generated also by a circulant matrix
of order 3 whose components are parametric curves of order 3 chosen in a way that insures
the invertibility, so the existence of a non-zero determinant that insures that µ and x0

in (1) satisfy µ ∈]3, 4[ and x0 ∈]0, 1[ for any t ∈]− 1, 1[.
These choices assure us that the chaotic case of our system mentioned earlier is very

sensitive to changes in the initial value x0 or the parameter µ that, in our work, change
mutually for each t ∈]− 1, 1[ without loosing stability.
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1 Introduction

The rapid development of technology has made things easily accessible to many people.
Nowadays, humans do everything digitally, one example is obtaining or disseminating
information through social media platforms such as Twitter and Instagram. Based on
the Katadata Insight Center (KIC) survey, 76% of Indonesians get information from
social media [1]. The information obtained or disseminated through this medium can be
in the form of rumors. Rumors are still being confirmed and can negatively impact if the
information is false [2]. According to the results of a digital literacy survey conducted
by the Katadata Insight Center (KIC), this ease of dissemination of information has a
huge impact on the community. In the survey, almost 60 % of Indonesians obtained
information through rumors or hoaxes when accessing social media [3]. The spread of
rumors that are out of control can have an impact on human life, one of which is that
people are starting to worry about information that is not necessarily true. Special
handling is certainly needed to control the spread of rumors. For example, punishment
can be imposed on those who spread rumors, or some kind of campaign can be carried out
among people who are vulnerable to information. Handling this kind of problem is very
important because rumors can damage people’s trust in social media and are difficult to
control because they spread quickly.

The concept of optimization can assist in decision-making on achieving a goal and one
of the alternatives in determining the optimal control of a problem [4–8]. Modeling of the
spread of rumors has been studied by several researchers, such as Daley and Kendall [9],
discussing the model of spreading rumors which has similarities with the construction
of epidemic models of disease spread. The compartments used are Susceptible (a pop-
ulation that does not yet know rumors), Infected (a population that spreads rumors),
and Recovered (a population that does not spread rumors anymore). This model does
not consider the time it takes for a rumor to be received or even spread. Mathematical
modeling of rumor spread has been further developed by several people such as Dahl et
al. [10] in 2016. Efforts to control the spread of rumors entail the addition of control
variables to the rumor-spreading model formed. As such, the value of the control vari-
able is immediately given. In 2023, the model introduced by Dhar et al. [10] was used
by Jain et al. [11] for control by adding the assumption that there is a delay for thinkers
to spread the news. In the research, the implementation of delay for thinkers to spread
the news has primary challenge in the attempt to control the spread of rumors. The
model constructed by Jain is certainly valid. It has been shown in the model that the
constructed model satisfies the positively invariant set property so that the model has a
positive, bounded, and unique solution.

Time delays may be a useful tool in controlling the spread of rumor, but the truth is
that people’s confidence in the information they get is still very strong. This highlights
the complexity of human behavior within digital networks and the desire for a more
comprehensive strategy to manage the spread of rumors in our rapidly changing digital
era. Therefore, based on the description above and several previous studies on the rumor
spread mode, in this paper, a model for spreading rumors is constructed with control
in the form of campaign and punishment. The campaign is carried out in an effort to
impart knowledge to individual who obtaines the rumor, and who is exposed, about
the importance of information validation and the dangers of rumor propagation. This
control mechanism aims to reduce the number of individuals exposed to rumors, and
who subsequently spread them, thereby decreasing the count of infected individuals.
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However, punishment control is carried out to provide a deterrent effect on individuals
who spread rumors so that the individual will not spread rumors or can be said to be
cured. Throughout this paper, we propose and construct a nonlinear dynamic model
for rumor spreading, expanding on the previous models by Jain et al. [11]. In this
paper, the positivity, uniqueness, and existence of optimal control over the problem are
analyzed and proven. Positivity and uniqueness are employed to validate the control and
unique solution of the rumor spreading model. Furthermore, based on the positivity and
uniqueness of the rumor spreading model with control, the existence of optimal control
in the model can be solved.

2 Mathematical Model

Rumors are pieces of unverified information passed from individual to individual. Infor-
mation spreads on social networks quickly due to their increasing popularity. Individuals
disseminate information in seconds without verifying its validity. Therefore, the spread of
rumors among social media users can cause unnecessary panic [12]. Before modern com-
munication gadgets such as smartphones existed, rumors were spread by word of mouth,
so the spread of information was limited by the length of time it required. Therefore,
with the development of technology today, rumors can spread faster than before [13].

Rumor-spreading problems can be formulated as a mathematical model. For example,
Jain et al. [11] have described the optimal control of rumor spreading model on homoge-
neous social network with the consideration of influence of delay on thinkers [11] and Liu
et al. [14] have described and analyzed a model of spreading rumors on heterogeneous
network. In addition, Liu et al. [15] describe the rumor spreading model in complex so-
cial networks with hesitating mechanism. In this paper, the entire population is grouped
into four compartments: Susceptible (S), individuals who are not aware of rumors but
are vulnerable to knowing rumors; Exposed (E), individuals who know about rumors
and have the possibility to spread them; Infected (I), individuals who spread rumors;
and Recovered (R), individuals who have stopped spreading rumors. N denotes the total
individual population and satisfies N(t) = S(t) + E(t) + I(t) + R(t). The relationship
between populations in the rumor-spreading model can be expressed in the following
mathematical model:

dS
dt = θN − αβSI − µS,

dE
dt = αβSI − σE + γmI − µE,

dI
dt = σhE − γI − µI,

dR
dt = σ (1− h)E + γ (1−m) I − µ,R

(1)

with

θ : Susceptible individual growth rate,

µ : Natural death rate,

α : The rate of change from Susceptible individuals to Exposed individuals,

β : The rate of interaction between Susceptible individuals and Infected individuals,

σ : The rate of individuals leaving the exposed class (Exposed),
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γ : The rate of individuals leaving the class of Infected (Infected),

m : Proportion of Infected individuals to Exposed individuals,

h : Proportion of Exposed individuals to Infected individuals,

and the initial conditions

S (0)=S0, E (0)=E0, I (0)=I0, R (0)=R0.

The spread of rumors is getting more and more worrying day by day. There is a
lot of fake news or information that is conveyed interestingly and continuously, causing
many people to believe it. A rumor is a public communication obtained from a person’s
hypothesis about an incident with accusations based on non-existent evidence. Rumors
from reliable sources tend to be believed by many people [16]. Therefore, action must
be taken to reduce the spread of these rumors. This paper proposes two controllers:
a campaign for individuals who knew there were rumors and punishment for those who
spread rumors. We assume that everyone concerned shares a very high level of confidence
in the information they are given. From the assumption, the campaign is carried out
in an effort to impart knowledge to individual who obtaines the rumor, and is exposed,
about the importance of information validation and the dangers of rumor propagation.
This control mechanism aims to reduce the number of individuals exposed to rumors
and who subsequently spread them, thereby decreasing the count of infected individuals.
However, punishment control is carried out to provide a deterrent effect on individuals
who spread rumors so that the individual will not spread rumors or can be said to be
cured.

The mathematical model of controlled spread of rumors can be expressed as follows:

dS
dt = θN − αβSI − µS,

dE
dt = αβSI − σE + γmI − µE − u1E,

dI
dt = σhE − γI − µI − u2I,

dR
dt = σ (1− h)E + γ (1−m) I − µR+ u1E + u2I,

(2)

with u1 and u2 representing an effort to prevent the spread of rumors through a campaign
to individuals who know there are rumors and efforts to impose sanctions on individuals
who spread rumors, respectively. The objective function can be defined as follows:

J (u1, u2) = min

∫ tf

t0

[
a1I +

1

2

(
b1u

2
1 (t) + b2u

2
2 (t)

)]
dt. (3)

3 Positivity and Uniqueness

A model must be valid with existing conditions. This means that in this case, the solution
given must be positive. This indicates that the population of each individual in model
(2) always exists. Thus, if the initial population of S,E, I and R is positive, then the
population at time t must also have a positive value.

We introduce the concept of a positive invariant set to solve the problem. This set is
based on the initial solution and the solution of the system. More details can be given
as in the following definition.
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Definition 3.1 (Positively invariant set). Given ẋ̇ẋx = fff(t,xxx) is a dynamic system,
with the initial conditions xxx0 = xxx(t0). Given Ω is a subset of Rn. Then Ω is said to be a
positive invariant set if for xxx0 ∈ Ω, it implies xxx(t, x0) ∈ Ω for every t ≥ t0.

Now, for N(t) = S(t) +E(t) + I(t) +R(t), we suppose xxx(t) = (S(t), E(t), I(t), R(t)),
and the initial condition xxx (t0) = (S (t0) , E (t0) , I (t0) , R (t0)) , define ω =
max{1, e(θ−µ)tf } and set

Ωxxx(t0) := {xxx(t) | t0 ≤ t ≤ tf ,xxx(t) ≥ 000, N(t) ≤ N (0) · ω}. (4)

The fact that (4) is a positive invariant set can be proven in the following theorem.

Theorem 3.1 Let ω = max{1, e(θ−µ)tf } and

Ωxxx(t0) := {xxx(t) | t0 ≤ t ≤ tf ,xxx(t) ≥ 000, N(t) ≤ N (0) · ω}

be the subset all solutions of model (2) with the initial condition xxx(t0). Then Ωxxx(t0) is a
positively invariant set.

Proof. We can divide the proof into several cases as follows.

1. First, we prove that the total population N is bounded. Based on the dynamic
equation (2), note that

dS

dt
+

dE

dt
+

dI

dt
+

dR

dt
= θN − µ (S + E + I +R) ,

(⇒)
dN

dt
= θN − µN,

(⇒)
dN

dt
= (θ − µ)N,

with the solution N(t) = N(0)e(θ−µ)t. From this, it is clear that if θ− µ ≤ 0, then
0 < N (t) ≤ N(0) and if 0 < θ−µ, then 0 < N (t) ≤ N (0) e(θ−µ)tf . Then it follows
that N (t) ≤ N(0) · ω for every time 0 ≤ t ≤ tf . Thus, this proves that the total
population N is bounded at all times.

2. We know that N is positive and bounded for every time t. Then we can use it
to prove S is positive. From the dynamic equation (2), we assume that there is
t ∈ (0, tf ] and S (t) ≤ 0. Suppose S∗ = {t ∈ (0, tf ] | S (t) ≤ 0} and take t∗ = infS∗ .
It is clear that t∗ ̸= 0 so S (t) > 0,∀t ∈ [0, t∗). Then we know that I is a continuous
function on [0, tf ], so there is M ∈ R and I(t) < M for every t ∈ [0, tf ]. As a result,

dS

dt
= θN − αβSI − µS,

(⇒)
dS

dt
> −αβMS − µS, ∀t ∈ [0, tf ).

We can solve the above inequality and obtain that

S (t∗) > S (0) e−(αβM+µ)t∗. (5)

From equation (5), we obtain that S (t∗) > S (0) e−(αβM+µ)t∗ > 0. However, this
contradicts the statement S (t∗) ≤ 0, so from this, it follows that S (t) > 0 for every
time t ∈ [0, tf ].
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3. By evaluating equation (2), we assume that there is t ∈ (0, tf ] and E (t) ≤ 0 or
I (t) ≤ 0. First, assume that E (t) ≤ 0. Suppose E∗ = {t ∈ (0, tf ] | E (t) ≤ 0} and
take t∗ = infE∗. It can be easily seen that t∗ ̸= 0, so E (t) > 0,∀t ∈ [0, t∗) and

dI
dt = σhE − γI − µI − u2I,

(⇒) dI
dt > −γI − µI − u2I, ∀t ∈ [0, tf ),

(⇒) dI
dt + γI + µI + u2I > 0.

Assuming that there is t ∈ (0, t∗) and I (t) ≤ 0, suppose I∗ = {t ∈ (0, t∗) | I (t) ≤ 0}
and take t∗I = infI∗. It can be easily seen that t∗I ̸= 0, so I (t) > 0,∀t ∈ [0, t∗I) and

dI

dt
+ γI + µI + I ≥ dI

dt
+ γI + µI + u2I > 0, ∀t ∈ [0, t∗I).

By solving the above inequality, it is obtained that

I (t∗I) > I (0) e−(γ+µ+1)t∗I .

From this, we obtain that I (t∗I) > I (0) e−(γ+µ+1)t∗I > 0. However, this contradicts
the statement I (t∗I) ≤ 0, and we obtain that I (t) > 0 for every time t ∈ [0, t∗).
From this, we obtain

dE
dt

= αβSI − σE + γmI−µE−u1E,

(⇒) dE
dt

> −σE − µE − u1E, ∀t ∈ [0, t∗),

(⇒) dE
dt

+ σE + µE + u1E > 0,

(⇒) dE
dt

+ σE + µE + E > dE
dt

+ σ + µ+ u1E > 0.

Furthermore, by solving the above problems, it is obtained that

E (t∗) > E (0) e−(σ+µ+1)t∗

and E (t∗) > E (0) e−(σ+µ+1)t∗ > 0. However, this contradicts the statement
E (t∗) ≤ 0, and we obtain E (t) > 0 for every time t ∈ [0, tf ]. Furthermore, in
the same way, for the assumption that there is t such that I(t) ≤ 0, the assumption
given is also wrong. So it follows that I (t) > 0 for every time t ∈ [0, tf ].

4. From the dynamic model system (2), we assume that there is t ∈ (0, tf ] and R (t) ≤
0. Suppose R∗ = {t ∈ (0, tf ] | R (t) ≤ 0} and we take t∗ = infR∗ . It can be easily
seen that t∗ ̸= 0, so R (t) > 0,∀t ∈ [0, t∗) and

dR
dt = σ (1− h)E + γ (1−m) I − µR+ u1E + u2I,

(⇒) dR
dt > −µR, ∀t ∈ [0, t∗),

(⇒) dR
dt + µR > 0.

From this, we obtain that R (t∗) > R (0) e−µt∗ > 0. However, this contradicts the
statement R (t∗) ≤ 0, so it follows that R (t) > 0 for every time t ∈ [0, tf ].
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From the above proof, we obtain that M is a positively invariant set ; as such, the dynamic
model system (2) is valid. We have proven that the set defined in (4) is a positively
invariant set. This results in the fact that if the initial conditions in the rumor spreading
model (2) with control are positive, then the solution of the model is positive for each
time interval. However, this model does not guarantee that a single solution is given
for an initial condition; so, we have to show whether the rumor spread model (2) with
control has a single solution or not.

Now, to guarantee that the model (2) is existent and unique, we can use the concept
of the Lipschitz condition in model (2) [17]. For that, we prove that model (2) satisfies
the Lipschitz condition as given in the following theorem.

Theorem 3.2 The rumor-spreading model with control (2) that satisfies a given ini-
tial condition S(t0), E(t0), I(t0), R(t0) > 0 has a unique solution.

Proof. Let X = (S,E, I,R) and

φ (X) =



dS
dt

dE
dt

dI
dt

dR
dt


.

We can write the rumor-spreading model with control (2) as

φ (X) =



θN − αβSI − µS

αβSI − σE + γmI − µE − u1E

σhE − γI − µI − u2I

σ (1− h)E + γ (1−m) I − µR+ u1E + u2I


and we show that φ(X) has a unique solution with the initial condition
(S (0) , E (0) , I (0) , R (0)) > 0. Note that

φ (X1)−φ (X2) =



θ(N1 −N2)− αβ(S1I1 − S2I2)− µ(S1 − S2)

αβ(S1I1 − S2I2)− σ(E1 − E2) + γm(I1 − I2)− µ(E1 − E2)− u1(E1 − E2)

σh(E1 − E2)− γ(I1 − I2)− µ(I1 − I2)− u2(I1 − I2)

(σ (1− h) + u1)(E1 − E2) + (γ (1−m) + u2)(I1 − I2)− µ(R1 −R2)


. (6)

We know that S and I represent the positive continuous function at [0, tf ] so that S and
I are the bounded functions at [0, tf ]. Since N is bounded for every initial condition
(S (0) , E (0) , I (0) , R (0)), there exist M and K such that

−M(S1 (t)− S2(t)) ≤ −αβ(S1 (t) I1 (t)− S2 (t) I2(t)) ≤ M(S1 (t)− S2(t))

and
−K(I1 (t)− I2(t)) ≤ αβ(S1 (t) I1 (t)− S2 (t) I2(t)) ≤ K(I1 (t)− I2(t))
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for every solution X1 and X2 with the initial condition being X1(0) and X2 (0). Then,
from (6), we have

−A (X1 −X2) ≤ φ (X1)− φ (X2) ≤ A (X1 −X2)

with

A =


θ +M − µ θ θ 0

0 −σ − µ− u1 K + γm 0
0 σh −γ − µ− u2 0
0 −h+ u1 σ + γ −m+ u2 −µ

 .

We easily show that

∥ φ (X1)− φ (X2) ∥2 ≤ ∥ A (X1 −X2) ∥2 ≤ ∥ A ∥ ∥ X1 −X2∥2

with ∥ X ∥2 being the Euclidean norm in R4 and ∥ A ∥=
√
tr(ATA); so, we obtain that

the function φ(X) is uniformly Lipschitz continuous. From this,

X(t) = X(t0) +

∫ t

t0

φ(X) dt

so that X has a unique solution for the initial condition S(t0), E(t0), I(t0), R(t0) > 0.

4 The Existence of Optimal Control

We have shown in Section 3 that the rumor-spreading model with controls (2) has a
single and positive solution. From this, we will then determine whether or not the
rumor-spreading model with controls (2) has optimal control. Using a result by Fleming
and Rishel [18], we can prove the existence of the optimal control checking the following
points:

1. The set U defined as

U = {(u1, u2) | 0 ≤ u1(t), u2(t) ≤ 1,∀t ∈ [0, tf ]}

is a nonempty set.
This can be seen from Theorem (3.1) and Theorem (3.2), where every control u ∈ U
has a unique and positive solution and is not an empty set.

2. The set U , which is defined as

U = {(u1, u2) | 0 ≤ u1(t), u2(t) ≤ 1,∀t ∈ [0, tf ]} ,

is a closed convex set.
To show that U is a closed convex set, let v1 = (u11, u21) , v2 = (u12,u22) ∈ U . It
can be easily seen that 0 ≤ u11 (t) , u21 (t) , u12 (t) , u22 (t) ≤ 1 for t ∈ [0, tf ]; so,
with every λ ∈ [0, 1], we obtain

0 ≤ λu11 (t) + (1− λ)u21(t) ≤ 1

and
0 ≤ λu12 (t) + (1− λ)u22(t) ≤ 1
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for t ∈ [0, tf ]. From this, we have

(1− λ) v1 + λv2 =

[
λu11 (t) + (1− λ)u21(t)
λu12 (t) + (1− λ)u22(t)

]
∈ U.

As such, we obtain that U is a convex set. To show that U is a closed set, it is
enough to show that for every convergent sequence (un) = (u1n, u2n) ⊆ U , one
has limn→∞ un ∈ U . This statement is equivalent to u1n and u2n is a convergent
sequence with (x, y) = (limn→∞ u1n , limn→∞ u2n ) ∈ U . Now we define

∥ u− v ∥:= sup{|u (t)− v (t) | | t ∈ [0, 1]} .

Then we know that u1n and u2n is a convergent sequence such that for every ε > 0,
there exists K(ε) ∈ N that satisfies

∥ u1n − x ∥< ε

and
∥ u2n − y ∥< ε

for every n ≥ K(ε). From this, we obtain

∥ u1n − x ∥< ε,

(⇒) |u1n(t)− x(t)| < sup{|u1n(t)− x(t)| | t ∈ [0, tf ]} < ε,
(⇒) −ε < x(1)− u1n(t) < ε,
(⇒) −ε ≤ u1n(t)− ε < x(1) < ε+ u1n(t) ≤ ε+ 1,
(⇒) −ε < x(t) < 1 + ε,

and
∥ u2n − y ∥< ε,

(⇒) |u2n(t)− y(t)| < sup{|u2n(t)− y(t)| | t ∈ [0, tf ]} < ε,
(⇒) −ε < y(1)− u2n(t) < ε,
(⇒) −ε ≤ u2n(t)− ε < y(1) < ε+ u2n(t) ≤ ε+ 1,
(⇒) −ε < y(t) < 1 + ε.

Since it is satisfied for every ε > 0, we obtain 0 ≤ x(t), y(t) ≤ 1 and (x, y) ∈ U .
Consequently, we show that U is a closed set. Furthermore, it can be proven that
U is a closed convex set.

3. The function J : U → R, which is defined as

J (u1, u2) = a1I +
1

2

(
b1u

2
1 (t) + b2u

2
2 (t)

)
dt,

is a bounded convex function on U .
To prove that J is a bounded convex function, first, note that I is a continuous
function at [0, tf ], so that there exist Imin and Imax such that Imin ≤ I(t) ≤ Imax

and we know 0 ≤ u1(t) ≤ 1 and 0 ≤ u1(t) ≤ 1 so that

a1Imin ≤ J ((u1, u2)) ≤ a1Imax +
1

2
(b1 + b2).
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From this, we can say that J is a bounded function. Then, suppose

g(u1, u2) =
1

2
b1u

2
1 +

1

2
b2u

2
2

and the Hessian matrix of g is

H =


∂2g

∂u2
1

∂2g

∂u1∂u2

∂2g

∂u2∂u1

∂2g

∂u2
2

 =

[
2b1 0
0 2b2

]
.

We can prove that H is semidefinite positive so g is a convex function. From this,
we obtain that g and a1I are convex functions on U . Also,

J (u1, u2) = a1I +
1

2

(
b1u

2
1 (t) + b2u

2
2 (t)

)
dt

is a convex function on U. Then, we have established that J is a bounded convex
function.

4. We know that S (t) , E (t) , I (t) and R(t) is a continuous function on [0, tf ] so
S (t) , E (t) , I (t) and R(t) is a bounded function with

0 < S (t) ≤ Smax, 0 < E (t) ≤ Emax, 0 < I (t) ≤ Imax, 0 < R (t) ≤ Rmax

for every t ∈ [0, tf ]. From this, we obtain

(a) dS
dt = θN − αβSI − µS < θ(Smax + Emax + Imax +Rmax),

(b) dE
dt = αβSI − σE + γmI − µE − u1E < αβSmaxImax + γmImax,

(c) dI
dt = σhE − γI − µI − u2I < σhEmax,

(d) dR
dt = σ (1− h)E + γ (1−m) I − µR + u1E + u2I < (σ (1− h) + 1)Emax +
(γ (1−m) + 1) Imax,

so that the right-hand side equation of the rumor-spreading model with control (2)
is bounded. We also know that the control system (2) can be represented as

dS

dt
= f1 (S,E, I,R) + u1g1 (S,E, I,R) + u2h1 (S,E, I,R) ,

dE

dt
= f2 (S,E, I,R) + u1g2 (S,E, I,R) + u2h2 (S,E, I,R) ,

dI

dt
= f3 (S,E, I,R) + u1g3 (S,E, I,R) + u2h3 (S,E, I,R) ,

dR

dt
= f4 (S,E, I,R) + u1g4 (S,E, I,R) + u2h4 (S,E, I,R) .

From this, we can say that the control system can be represented as the linear
function below u1 and u2. So we obtain that the control system is linearly bounded
below u1 and u2.
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5 Conclusion

The nonlinear dynamic model of rumor spreading with control constructed in this paper
is based on the very high level of public vulnerability in receiving information. Therefore,
the model in this paper applies two controls, a campaign (u1) for the Exposed population
and a punishment (u2) for the Infected population. By analysis, the constructed model
is valid and has a unique solution. This is shown based on the concept of a positively
invariant set and reviewing that the model is Lipschitz. The positivity of the resulting so-
lution indicates that the population in the model, namely, Susceptible, Exposed, Infected
and Recovered, always exists. The expectation is that although the rumor spreaders (In-
fected) and the susceptible (Exposed) exist at all times, at least an optimal control is
needed to suppress the rate of rumor spread and increase the population of rumor-free
people (Recovered). This is in accordance with the existence concept of optimal control
as proven in this paper.
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Abstract: Hemiparesis is a medical term to describe a condition of weakness on
one side of the body or the inability to move a limb on one side. The term comes
from the word ’hemi’ meaning half or one side and “paresis” meaning weakness.
Hemiparesis patients are still able to move the affected side of the body and are not
completely paralyzed. It is just that the side of the body experiencing the disorder is
so weak and powerless, the movements that arise are also very little. Current robotics
technology has developed rapidly along with advances in science and technology to
assist medical rehabilitation, one of which is a post-stroke rehabilitation, especially
the rehabilitation of finger movement. One technology useful to develop is the finger
motion estimation of the Finger Prosthetic Robotic Arm for patients with upper
extremity paresis. Finger motion estimation is one of the important aspects in the
development of such technology because it is designed to determine the accuracy and
effectiveness of the robot in providing motion assistance to hands affected by paresis.
The study in this paper used the Square Root Kalman Filter method to estimate
the motion of the index finger robot by generating 250 ensembles, 500 ensembles and
750 ensembles. The simulation results with 750 ensembles have the best accuracy of
around 97-98%.

Keywords: hemiparesis, finger prosthetic robotic arm; EnKF; SR-EnKF; forefinger
motion estimation.
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1 Introduction

According to the data from the World Health Organization (WHO), in 2016, the recorded
stroke cases ranked second as a non-communicable disease that causes death and third as
the main cause of disability worldwide. A stroke can cause weakness in one part or side
of the body (hemiparesis), and stroke patients will have difficulty moving and using one
side of their body. The affected limbs are usually the facial muscles, respiratory muscles
of the chest, arms, hands, or lower limbs on one side. It can occur on the right or left
side only and if it occurs on both sides, it is called total or bilateral paresis [1].

Stroke is the medical term for a condition under which blood cannot flow to the brain
normally due to the blockage (Ischemic Stroke) or rupture of blood vessels (Hemorrhagic
Stroke). A stroke can cause disability on one side of the body, including the upper limbs
such as fingers being difficult to move. So, rehabilitation is needed to restore the function
of the fingers [2]. Hands and fingers are the most important and complex parts of the
human. The muscles in them can perform any movement as the human brain commands,
without having to control them one by one.

Robotics technology is currently developing rapidly along with advances in science and
technology to assist medical rehabilitation, one of which is a post-stroke rehabilitation,
especially the rehabilitation of finger movement. This is also due to the human desire to
help each other in accelerating the recovery of post-stroke patients. For example, the way
humans walk, hold objects and others. The goal of medical rehabilitation is to maximize
the functional independence and ability of patients to resume their way of life or role as
before the illness and to improve the quality of life [3].

Fingers are one part of the human body playing an important role in human movement
to perform various activities [4]. Humans have a total of ten fingers that function to hold
objects. From the working principle of human fingers, it is then used as the basis for the
development of finger robots designed to hold objects. Finger robots are one solution to
help accelerate the rehabilitation process, specifically for finger movements. One of the
efforts for the development of finger robots is finger motion estimation.

One of the main challenges in the development of a Finger Prosthetic Robotics Arm
is how to estimate finger motion accurately. One of the estimation methods having a
small error is the Ensemble Kalman Filter Square Root method, which is very reliable
for both linear and nonlinear models with the addition of square root in the correction
stage. The EnKF-SR method is frequently used for motion and position estimation of
AUVs [5], [6], [7], ASVs [8], missiles [9] and mobile robots [10]. And for this paper, the
finger motion estimation was carried out, especially for the index finger on the left hand,
by using the Square Root EnKF (SR-EnKF) method, and the accuracy of the simulation
results was compared when generating 250 ensembles, 500 ensembles and 750 ensembles.

2 Finger Arm Robot Model

Here is the analysis of the 3-joint finger arm robot. Figure 1 shows a 3-joint finger arm
robot using forward kinematics in x and y coordinates as its equation analysis [5].

The angle Ψ is the angle of the facing direction of the third arm with respect to the
X-axis, as in equation (1).

Ψ = (θ1 + θ2 + θ3). (1)

And for the angle equation, θ1 and θ2 as well as Ψ are as follows:
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Figure 1: Configuration of the 3-joint finger arm robot [4].

θ2 = cos−1

(
x2 + y2 − l21 − l22

2l1l2

)
θ1 = tan−1

(
y(l1 + l2 cos θ2)− xl2 sin θ2
x(l1 + l2 cos θ2) + yl2 sin θ2

)
Ψ = θ1 + θ2 + θ3

= sin−1

(
l1(cos θ1 − sin θ1) + l2(cos (θ1 + θ2)− sin (θ1 + θ2))

2l3

)
. (2)

The image of the finger arm robot is shown in Figure 2.

3 Square Root Ensemble Kalman Filter

The following is the flow of applying the mathematical model of the forefinger arm robot
to the ENKF-SR algorithm, see Figure 3.

4 Simulation Results

This study was started with the aim of helping the recovery process of post-stroke pa-
tients, especially for the fingers, and more specifically, the index finger. To help improve
the quality of life of patients with upper extremity paresis, this paper tries to initiate
developing finger technology using a mathematical model of a finger prosthetic arm robot
that has 3 joints as a motion system platform adapted to the structure of human fingers,
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Figure 2: Image of a finger arm robot.

Figure 3: Ensemble Kalman Filter Square Root Algorithm [11,12,13].

especially Surabaya residents in the Republic of Indonesia, who have a ring finger length
of about 7.9 - 8.2 cm. In this paper, the trajectory of the index finger movement is
determined in the form of a semicircular motion, which with a movement of about 180
degrees can train the finger to improve its function and recover as before. The study
in this paper implemented the Kalman Filter Square Root Ensemble method for index
finger motion estimation, and for the simulation results, the accuracy comparison was
made when generating 250 ensembles, 500 ensembles and 750 ensembles as shown in



396 HERLAMBANG et al.

Figures 4-7.

Figure 4: Motion estimation of a finger arm robot, especially the index finger, using 250
ensembles on the X-plane and Y-plane.

In Figure 4, it can be seen that the motion of the index finger in the 2-dimensional
movement in the X and Y planes takes 400 seconds. From Figure 4, it can be seen that
the EnKF-SR method has high accuracy with an error of about 1-2%.

Figure 5: Motion estimation of a finger arm robot, especially the index finger, using 250
ensembles.

Figure 5 shows a semicircular motion in the XY plane, and it can be seen that the
EnKF-SR method has a fairly small error. Figure 5 is the simulation result by generating
250 ensembles. The movement of the index finger that resembles a semicircle as in Figure
5 is compared to the motion of a semicircle with a diameter of about 7.9 cm, whereas in
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Figure 4, it is obtained that its diameter is√
72 + 22 =

√
49 + 4 =

√
53 = 7.3 cm

so that overall, when viewed from the diameter of about 7.9 - 8.2 cm, it has an error of
about 7.5%. The second and third simulations are shown in Figures 6 and 7. In the second

Figure 6: Motion estimation of a finger arm robot, especially the index finger, using 500
ensembles.

simulation by generating 500 ensembles, this paper displays the results of the simulations
in the XY plane only as shown in Figure 6, which gives the results of simulations using
the Square Root EnKF method by generating 500 ensembles resulting in movements that
resemble a semicircle with a diameter of

√
8.12 + 2.32 =

√
65.61 + 5.29 =

√
70.9 = 8.42

cm, so that overall, if viewed from a diameter of about 7.8 cm - 8.3 cm, then using
500 ensembles has an error of about 2.68%, in other words, it has an accuracy of about
97.32%. So, the EnKF-SR method can be effectively used to estimate the motion of the
finger arm robot, especially the index finger.

Figure 7 shows a semicircular motion in the XY plane, where it can be seen that the
Square Root EnKF method has a fairly small error. Figure 7 is the simulation result by
generating 750 ensembles. The movement of the index finger that resembles a semicircle
as in Figure 7 is compared with the motion in a semicircle with a diameter of 7.9 -
8.2 cm, where in Figure 7 the obtained diameter is

√
8.052 + 2.32 =

√
64.8025 + 5.29 =√

70.0925 = 8.37, so that overall, when viewed from a diameter of about 7.9 - 8.2 cm, it
has an error of about 2.07%.

Table 1 shows that the simulation with 750 ensembles has a smaller error than those
using 250 and 500 ensembles. The three simulation results are compared for the size of
the index finger of the Surabaya community in Indonesia with an average length of about
7.9 - 8.2 cm, which performes a semicircular motion. So, in view of the three simulations
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Figure 7: Motion estimation of a finger arm robot, especially the index finger, using 750
ensembles.

250 ensembles 500 ensembles 750 ensembles
XY Motion 7.5% 2.8% 2.07%

Simulation Time 5.9 s 9.85 s 12.9 s

Table 1: Comparison of error values based on the generation of different number of ensembles
by the Square Root EnKF method

above, the Square Root EnKF method can be used as a reliable estimation method in
estimating the finger arm robot, having an error of not more than 8%.

5 Conclusion

Based on the analysis of the results of three simulations, comparing the simulations based
on the generation of different number of ensembles, it can be concluded that the Square
Root EnKF method can be used as a reliable estimation method to estimate the motion
of the finger arm robot showing an error of not more than 2-3% range for the simulations
generating 500 and 750 ensembles, while the simulation with 250 ensembles produces an
error of 7.5% or, in other words, it has an accuracy of 92.5% . Overall, the 750 ensemble
simulation has the highest accuracy as compared to those using 250 and 500 ensembles.
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Abstract: This paper reports a new chaotic system and its synchronization via active
and adaptive control methods. The novel system is presented and its chaoticity is
confirmed using the Lyapunov exponents tool. Furthermore, it is demonstrated that
the new system possesses the property of co-existing attractors. Moreover, two control
methods are employed: active control and adaptive control. By designing appropriate
controllers and estimation laws based on the stability theory of integer-order systems,
we achieve synchronization between chaotic systems. Finally, numerical simulations
are implemented to demonstrate the effectiveness and flexibility of the synchronization
controllers and the estimation laws for the two methods.

Keywords: chaotic system; strange attractor; Lyapunov exponent; Lyapunov stabi-
lity theory; adaptive control; synchronization.

Mathematics Subject Classification (2010): 34D08, 34C28, 37B55, 37B25,
37D45, 70K20, 93D05, 93D21.

1 Introduction

The chaos theory deals with the dynamical behavior of nonlinear dynamical systems
which are highly sensitive to initial conditions and system parameters. Recently, chaos
theory has achieved great development and has been successfully applied in many fields
such as electronic engineering [1], computer science [2], communication systems [3, 4],
medical image processing [1,2], complex networks [5], chemical engineering [6], investi-
gation of HIV virus [28] and economic models [7]. By now, numerous chaotic systems
with different types of attractors have been proposed and studied, for example those with
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self-excited attractors [8,9], hidden attractors [10,11,12], coexisting attractors [13,14], in-
finitely many shifted attractors [15,16], multi scroll attractors [17,18], memristor attrac-
tors [19,20] and chaotic systems with fractional orders [11,21]. In the past few decades,
chaos synchronization has received great attention owing to its applications in designing
secure communication system. Synchronization of chaotic systems is a topic of interest in
the field of nonlinear dynamics. It involves the design of control strategies that can make
two or more chaotic systems behave identically or follow a certain pattern over time.
Some of the methods used for chaotic synchronization include active control, adaptive
control, fuzzy sliding mode control, sliding mode controller [22-25], backstepping neu-
ral network method [26], observer-based synchronization [27] and so on. This paper is
organized as follows. Section 2 describes the new chaotic system, its phase plots and
equilibrium points. Section 3 describes the dynamic analysis of the new chaotic system
including multistability and coexisting attractors. Moreover, the synchronization of the
chaotic system with two control methods is realized by designing appropriate active and
adaptive controllers and estimation laws using the stability theory of integer-order sys-
tems in Section 4. In Section 5, numerical simulations are implemented to demonstrate
the effectiveness and flexibility of the synchronization controllers and the estimation laws
for the two methods. The conclusion is given in the last section.

2 Description and Analysis of System

The new chaotic system has three positive parameters, cosine and nonlinear terms de-
scribed by 

ẋ1 = a(−x1cos(x2) + x2),

ẋ2 = −bx1 − x3,

ẋ3 = −x1(1− x2
2) + cx3,

(1)

where X = (x1, x2, x3)
T are the states and a, b, c are the positive constants.
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Figure 1: Strange Attractor of New Hyperchaotic System.

2.1 Equilibrium points

Putting equations of the system (1) equal to zero, i.e., a(−x1cos(x2) + x2) = 0,
−bx1 − x3 = 0,

−x1(1− x2
2) + cx3 = 0,

(2)
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then we can verify the following:
– If 1 + bc ≤ 0, the system (1) has only one equilibrium point p0 = (0, 0, 0),

– If 1 + bc > 0 and 1 + bc ̸=
(
k π

2

)2
, k ∈ Z∗, the system (1) has three equilibrium

points: 
P0 = (0, 0, 0),

P1 = (
√
1+bc

cos(
√
1+bc)

,
√
1 + bc,− b

√
1+bc

cos(
√
1+bc)

),

P2 = (−
√
1+bc

cos(
√
1+bc)

,−
√
1 + bc, b

√
1+bc

cos(
√
1+bc)

).

(3)

In order to check the stability of the equilibrium points, we derive the Jacobian matrix
at a point p(x1, x2, x3) of the system (1).

J(p) =

 −acos(x2) ax1sin(x2) + a 0
−b 0 −1

−1 + x2
2 2x1x2 c

 . (4)

Therefore, the characteristic equation of J is obtained as

λ3 + η1λ
2 + η2λ+ η3 = 0. (5)

Based on the Routh-Hurwitz theorem, p is a stable point if the following conditions
are satisfied: {

η1 > 0, η2 > 0,
η1η2 > η3.

(6)

When a = 1.2, b = c = 0.46, system (1) has the following equilibria: p0 = (0, 0, 0),
p1 = (1.1007, 1.1007, 0.5063),

p2 = (−1.1007,−1.1007, 0.5063).
(7)

The corresponding eigenvalues and their stability are given in the following table.

Equilibrium points Eigenvalues stablity
p0 λ1,2 = −0.83620± 0.92742i, λ3 = 0.93240 unstable foci point
p1,2 λ1,2 = 0.15272± 1.8336i, λ3 = −0.38900 unstable foci points

3 Dynamic Analysis of the New Chaotic System (1)

3.1 Lyapunouv-exponent and Kaplan-York dimension

In this section, we will prove that the new system (1) is chaotic by calculating the
Lyapunov exponents using the Wolf-Swift algorithm [29]. Simulation in Matlab gives us
the following Lyapunov exponents:

L1 = 0.153564, L2 = 0, L3 = −0.378558. (8)

Also, the Kaplan-York dimension of system (1) is given by

DL = 2 +
1

|L3|

2∑
i=1

Li = 2.40565. (9)

Since L1, L2 are positive Lyapunov exponents and
∑3

i=1 Li < 0, the novel system (1)
is a chaotic dissipative system with fractal dimension.
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Figure 2: Lyapunouv exponent spectrum.

3.2 Multistability in the new 3-D chaotic sytem (1)

Multistability in chaotic systems refers to a phenomenon where a system can exhibit mul-
tiple stable states, or attractors, under certain conditions. This means that the system
can evolve into different, distinct chaotic behaviors depending on its initial conditions
or external parameters. In order to study the coexistence attractors and other char-
acteristics of the system better, it is necessary to give some disturbance to the initial
conditions under the condition of keeping the system parameters constant. The proposed
3D chaotic system (1) has symmetrical attractors with respect to the origine (equilibrum
point (0, 0, 0) because it is invariant under the coordinate transformation

(x1, x2, x3) −→ (−x1,−x2,−x3). (10)

Fig.3 shows the dynamic behavior with coexistence chaotic attractors with different
initial conditions.

−4 −3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x
3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x2

x
3

Figure 3: Coexistence of two attractors with different initial values and parameters.
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4 Identical Synchronization with Two Method

The synchronization error state is define by

e(t) = Y (t)−X(t),

where Y (t) = (y1, y2, y3) and X(t) = (x1, x2, x3), e(t) = (e1, e2, e3). The error dynamics
is obtained as

ė(t) = Ẏ (t)− Ẋ(t).

The drive system is described by
ẋ1 = a(−x1cos(x2) + x2),

ẋ2 = −bx1 − x3,

ẋ3 = −x1(1− x2
2) + cx3.

(11)

The response system is 
ẏ1 = a(−y1cos(y2) + y2) + u1,

ẏ2 = −by1 − y3 + u2,

ẏ3 = −y1(1− y22) + cy3 + u3,

(12)

where U(t) = (u1, u2, u3)
T is the controller.

The synchronization error of system (11) and (12) is described as follows:
ė1 = ae2 + a(x1cos(x2)− y1cos(y2)) + u1,

ė2 = −be1 − e3 + u2,

ė3 = −e1 + ce3 + y1y
2
2 − x1x

2
2 + u3.

(13)

4.1 Active Control Method

The controller system is constructed as follows:
u1 = −ae2 − a(x1cos(x2)− y1cos(y2))− ė1,

u2 = be1 + e3 − ė2,

u3 = e1 − ce3 − y1y
2
2 + x1x

2
2 − ė3,

where 
ė1 = −k1e1,

ė2 = −k2e2,

ė3 = −k3e3,

with ki > 0, i = 1, 2, 3, being the constant gains. The controller system is
u1 = ae2 − a(x1cos(x2)− y1cos(y2))− k1e1,

u2 = be1 + e3 − k2e2,

u3 = e1 − ce3 − y1y
2
2 + x1x

2
2 − k3e3.

(14)
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Substituting (14) into (13), we can obtain
ė1 = −k1e1,

ė2 = −k2e2,

ė3 = −k3e3.

(15)

It is clear from (15) that the eigenvalues of the Jacobian matrix of the error system
are negative, thus the zero solution of the errors systems is asymptotically stable, i.e.,
lim
t→∞

|e(t)| = 0. Hence the synchronization using active control between systems (11) and

(12) is achieved.
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Figure 4: Synchronization between xi, yi, i = 1, 2, 3, using active control.
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Figure 5: The time-history of the synchronization errors e1(t), e2(t), e3(t) using active control.

4.2 Adaptive control method

We choose system (11) as the driver system and (12) as the response system; similarly,
the synchronization error is defined as ė(t) = Ẏ (t) − Ẋ(t), then system (13) is the
synchronization error system. The controller system is constructed as follows:

u1 = −âe2 − â(x1cos(x2)− y1cos(y2))− ė1,

u2 = b̂e1 + e3 − ė2,

u3 = e1 − ĉe3 − y1y
2
2 + x1x

2
2 − ė3.

(16)
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Substituting (16) into (13), we obtain the error dynamics
ė1 = (a− â)e2 + (a− â)(x1cos(x2)− y1cos(y2))− k1e1,

ė2 = (b− b̂)e1 − e3 − k2e2,

ė3 = −e1 + (c− ĉ)e3 + y1y
2
2 − x1x

2
2 − k3e3.

(17)

Let us now define the parameter estimation error as ea = a− â, eb = b− b̂, ec = c− ĉ.
The error dynamics simplifies to

ė1 = eae2 + ea(x1cos(x2)− y1cos(y2))− k1e1,

ė2 = −ebe1 − k2e2,

ė3 = ece3 − k3e3.

(18)

Now, consider the Lyapunov stability function V given by

V =
1

2
(e21 + e22 + e23 + e2a + e2b + e2c), (19)

then
V̇ = (e1ė1 + e2ė2 + ė3e3 + ėaea + ėbeb + ėcec) (20)

with
ėa = −ˆ̇a, ėb = −ˆ̇b, ėc = −ˆ̇c. (21)

In view of Eq. (20), the parameter update law can be chosen as
ˆ̇a = e1e2 + e1(x1cos(x2)− y1cos(y2)) + k4ea,

ˆ̇
b = −e1e2 + k5eb,
ˆ̇c = ece3 + kcec.

(22)

Consequently,

V̇ = −k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
a − k5e

2
b − k6e

2
c < 0, (23)

which is a negative definite function. Using the Lyapunov stability theory [30], we con-
clude that the closed-loop system (18) is globally asymptotically stable for all initial
values of the error signals e1, e2, e3 by using the adaptive controller (16) and the update
parameter law (22). It proves that the adaptive synchronization between the drive and
response system is achieved.

5 Numerical Simulation

In order to verify our results, we applied the fourth order Runge-Kutta method
in Matlab with the step size h = 10−6 to solve the systems of differential equa-
tions (11), (12) and (13) for the active contol method with the initial conditions
X0(1, 1,−0.5), Y0(−2,−1, 1), e0(−3,−2, 1.5) and the systems of differential equations
(11), (12), (17) and (22) for the adaptive control method with the initial conditions
X0(0.1, 0.2,−0.5), Y0(−0.5,−0.2, 0.1), e0(−0.6,−0.4, 0.6), (a0, b0, c0) = (1, 0.5, 0.5), k1 =
k2 = k3 = 1. The parameter values of systems are taken as in the chaotic case
a = 1.2, b = 0.46, c = 0.46. In Figs.4, 6, the synchronization between the states xi

and yi, i = 1, 3, is depicted. In Figs.5, 7, the time-history of the synchronization errors
e1(t), e2(t), e3(t) is depicted for the two used control methods, respectively.
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Figure 6: Synchronization between xi, yi, i = 1, 2, 3, using adaptive control.
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Figure 7: The time-history of the synchronization errors e1(t), e2(t), e3(t) using adaptive con-
trol.

6 Conclusion

This paper introduces a new chaotic system and proposes two control methods, active
control and adaptive control, for synchronization using this system. We confirm the
chaotic nature of the system using the Lyapunov exponents and demonstrate the coex-
istence of attractors. For active control, we design a controller based on the stability
theory of integer-order systems to achieve synchronization. For adaptive control, we de-
velop an estimation law to estimate the unknown parameters of the system and achieve
synchronization. Numerical simulations are conducted to demonstrate the effectiveness
and flexibility of both control methods.

The main important points in this work are:

• A novel chaotic system is presented and its chaoticity is confirmed using the
Lyapunouv exponents.

• The synchronization between identical 3-D chaotic systems using two different con-
trol methods is achieved by designing appropriate active and adaptive controllers
and estimation laws using the stability theory of integer-order systems.

The results achieved through the study of the novel chaotic system and the proposed
control methods can be applied to various fields that involve chaotic systems, for exam-
ple secure communication systems and encryption and decryption algorithms, Biological
modeling and simulation of chaos-based robotics, making further research of the system
particularly relevant. As such, they will be given due consideration in future work.
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Abstract: In this paper, we propose a method for solving a non monotone affine
variational inequality problem (AVI). We consider an equivalent optimization model,
which is formulated as a DC program, and we apply DCA for solving it. The process
consists of solving a successive convex quadratic program. The effeciency of the pro-
posed approach is illustrated by the numerical experiments on several test problems
in terms of the quality of the obtained solutions and their convergence.
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1 Introduction

The variational inequality problem (VIP) remains a prominent and highly sought-after
research focus within the realm of numerical optimization. Our objective is to develop a
more comprehensive and less restrictive theoretical framework while devising appropriate
algorithms to address it. Both the affine variational inequality problem (AVI) and the
standard linear complementarity problem bear a close connection to the Karush-Kuhn-
Tucker conditions commonly encountered in quadratic programming. Let us define some
essential notations: We denote by Rn and Rm the finite-dimensional Euclidean spaces,
and Rn×n and Rm×n represent, respectively, the spaces of (n×n)-matrices and (m×n)-
matrices. The following constitutes an affine variational inequality problem (AVI):{

Find x ∈ C
such that ⟨Mx+ q, y − x⟩ ≥ 0, for all y ∈ C.

(1)
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Here (M,A, q, b) ∈ D = Rn×n × Rm×n × Rn × Rm represents the data of the problem,
the convex polyhedron C = {x ∈ Rn : Ax ≥ b} is the constraint set of the problem and
⟨x, y⟩ = xT y denotes the usual scalar product in Rn. If C = Rn

+, then the AVI becomes
the linear complementarity problem

xT (Mx+ q) = 0,Mx+ q ≥ 0, x ≥ 0. (2)

This problem is often denoted as the Linear Complementarity Problem (LCP). Over time,
a multitude of methods have been put forth to address the affine variational inequality
problem (AVI), as documented in references [2, 4, 6, 7, 10, 13]. While the AVI is not in-
herently framed as an optimization problem, the literature contains several optimization
models and methodologies designed to tackle it. Broadly speaking, the resultant opti-
mization problem of the AVI is non-convex, rendering it extremely challenging to solve
using global approaches, particularly in large-scale settings. In this paper, we delve into
a novel and highly effective local optimization strategy for addressing the affine varia-
tional inequality problem (AVI). This approach leverages DC programming (Difference
of Convex functions programming) and DCA (DC Algorithms). The foundations of DC
programming and DCA were initially laid by Pham Dinh Tao in a preliminary form
in 1985 and have since undergone extensive development, particularly in the works of
Tao Pham Dinh, as documented in references [14, 15, 18–20], and in related works cited
therein. These methods have now become classics and are widely adopted by many re-
searchers, as evidenced by references [10,11,17,21,22]. The motivation behind our work
stems from the successful application of DCA (DC Algorithms) to numerous large-scale
non-convex programs, both smooth and non-smooth, across various domains in applied
sciences. The DCA has proven itself to be a reliable approach, often yielding global
solutions and demonstrating superior robustness and efficiency compared to standard
methods.

In our study, we adopt an optimization perspective for the affine variational inequality
problem (AVI). We demonstrate that this optimization problem can be cast as a DC
(Difference of Convex functions) program, making it amenable to DCA.

A DC program involves the minimization of a DC function, typically expressed as
f = g− h, over a convex set. Here, g and h are convex functions that constitute the DC
components. It is noteworthy that the construction of DCA revolves around the convex
DC components, namely g and h, ”rather than the DC function f” itself.

In this work, we propose a suitable DC formulation for optimizing the AVI and inves-
tigate the implications of this DC decomposition in terms of the mentioned properties. To
evaluate the efficiency of both the optimization model and the corresponding DC formu-
lation, as well as the resulting DCA schemes, we conduct tests using several benchmark
datasets.

The paper is structured as follows.

Section 2: This section delves into the relationship between a quadratic program and
the affine variational inequality (AVI).

Section 3: This section provides a brief introduction to DC programming and DCA,
offering insights into the solution methods for addressing the optimization problem as-
sociated with the AVI using DC programming and DCA.

Section 4: In this section, we present the numerical results obtained from experiments
conducted on several test problems, providing insights into the practical performance of
the proposed methods.
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2 Optimization and AVI

The relationship between optimization and the Affine Variational Inequality (AVI) lies
in the fact that the AVI can be formulated as an optimization problem, while the AVI
is not explicitly an optimization problem, it can often be transformed into a quadratic
optimization problem when the matrix M is symmetric (see [1,5,6,9]), and this opens the
door for applying various optimization techniques to find solutions efficiently. Researchers
leverage optimization principles and methodologies to tackle the AVI and obtain solutions
that meet certain criteria or objectives. The AVI problem is equivalent to the first-order
conditions of the following quadratic program:

min
x∈C

f (x) =
1

2
xTMx+ qTx. (3)

3 Overview of DC Programs and DCA

DC programming and DCA indeed serve as fundamental tools in both smooth and non-
smooth non-convex programming, including global optimization. These methods are
particularly valuable when dealing with optimization problems where the objective func-
tion is expressed as the difference between two convex functions, either over the entire
space Rn or within a specified set C ⊂ Rn. In a general sense, a DC program can be
represented by the following mathematical form:

α = min
x∈Rn

(f (x) = g (x)− h (x)) , (4)

where both g(x) and h(x) are convex functions. The necessary local optimality condition
for the primal DC program (4) is

∂h(x∗) ⊂ ∂g(x∗), (5)

where ∂h(x) and ∂g(x) denote the sub-differential of h(x) and g(x) at the point x.
A point x∗ satisfies the generalized Kuhn-Tucker condition (a critical point of g − h)

if
∂g(x∗) ∩ ∂h(x∗) = ∅. (6)

The DCA (DC Algorithm) is the algorithmic framework employed to address these
DC programming problems. It iteratively approximates the non-convex objective func-
tion using convex components, optimizes the convexified subproblems, and updates the
solution until convergence is achieved. The DCA has demonstrated its utility in handling
challenging non-convex optimization problems, making it a valuable tool in various fields
of applied mathematics and optimization. Based on optimality conditions and duality in
the DCA, the idea of the DCA is quite simple: each iteration k of the DCA approximates
the concave part −h by its affine majorization, which corresponds to taking

yk ∈ ∂h(xk),

and minimizes the resulting convex function, which is equivalent to determining the
unique solution of the problem (4):

xk+1 ∈ ∂g∗(yk)

with g∗ being the conjugate function of g. The generic form of a DC algorithm is stated
as follows.
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Algorithm 3.1 Initialization: Let x ∈ Rn be the best guess, k −→ 0.
Repeat.
Calculate yk ∈ ∂h(xk).
Calculate xk+1 ∈ argmin(g (x)− h

(
xk

)
−

〈
x− xk, yk

〉
: x ∈ Rn).

k −→ k + 1
Until convergence of

{
xk

}
.

The convergence characteristics of the DCA and its underlying theoretical foundation
can be found in the following cited sources [14,16,19,20].

3.1 DCA for addressing AVI

In the context of a general non-convex quadratic program, various DC formulations have
been introduced in [14, 16]. In this paper, we employ the following DC decomposition,
which appears to be the most intuitive: f (x) = g (x)− h (x) , where g (x) = κC (x) +

ρ

2
∥x∥2 + ⟨q, x⟩ ,

h (x) =
ρ

2
∥x∥2 − 1

2
⟨Mx, x⟩ ,

and ρ ≥ λmax .

In this context, λmax represents the largest eigenvalue of the matrix M , while κC (.)
represents the indicator function associated with the set C. It is evident that both g and
h are convex functions, rendering problem (1) a DC program in the standard form

min
x∈Rn

{g (x)− h (x)} . (7)

Following the generic DCA scheme, along with its properties and theoretical foundation
detailed in [9, 12,15,16], at each step k ≥ 0, the computation of yk is performed as

yk =
(
∇h

(
xk

))T
= (ρI −M)xk (8)

and subsequently, the unique solution denoted as xk+1 is determined for the convex
minimization problem

min
x∈Rn

{
g (x)−

[
h
(
xk

)
+
〈
x− xk, yk

〉]}
.

So, at every step k ≥ 0, the point is computed as follows:

xk+1 = Pc

(
xk − 1

ρ

(
Mxk − q

))
.

This is the unique solution corresponding to the problem (7). The latter can be
equivalently expressed as

min

{∥∥∥∥x− 1

ρ

(
yk − q

)∥∥∥∥2 , Ax ≥ b

}

with yk = (ρI −M)xk.
The primary operation at each iteration of the algorithm involves solving a quadratic

program. The application of the DCA to (7) can be outlined as follows.



414 A. NOUI, Z. KEBAILI AND M. ACHACHE

Algorithm 3.2 Step 0. Let ϵ > 0 be a sufficiently small positive number,
Let x0 ∈ C be a starting point, set k = 0,
For k = 0, 1, . . .
Step 1. Compute yk = (ρI −M)xk,
Step 2. Compute xk+1 as an optimal solution of the following optimization program:

min

{∥∥∥∥x− 1

ρ

(
yk − q

)∥∥∥∥2 , Ax ≥ b

}
If either

∥∥xk+1 − xk ∥≤ ε or ∥ f(xk+1)− f(xk)
∥∥ ≤ ε , then stop,

otherwise, set k = k + 1 and go to Step 1.

The main operation at each iteration of the algorithm consists of solving one quadratic
program.

3.2 Convergence of the algorithm

Theorem 3.1 [14]
1) The DCA generates the sequence {xk} in C such that the sequence {f(xk)} is decreas-
ing.
2) If the optimal value of problem (7) is finite, then the sequence {xk} converges to x∗

satisfying the necessary local optimality condition ∂h (x∗) ⊂ ∂g (x∗) .

4 Computational Results

To provide a better understanding of our algorithm’s performance, we implemented it
in Matlab and applied it to a set of examples that have been previously studied in the
literature. We designate the initial point as x0. These examples were tested with various
values of ρ and x0. In our implementation, we set the tolerance parameter to ϵ = 10−6.

Example 4.1 [12] Consider the following AVI problem, where its data is given by

M =

[
1 0
0 − 2

]
, A =

 1 0
0 1

−1 − 1

 , q =

(
−1
0

)
, b =

 0
0

−2

 .

The optimal solution set of Example 4.1 is Sol(M,A, q, b) =
{
(0, 2)

T
, (1, 0)

T
}
.

In the implementation, we take ρmax = 1 and we use two starting points such as
x0
1 = (0.5, 0.5)

T
and x0

2 = (−10,−10)
T
. The numerical results obtained by the algorithm

are summarized in Table 1.

Example 4.2 [12] The data of the AVIs is given by

M =

[
1 0
0 − 1

]
, A =

 1 2
1 2
1 0

 , q =

(
−1
0

)
, b =

 0
0
2

 .

The optimal solution set is given by Sol(M,A, q, b) =
{
(2,−1)

T
, (2, 1)

T
, (2, 0)

T
}
.

We take ρmax = 1 and the initial points x0
1 = (4, 0)

T
and x0

2 = (−0.5,−10)
T
. The

obtained numerical results are then summarized in Table 2.

Example 4.3 [18] The data of the AVIs is deduced from a non-convex quadratic
program, where
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x0
1 x0

2

ρ 4 iter CPU (s) iter CPU (s)
-1 7 0.0389 8 0.0422
0.5 3 0.0155 12 0.0630
1 3 0.0178 13 0.0701
1.5 4 0.0289 16 0.0773
2 4 0.0184 19 0.0724
4 6 0.0525 30 0.2047
10 12 0.0853 60 0.3669
100 103 0.5227 476 3.5156

Table 1: Example 4.1.

x0
1 x0

2

ρ 4 iter CPU (s) iter CPU (s)
0.01 2 0.0224 3 0.0278
0.1 2 0.0246 3 0.0583
0.5 2 0.0095 3 0.01992
1 2 0.0093 5 0.0390
2 3 0.1899 8 0.0457
10 12 0.1395 26 0.1926
100 111 0.6902 210 0.7789

Table 2: Example 4.2.

M =



263 − 97 62 217 52 621 935 258 − 61 − 10
−97 299 − 17 9 4 − 123 − 17 − 40 − 3 37
62 − 17 178 71 − 118 − 83 − 110 9 − 56 42
217 9 71 143 − 5 842 228 42 58 − 41
52 − 4 − 118 − 5 177 102 − 15 120 13 − 52
621 − 123 − 83 842 102 219 574 22 73 − 53
935 − 17 − 110 228 − 15 574 457 154− 25 84
258 − 40 9 42 120 22 154 473 18 − 29

−61 − 3 − 56 58 13 73 − 25 18 − 4 − 79
−10 37 42 − 41 − 52 − 53 84 − 29 − 79 224


,

A =

(
I
−I

)
, b = (0, 0, 0, 0, 0,−1,−1,−1,−1,−1)

T
,

and

q = (−20,−314, 46,−83.45,−128.7, 41.3, 43.85, 341.8, 34.05,−34.6)
T
.

The optimal solution set of Example 3 is given by

Sol(M,A, q, b) =
{
(0, 1, 0.5, 0, 0.75, 0, 0, 0.6, 1, 0.49)

T
}
.

Here ρmax = 2081.7 and the initial starting points are given by

x0
1 = (−1, . . . ,−1)

T
and x0

2 = (0.5, . . . , 0.5)
T
. The obtained numerical results for this

problem are summarized in Table 3.
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x0
1 x0

2

ρ 4 iter CPU (s) iter CPU (s)
500 40 0.02951 97 0.06440
1000 81 0.2974 262 0.0308
2000 4 0.0646 3 0.0545
2081.7 4 0.0652 3 0.0581
2500 7 0.1137 4 0.0711
3000 7 0.1178 7 0.1216

Table 3: Example 4.3.

Example 4.4 [8] (Variable Size Example). Consider the following quadratic pro-
gram: 

min

[
−

n∑
i=1

x2
i

]
Such that

n∑
i=1

x ≥ j, j = 1, 2, ..., n,

xi ≥ 0, i = 1, 2, ..., n.

The data of the corresponding variational problem are

M =



−2 0 0 . . . 0
0 −2 0 . . . 0
0 0 −2 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . −2


, q =



0
0
0
.
.
.
0


,

A =



−1 0 0 . . . 0
−1 −2 0 . . . 0
−1 −2 −3 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
−1 −2 −3 . . . n
1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1



, b =



−1
−2
−3
.
.
.
−n
0
0
0
.
.
.
0



.

The results of this example are quoted in the following table for various values of the
dimension n.
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n iteration number CPU (s)
5 2 0.01026
10 2 0.0292
50 2 0.0751
100 2 0.1048
300 2 0.4333
700 2 2.2656
1000 2 6.1662
1500 2 19.3652
3000 2 207.7703

Table 4: Example 4.4.

5 Conclusion

Our investigation is centered around a nonconvex programming approach that relies on
DC programming and DCA algorithms to tackle a non-monotone Affine Variational In-
equality problem (AVIP). To address the AVIP, we formulated an optimization model
and leveraged DCA algorithms for its resolution. Employing a suitable decomposition
for this model, we devised a straightforward DCA algorithmic scheme, involving the suc-
cessive solution of convex quadratic programs. Our numerical experiments, conducted on
a variety of test problems, provided compelling evidence for the efficiency and effective-
ness of the proposed approach. We successfully applied our approach to solve the model
presented above, and it has demonstrated its capability to be employed in addressing
large-scale mathematical problems.
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Abstract: In this paper, we discuss the application of an iterative collocation method
based on the Lagrangian polynomials to the numerical solution of a class of nonlinear
Voltera integral equations with constant delay. This application contains, but is not
limited to, many important Voltera delay integral equations that arise in physical and
biological modeling processes and that are widely used in the analysis of dynamical
systems. In addition, the appoximate solution is given in a suitable polynomial spline
space by using explicit formulas without resorting to solving any algebric system.
The proposed technique is efficient and easy to implement. The error analysis of the
proposed numerical method is studied theoreticaly. Finally, illustrative examples are
given to demonstrate the efficiency of the proposed method.

Keywords: nonlinear delay Volterra integral equation; collocation method; iterative
method; Lagrange polynomials.
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1 Introduction

In this paper, we study a numerical method for the solution of Volterra integral nonlinear
equations with constant delay τ > 0,

x(t) = f(t) +

∫ t

0

k1(t, s, x(s))ds+

∫ t−τ

0

k2(t, s, x(s))ds, t ∈ I = [0, T ], (1)
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where x(t) = Φ(t), t ∈ [−τ, 0], f , k1, k2 and Φ are the functions being sufficiently smooth.
Equation (1) is frequently encountered in physical and biological modeling processes [1].
The monograph [2] presents a historical survey of mathematical models in biology, which
can be described by Volterra integral equations with constant delays.

Now, some results on the numerical solutions of Volterra integral equations have been
investigated [3–10]. Different methodologies have been proposed to approximate the
solution of (1). For example, Ali et al. [11] proposed a spectral method for pantograph-
type delay integral equations by using the Legendre collocation method. Brunner [2]
applied the polynomial collocation method to approximate the solution of (1). Caliò et
al. [12,13] proposed a deficient spline collocation method, Birem et al. [16] developed an
algorithm for solving first kind two-dimentional Voltera integral equations by using the
collocation method, Horvat [14] used the spline collocation method to find a numerical

solution of (1) in the spline space S
(d)
m+d(ΠN ) and Rouibah et al. [15] provided a new

numerical approach based on the use of continuous collocation Lagrange polynomials for
the numerical solution of nonlinear Volterra integral equations.

On the other hand, the Taylor polynomial method for approximating the solution
of integral equations has been proposed in the recent years. For example, Bellour and
Rawashdeh [17] used the Taylor method to find an approximate solution for first kind
integral equations. Darania and Ivaz [18], Maleknejad and Mahmoudi [19], K. Al-Khaled
and M.H. Yousef applied the Sumudu decomposition method [20], Sezer and Gülsu [21]
applied the Taylor method to certain linear and nonlinear Volterra integral equations.

This paper is concerned with a piecewise polynomial collocation method based on
the Lagrangian polynomials. Our goal is to develop an iterative explicit solution to
approximate the solution of the Volterra integral equation with a constant delay (1).

The main advantages of the current collocation method are:
1. A more direct and convergent algorithm is introduced to compute the approxima-

tion solution and this provides an explicit numerical solution of the equation (1), which
is a basic motivation for using an iterative collocation method.

2. In the current method, there is no algebraic system needed to be solved, which
makes the proposed algorithm very effective, easy to implement and the calculation cost
low.

The rest of the paper is organized as follows. In Section 2, we divide the interval
[0, T ] into subintervals, and we approximate the proposed solution in each interval by
using Lagrange polynomials. Global convergence is established in Section 3, and three
numerical examples are provided in Section 4. Finally, conclusion is given in Section 5.

2 Description of the Collocation Method

Let ΠN be a uniform partition of the interval I = [0, T ] defined by

tin = iτ + nh, i = 0, ..., r − 1, n = 0, ..., N − 1, (2)

where the stepsize is given by
τ

N
= h and τ =

T

r
.

Let 0 ≤ c1 < ...... < cm ≤ 1 be the collocation parameters, and tin,j = tin + cjh,
j = 1, ...,m, i = 0, ..., r − 1, n = 0, ..., N − 1 be the collocation points.

Define the subintervals as σi
n = [tin, t

i
n+1], and σi

N−1 = [tiN−1, t
i
N ]. Denote by πm

the set of all real polynomials of degree not exceeding m. We define the real polynomial
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spline space of degree m as follows:

S
(−1)
m−1(I,ΠN ) = {u : un = u|σi

n
∈ πm−1, n = 0, .., N − 1, i = 0, ..., r − 1}. (3)

It is easy to show that for any y ∈ Cm([0, T ]),

y(tin + sh) =

m∑
j=1

Lj(s)y(t
i
n,j) + ϵn(s), ϵn(s) = hm ym(ζn)(s)

m!

m∏
j=1

(s− cj), (4)

where s ∈ [0, 1] and Lj(v) =
m∏
l ̸=j

v − cl
cj − cl

are the Lagrange polynomials associate with the

parameters cj , j = 1, ...,m.
Inserting (4) into (1), we get

x(tin,j) = f(tin,j) + h
i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, x(t

l
p,v)) + h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, x(t

i
pv))

+ h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, x(t

i
n,v)) + h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, x(t

l
p,v))

+ h

n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , x(t

i−1
p,v )) + h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , x(t

i−1
n,v ))

+ o(hm),

where j = 1, ...,m, i = 0, ..., r − 1, n = 0, ..., N − 1, such that

aj,v =

∫ cj

0

Lv(η)dη

and

bv =

∫ 1

0

Lv(η)dη.

It holds for any u ∈ S−1
m−1(I,ΠN ) that

u(tin + sh) =

m∑
j=1

Lj(s)u(t
i
n,j), s ∈ [0, 1]. (5)

Now, we approximate the exact solution x by u ∈ S−1
m−1(I,ΠN ) such that u(tin,j)

satisfy the following nonlinear system:

u(tin,j) = f(tin,j) + h

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, u(t

l
p,v)) + h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, u(t

i
pv))

+ h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, u(t

i
n,v)) + h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, u(t

l
p,v))

+ h

n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , u(t

i−1
p,v )) + h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , u(t

i−1
n,v )),
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where v = 1, ...,m, n = 0, ..., N − 1, i = 0, ..., r − 1, and u(t) = ϕ(t) ∈ [−τ, 0].

According to the nonlinearity of the previous system, we can use an iterative collo-
cation solution uq ∈ S−1

m−1(I,ΠN ), q ∈ N, to approximate the exact solution of (1) such
that

uq(tin + sh) =

m∑
j=1

Lj(s)u
q(tin,j), s ∈ [0, 1], (6)

where the coefficients uq(tin,j) are given by

uq(tin,j) = f(tin,j) + h

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, u

q(tlp,v))

+ h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, u

q(tipv)) + h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, u

q−1(tin,v))

+ h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, u

q(tlp,v)) + h

n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , u

q(ti−1
p,v ))

+ h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , u

q(ti−1
n,v )),

where the initial values u0(tin,j) ∈ J (J is a bounded interval). The above formula is
explicit and the approximate solution uq is given without needing to solve any algebraic
system.

In the following section, we prove the convergence of the approximate solution uq to
the exact solution x of (1). Moreover, we can show that the order of convergence is m
for all q ≥ m.

3 Convergence Analysis

Here, we assume that the functions k1 and k2 satisfy the Lipschitz condition with respect
to the third variable; i.e., there exists Li ≥ 0 (i = 1, 2) such that

|ki(t, s, y1)− ki(t, s, y2)| ≤ Li|y1 − y2|.

The following lemmas are very important.

Lemma 3.1 (Discrete Gronwall-type inequality [2])

Let {kj}nj=0 be a given non-negative sequence and the sequence {εn} satisfy ε0 ≤ p0
and

εn ≤ p0 +

n−1∑
i=0

kiεi, n ≥ 1,

where p0 ≥ 0, then εn can be bounded by

εn ≤ p0 exp

n−1∑
j=0

kj

 , n ≥ 1.
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Lemma 3.2 (Discrete Gronwall-type inequality [22])

If {fn}n≥0, {gn}n≥0 and {εn}n≥0 are non negative sequences and

εn ≤ fn +

n−1∑
i=0

giεi, n ≥ 0,

then

εn ≤ fn +

n−1∑
i=0

figi exp

(
n−1∑
k=0

gk

)
, n ≥ 0.

The following result gives the existence and uniqueness of the bounded solution for
the nonlinear system (2).

Lemma 3.3 For sufficiently small h, the nonlinear system (2) has a unique solution
u ∈ S−1

m−1. Moreover, the function u is bounded.

Proof. 1. The nonlinear system (2) has a unique solution in ∈ S−1
m−1. We will use

the induction combined with the Banach fixed point theorem.

(i) On the interval σ0
0 = [t00, t

0
1], for j = 1...m, where x(t) = Φ(t) for t ∈ [−τ, 0], we

have

u(t00,j) = f(t00,j) + h

m∑
v=1

aj,vk1(t
0
0,j , t

0
0,v, u(t

0
0,v)) + h

m∑
v=1

aj,vk2(t
0
0,j , t

0
0,v − τ, ϕ(t00,v)).

Let :F 0
0 : Rm → Rm for j = 1...m, so

F 0
0,j(x) = f(t00,j) + h

m∑
v=1

aj,vk1(t
0
0,j , t

0
0,v, xv) + h

m∑
v=1

aj,vk2(t
0
0,j , t

0
0,v − τ, ϕ(t00,v)).

From the Banach fixed point theorem, we have

∥F 0
0 (x)− F 0

0 (y)∥≤ hL1∥x− y∥,

which ensures the existence and uniqueness of u ∈ σ0
0 for h being sufficiently small.

(ii) Suppose that u exists and is unique on each interval σl
k, l = 0, ..., i−1, k = 0, ..., N−
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1, and we show that u exists and is unique on σi
n = [tin, t

i
n+1], j = 1, ...,m. Hence

F i
n,j(x) = f(tin,j)+h

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

l
pv, u(t

l
p,v))

+ h

n−1∑
p=0

m∑
v=1

bvk1(t
i
n,j , t

i
pv, u(t

i
pv))

+ h

m∑
v=1

aj,vk1(t
i
n,j , t

i
n,v, xv)

+ h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

l
p,v, u(t

l
p,v))

+ h
n−1∑
p=0

m∑
v=1

bvk2(t
i
n,j , t

i−1
p,v , u(t

i−1
p,v ))

+ h

m∑
v=1

aj,vk2(t
i
n,j , t

i−1
n,v , u(t

i−1
n,v )).

For all i = 0....r − 1, n = 0...N − 1, j = 1...m, we have

∥F i
n,j(x)− F i

n,j(y)∥≤ hL1∥x− y∥,

which ensures the existence and uniqueness of u ∈ σi
n for h being sufficiently small.

2. The solution u is bounded. We have

∣∣u(tin,j)∣∣ ≤ α+ hL1

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣u(tlp,v)∣∣+ hL2

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣u(tlp,v)∣∣

+ hL1

n−1∑
p=0

m∑
v=1

bv
∣∣u(tipv)∣∣+ hL2

n−1∑
p=0

m∑
v=1

bv
∣∣u(ti−1

p,v ))
∣∣

+ hL1

m∑
v=1

aj,v
∣∣u(tin,v)∣∣+ hL2

m∑
v=1

aj,v
∣∣u(ti−1

n,v ))
∣∣ .

Let α = ||f ||+(τ +T +h)(||k1||+ ||k2||) and let yin = max{u(tin,P ), p = 1....m}. We have

yin − hL1y
i
n ≤ α+ hL1

i−1∑
l=0

N−1∑
p=0

ylp + hL2

i−2∑
l=0

N−1∑
p=0

ylp

+ hL2

n−1∑
p=0

yi−1
p + hL2y

i−1
n + hL1

n−1∑
p=0

yip

≤ α+ h(L1 + 3L2)

i−1∑
l=0

N−1∑
p=0

ylp + hL1

n−1∑
p=0

yip.
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Hence, for all h ∈ (0,
1

2L1
], we get

yin ≤ 2α+ hL3

i−1∑
l=0

N−1∑
p=0

ylp + hL4

n−1∑
p=0

yip, (7)

where L3 = 6L2 + 2L1 and L4 = 2L1. Then, by Lemma 3.1, we obtain

yin ≤ (2α+ hL3

i−1∑
l=0

N−1∑
p=0

ylp) exp(τL4)

≤ α2 + hL5

i−1∑
l=0

N−1∑
p=0

ylp.

We put zin = max{yin, n = 0....N − 1}, we have zi ≤ α2 + hL5

∑i−1
l=0 Nzl. Therefore, by

Lemma 3.1, we obtain zi ≤ α2 exp(TL5). So (u(tin,j)) is bounded.
The following result gives the convergence of the approximate solution u to the exact

solution x.

Theorem 3.1 Let f, k1, k2 and Φ be m times continuously differentiable on their
respective domains. Then for sufficiently small h, the collocation solution u converges to
the exact solution x, and the resulting error function e = x−u satisfies ∥e∥L∞(I) ≤ Chm,
where C is a finite constant independent of h.

Proof. We calculate the error between x and the approximate solution u for v =
1, 2, ...m, n = 0, 1, 2, ..., N−1 and i = 0, 1, ..., r−1. By setting e = x−u as the collocation
error, we get

|e(tin,j)| ≤ hL1

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣e(tlp,v)∣∣+ hL2

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bv
∣∣e(tlp,v)∣∣

+ hL1

n−1∑
p=0

m∑
v=1

bv
∣∣e(tipv)∣∣+ hL2

n−1∑
p=0

m∑
v=1

bv
∣∣e(ti−1

p,v ))
∣∣

+ hL1

m∑
v=1

aj,v
∣∣e(tin,v)∣∣+ hL2

m∑
v=1

aj,v
∣∣e(ti−1

n,v ))
∣∣ .

Let ein = max{e(tin,v), v = 1, ...,m}, we have

ein ≤ hL3

i−1∑
l=0

N−1∑
p=0

elp + hL1

n−1∑
p=0

eip + o(hm), where L3 = 3L2 + L1.

Hence, for all h ∈ (0,
1

2L1
], we get

ein ≤ 2hL3

i−1∑
l=0

N−1∑
p=0

elp + 2hL1

n−1∑
p=0

eip + 2o(hm). (8)
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By Lemma 3.1, one can obtain

ein ≤ (2hL3

i−1∑
l=0

N−1∑
p=0

elp + 2o(hm)) exp(2hL1N) ≤ hα

i−1∑
l=0

N−1∑
p=0

elp + chm,

where α = 2hL3 exp(2hL1N).
Let ei = max{ein, n = 0...N − 1}. So

ei ≤ τα

i−1∑
l=0

elp + chm ≤ chm exp(Tα) ≤ Chm.

Thus, the proof is completed by taking C = c exp(Tα). The following result gives the
convergence of the iterative solution uq to the exact solution x.

Theorem 3.2 For any initial condition u0(tin,j) ∈ J , the sequence uq(tin,j) converges
to the exact solution x. Moreover, the following error estimates hold:∣∣uq(tin,j)− x

∣∣ ≤ (hd)q
∣∣(u)0 − x

∣∣+ Cdqhm+q + Chm, (9)

where d = L1 exp(τL1)+rL1 exp(τL1)τ(L1+2L2) exp(τL1) exp(rτ(L1+2L2) exp(τL1)).

Proof. Let (ein)
q = max

∣∣uq+1(tlp,v)− u(tlp,v)
∣∣ v = 1....m. So

(ein)
q+1 ≤ hL1

i−1∑
l=0

N−1∑
p=0

(elp)
q+1 + hL1

n−1∑
p=0

(eip)
q+1 + hL1(e

i
n)

q

+ hL2

i−2∑
l=0

N−1∑
p=0

(elp)
q+1 + hL2

n−1∑
p=0

(ei−1
p )q+1 + hL2(e

i−1
n )q+1

≤ hL3

i−1∑
l=0

N−1∑
p=0

(elp)
q+1 + hL1(e

i
n)

q + hL1

n−1∑
p=0

(eip)
q+1,

where L3 = L1 + 3L2.
Let ei = max{ein, n = 0....N − 1}. This implies

(ein)
q+1 ≤ hL1(e

i)q + τL3

i−1∑
l=0

(el)q+1 + hL1

n−1∑
p=0

(eip)
q+1.

In view of the well-known result on discrete Gronwall inequalities 3.1, we get

(ein)
q+1 ≤ (hL1(e

i)q + τL3

i−1∑
l=0

(el)q+1) exp(τL1)

≤ hL4(e
i)q + L5

i−1∑
l=0

(el)q+1,

where L4 = L1 exp(τL1) and L5 = τL3 exp(τL1). By Lemma 3.2, one can obtain

(ei)q+1 ≤ hL4(e
i)q +

i−1∑
l=0

hL4(e
i)qL5 exp(rL5). (10)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 24 (4) (2024) 419–430 427

Let (e)q = max{(ei)q, i = 0, 1, ..., r − 1}, we have

(e)q+1 ≤ hL4(e)
q + hrL4(e)

qL5 exp(rL5),

≤ hd(e)q d = L4 + rL4L5 exp(rL5),

≤ (hd)q
∣∣(u)0 − x

∣∣+ Cdqhm+q,

where j = 1, ...,m, i = 0, ..., r − 1, n = 0, ..., N − 1, q ∈ N∗. This implies∣∣uq(tin,j)− x(tin,j)
∣∣ ≤ ∣∣uq(tin,j)− u(tin,j)

∣∣+ ∣∣u(tin,j)− x(tin,j)
∣∣

≤ (hd)q
∣∣(u)0 − x

∣∣+ Cdqhm+q + Chm.

4 Numerical Examples

In order to verify the theoretical results, we present the following examples with τ = 0.5
and T = 1. All the exact solutions x are already known. In each example, we calculate
the error between x and the iterative collocation solution um.

Example 4.1 Consider the nonlinear Volterra delay integral equation

x(t) = f(t) +

∫ t

0

k1(t, s, x(s))ds+

∫ t−τ

0

k2(t, s, x(s))ds, t ∈ [0, 1], (11)

where k1(t, s, z) = s sin(t+ 2z − s), k2(t, s, z) =
set−z

1 + t
and f is chosen so that the exact

solution is x(t) = 2t+ 1.
The absolute errors for (m,N) = {(4, 4), (5, 5), (6, 6), (8, 8)}, for t = 0, 0.2, ..., 1 are

shown in Table 1. From columns 2, 3, 4, we note that the absolute error reduces as m
increases, and from columns 4, 5, we note that the absolute error reduces as N increases.

t m = 4, N = 5 m = 5, N = 5 m = 7, N = 5 m = 7, N = 10
0.0 0.146× 10−5 0.69× 10−7 0.25× 10−7 0.33× 10−7

0.2 0.145× 10−4 0.342× 10−6 0.68× 10−7 0.6× 10−8

0.4 0.272× 10−4 0.75× 10−7 0.34× 10−7 0.6× 10−8

0.6 0.256× 10−4 0.82× 10−6 0.27× 10−7 0.4× 10−8

0.8 0.193× 10−4 0.20× 10−5 0.59× 10−7 0.56× 10−7

1.0 0.147× 10−3 0.13× 10−4 0.39× 10−6 0.7× 10−7

Table 1: Absolute errors of Example 4.2.

Example 4.2 The given functions in equation (1) are

k1(t, s, z) = 2 cos(t+ z − s)s2,

k2(t, s, z) =
stz

1 + t2
, and x(t) = sin(t) + 1.

The absolute errors for (m,N) = {(2, 5), (4, 5), (5, 5), (6, 10)}, for t = 0, 0.2, ..., 1 are
shown in Table 2. From columns 2, 3, 4, we note that the absolute error reduces as m
increases, and from columns 4, 5, we note that the absolute error reduces as both m and
N increase.
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t m = 2, N = 5 m = 4, N = 5 m = 5, N = 5 m = 6, N = 10
0.2 0.123× 10−3 0.81× 10−7 0.14× 10−7 0.1× 10−8

0.2 0.472× 10−3 0.16× 10−6 0.17× 10−7 0.2× 10−8

0.4 0.794× 10−3 0.34× 10−6 0.4× 10−8 0.41× 10−7

0.6 0.232× 10−2 0.58× 10−5 0.19× 10−7 0.12× 10−7

0.8 0.813× 10−2 0.83× 10−4 0.312× 10−6 0.52× 10−7

1 0.599× 10−2 0.22× 10−4 0.245× 10−6 0.1× 10−7

Table 2: Absolute errors of Example 4.3.

Example 4.3 ( [23,24]) Consider the following nonlinear Volterra integral equation:

t Method in [23] Method in [24] Our method
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

0.1 1.0× 10−5 1.5× 10−6 1.2× 10−5 2.5× 10−8 9.8× 10−8 5.5× 10−9

0.2 2.4× 10−5 3.2× 10−6 1.6× 10−6 3.4× 10−7 1.4× 10−7 3.3× 10−9

0.3 3.6× 10−5 4.7× 10−6 2.0× 10−4 9.1× 10−7 2.0× 10−7 1.4× 10−8

0.4 4.6× 10−5 5.8× 10−6 2.0× 10−5 1.4× 10−6 2.7× 10−7 1.6× 10−8

0.5 5.2× 10−5 6.6× 10−6 3.8× 10−5 1.8× 10−6 3.5× 10−7 2.2× 10−8

0.6 5.5× 10−5 6.9× 10−6 5.1× 10−5 2.1× 10−6 4.3× 10−7 2.6× 10−8

0.7 5.5× 10−5 6.9× 10−6 7.2× 10−5 1.8× 10−6 5.1× 10−7 3.4× 10−8

0.8 5.2× 10−5 6.4× 10−6 6.4× 10−5 6.4× 10−6 5.6× 10−7 3.2× 10−8

0.9 4.6× 10−5 5.7× 10−6 1.9× 10−5 1.0× 10−4 6.0× 10−7 4.5× 10−8

01 3.9× 10−5 4.7× 10−6 6.3× 10−4 9.2× 10−4 4.6× 10−7 2.4× 10−8

Table 3: Comparison of the absolute errors of Example 4.3

x(t) = 1 + (sin(t))2 −
∫ t

0

3 sin(t− s)(x(s))2ds, t ∈ [0, 1],

which is a particular case of Equation (1), where k1(t, s, z) = −3 sin(t − s)z2 and
k2(t, s, z) = 0. Here x(t) = cos(t) is the exact solution.

The absolute errors for N = 10, 20 and m = 4 at t = 0, 0.1, ..., 1 are displayed in Table
3. The numerical results of the present method are considerably accurate in comparison
with the numerical results obtained in [23, 24]. From Table 3, it is easy to see that
the results obtained by the present method are very superior to those obtained by the
methods in [23,24].

5 Conclusion

In this paper, an iterative collocation method based on Lagrangian polynomials has been
developed to achieve numerical solution of nonlinear Volterra delay integral equations in
a suitable spline space. This method is easy to implement and the coefficients of the
approximation solution are determined by using iterative formulas without the need to
solve any system of algebraic equations. Numerical examples show that the method is
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convergent with a good accuracy. In addition, the results in these examples confirm
the theoretical results. Moreover, from Tables 1 and 2, we note that the absolute error
reduces as N or m increases.
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[12] F. Caliò, E. Marchetti and R. Pavani. About the deficient spline collocation method for
particular differential and integral equations with delay. Rend. Sem. Mat. Univ. Pol. Torino
61 (2003) 287–300.
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