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1 Introduction

The nonlinear diffusion equation is a partial differential equation that describes the be-
havior of a diffusing quantity in a medium where the diffusion rate depends on the
concentration or magnitude of the quantity itself, these are suggested as mathematical
models of physical problems in many fields such as image processing, heat conduction
in composite materials, reaction-diffusion systems, nonlinear diffusion in fluid mechanics
and population dynamics [1–3].

Fractional differential equations (FDEs) generalize ordinary and partial differential
equations by incorporating fractional derivatives instead of integer-order derivatives.
FDEs have attracted considerable attention because they can describe complex phenom-
ena characterized by long-range memory, anomalous diffusion, and fractal-like behavior,
fractional differential equations (FDEs) are used to model a wide range of phenomena in
various fields such as visco-elasticity, biological, electrical circuits, control systems, and
geological systems [4–8]. These are just a few examples of the diverse range of applications
where FDEs are treated. Fractional calculus and FDEs provide a powerful mathematical
framework to capture complex dynamics, memory effects, and non-local interactions in
various systems, as well as a variety of other physical phenomena. Recently, there has
been a lot of progress in the study of fractional differential equations [9–13]. This is due
to several recent studies in this field, see the monographs of Kilbas et al. [14], Miller
and Ross [15], Samko et al. [16], and the papers of Agarwal et al. [17], Anguraj A. and
Karthikeyan P. [18], Belmekki et al. [19], Daftardar-Gejji and Jafari [20, 21], Kaufmann
and Mboumi [22], Kilbas and Marzan. [23], Yu and Gao [24], Oussaeif [25], and also the
general references in Baleanu et al. [26], and the references therein.

However, many phenomena can better be described by integral boundary conditions,
which are often used in problems where the system’s physical or mathematical character-
istics require considering the solution’s cumulative behavior over a specific region. They
can arise in various fields, including heat transfer, fluid mechanics, quantum mechan-
ics, and population dynamics. Bouziani [24, 27] has extensively studied the topic and
generated significant interest in various works. The recent surge in interest in nonlinear
fractional reaction-diffusion (RD) equations [28, 29] can be attributed to their ability to
exhibit self-organization phenomena and introduce the fractional index as a new param-
eter in the equation. Moreover, the analysis of these equations from both analytical and
numerical perspectives has generated considerable attention. These equations provide
a fertile, promising research area, offering rich mathematical insights. Despite efforts
to investigate fractional RD equations under specific boundaries and initial conditions,
explicit solutions are often elusive. This study delves into a more comprehensive exami-
nation of a generalized model for nonlinear time-fractional RD equations.

The aim of this paper is to expand the utilization of the energy inequality method to
establish the existence and uniqueness of weak solutions in functionally weighted Sobolev
spaces. Specifically, we focus on a class of initial-boundary value problems with a non-
local condition referred to as the ”integral condition” for a broader range of nonlinear
partial fractional differential equations. To the best of our knowledge, this particular
class of equations has not been previously investigated. Additionally, this work serves as
an explanation and complement to our previous paper [24]. Furthermore, this research
introduces novel theoretical concepts involving Bouziani fractional spaces.
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2 Preliminaries

Let Ω = [0;T ] be a finite interval of the real numbers R and Γ(·) denote the gamma
function. For any 0 < α < 1 being a positive integer, the Caputo and Riemann-Liouville
derivatives are, respectively, defined as follows:

• The left Caputo fractional derivative of order α is defined respectively by

CDα
t µ(x, t) =

1

Γ(1− α)

t∫
0

∂µ(x, s)

∂s

1

(t− s)α
ds. (1)

• The right Caputo fractional derivatives of order α is defined respectively by

C
t D

αµ(x, t) =
−1

Γ(1− α)

T∫
t

∂µ(x, s)

∂s

1

(s− t)α
ds. (2)

• The left Riemann-Liouville fractional derivative of order α is defined respectively
by

RDα
t µ(x, t) =

1

Γ(1− α)

∂

∂t

t∫
0

µ(x, s)

(t− s)α
ds. (3)

• The right Riemann-Liouville fractional derivative of order α is defined respectively
by

R
t D

αµ(x, t) =
−1

Γ(1− α)

∂

∂t

T∫
t

µ(x, s)

(s− t)α
ds. (4)

Many authors think that Caputo’s version is more natural because it makes the
handling of homogeneous initial conditions easier. Then the two definitions (1) and (3)
are linked by the following relationship, which can be verified by a direct calculation:

R
a D

α
t µ(x, t) =

C
a Dα

t µ(x, t) +
µ(x, 0)

Γ(1− α)tα
. (5)

Definition 2.1 [30, 31] For any real θ > 0 and finite interval [a, b] of the real axis
R, we define the semi-norm

|v|2lHθ(Ω) =
∥∥RDθ

t v
∥∥2
L2(Ω)

and the norm
∥v∥2lHθ(Ω) = ∥v∥2L2(Ω) + |v|2lHθ(Ω) . (6)

Next, we define lHθ(Ω) as the closure of C∞
0 (Ω) with respect to the norm ∥·∥lHθ(Ω).

Definition 2.2 [30, 31] For any real θ > 0 and finite interval [a, b] of the real axis
R, we define the semi-norm

|v|2rHθ(Ω) =
∥∥R
t D

θv
∥∥2
L2(Ω)

and the norm
∥v∥2rHθ(Ω) = ∥v∥2L2(Ω) + |v|2rHθ(Ω) . (7)
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In what follows, we define lHθ(Ω) as the closure of C∞
0 (Ω) with respect to the norm

∥·∥lHθ(Ω).

Definition 2.3 For any real θ > 0 and finite interval [a, b] of the real axis R, we
define the semi-norm

|v|2cHθ(Ω) =

∣∣∣∣∣ (RDθ
t v,

R
t Dθv)L2(Ω)

cos (θπ)

∣∣∣∣∣
and the norm

∥v∥2cHθ(Ω) = ∥v∥2L2(Ω) + |v|2cHθ(Ω) . (8)

Lemma 2.1 [30, 31] For any real θ ∈ R+, if u ∈ lHθ(Ω) and v ∈ C∞
0 (Ω), then we

have
(RDθ

t u (t) , v (t))L2(Ω) = (u(t),Rt Dθv(t))L2(Ω).

Lemma 2.2 [30,31] For 0 < θ < 2, θ ̸= 1 and u ∈ H
θ
2
0 (Ω), then

RDθ
t u (t) =

R D
θ
2
t u

RD
θ
2
t u (t) .

Lemma 2.3 [30, 31] For any real θ ∈ R+and θ ̸= n + 1
2 , the semi norms |·|lHθ(Ω),

|·|rHθ(Ω), and |·|cHθ(Ω) are equivalent, then we pose

|·|lHθ(Ω)
∼= |·|rHθ(Ω)

∼= |·|cHθ(Ω) .

Lemma 2.4 [30,31] For any real θ > 0, the space RHθ
0 (Ω) with respect to the norm

(7) is complete.

Definition 2.4 We denote by L2(0, T, L2(0, 1)) = L2 (Q) the space of functions
which are square integrable in the Bochner sense with the scalar product

(u,w)L2(0,T,L2(0,1))
=

∫ T

0

((u, ·), (w, ·))L2(0,1)
dt. (9)

Since the space L2(0, 1) is a Hilbert space, it can be shown that L2(0, T, L2(0, 1)) is
a Hilbert space as well. Now, let C∞(0, T ) denote the space of infinitely differentiable
functions on (0, T ) and C∞

0 (0, T ) denote the space of infinitely differentiable functions
with compact support in (0, T ).

3 Bouziani Functional Spaces

We introduce the function spaces needed in our investigation. Let L2(0, 1) and
L2(0, T, L2(0, 1)) be the standard function spaces. Also, we denote by C0(0, 1) the vector
space of continuous functions with compact support in (0.1). Since such functions are
Lebesgue integrable with respect to dx, we can define it on C0(0, 1). The bilinear form
is given by

(u.w) =

∫ 1

0

ℑxu.ℑxwdx, (10)

where ℑxu =
∫ x

0
u(ζ, ·)dζ and ℑ∗

xu =
∫ 1

x
u(ζ, ·)dζ. The previous bilinear form (22) is

considered as a scalar product on C0(0, 1) for which C0(0, 1) is not complete.
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Definition 3.1 We denote by B2(0, 1) a completion of C0(0, 1) for the scalar product
(13), which is denoted by (·, ·)B2(0,1). It is also called the Bouziani space or the space
of square-integrable primitive function on (0, 1). By the norm of the function u from
B2(0, 1), we can understand the non negative number

∥u∥B2(0,1) =
√
(u, u)B2(0,1) = ∥ℑxu∥L2(0,1) .

For u ∈ L2(0, 1), we have the elementary inequality

∥u∥2B2(0,1) ≤
1

2
∥u∥2L2(0,1) . (11)

We denote by L2(0, T, B2(0, 1)) = B2(Ω) the space of functions, which are called the
square integrable in the Bochner sense with the scalar product

(u.w)B2(Ω) =

∫ 1

0

((u, ·).(w, ·))B2(0,1)dx (12)

for which B2(Ω) is a Hilbert space.

4 Solvability of Solution of Diffusion Fractional Dirichlet Problems

4.1 Formulation of the problem

In this part, we assume Ω = (0; 1) and I = (0;T ) with 0 ≺ T ≺ +∞. Also, we consider
the following nonlinear fractional problem:

cDα
t u(x, t)− ∂

∂x (a(x, t)
∂u(x,t)

∂x ) + bu(x, t) = f(x, t, u, ∂u
∂x ), ∀(x, t) ∈ Q,

u(x, 0) = 0 ∀x ∈ (0, 1),∫
Ω
xku(x, t)dx = 0 ∀t ∈ (0, T ) and k = {0, 1},

(P)

where Q = Ω× I is an open bounded interval of R and a, b, f are known functions. Also,
we suppose the following conditions:

• (A1) We assume that 0 ≺ a0 ≤ a(x, t) ≤ a1 and a2 ≤ ∂2a(x,t)
∂x2 ≤ a3 for all (x, t) ∈ Q.

• (A2) We assume that the compatibility conditions

∫
Ω

xku(x, t)dx = 0 ∀t ∈ (0, T ) and k = {0, 1}

are verified.

4.2 The associated linear problem

In this part, we show the existence and uniqueness of the strong solution of the linear
problem. The proof is based on an a priori estimate and the density of the set of values
of the image of the operator generated by the problem

cDα
t u(x, t)− ∂

∂x (a(x, t)
∂u(x,t)

∂x ) + bu(x, t) = f(x, t),∀(x, t) ∈ Q,
u(x, 0) = 0 ∀x ∈ (0, 1),∫

Ω
xku(x, t)dx = 0 ∀t ∈ (0, T ) and k = {0, 1},

(P1)
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whose diffusion problem is given as follows:

£u =c Dα
t u(x, t)−

∂

∂x
(a(x, t)

∂u(x, t)

∂x
) + bu(x, t) = f(x, t) (13)

with the initial condition

lu = u(x, 0) = 0 ∀x ∈ [−1, 1] (14)

and the integral conditions∫
Ω

xku(x, t)dxdt = 0 ∀t ∈ (0, T ) and k = {0, 1}, (15)

where f(x, t) is a given function and α satisfies the assumption 0 ≤ α ≤ 1, for which
(x, t) ∈ Q̄.

4.3 A priori estimation

In this part, we aim to establish an a priori bound and prove the existence of a solution
to the problems (13)-(15) with Lu = F , where L = ( L, l) and F = f is the operator
equation corresponding to problems (13)-(15). To obtain a full overview about such an
estimation, the reader may refer to [32]. The operator L acts from E to F , which is
defined as follows. The Banach space E consists of all functions u(x, t) with the finite
norm

∥u∥2E = ∥ℑxu∥2L2(Q) + ∥u∥2L2(Q) . (16)

The Hilbert space F consists of the vector-valued functions F = f with the norm

∥ F∥2F = ∥f∥2L2
(Q)

+

∫ T

0

Iα ∥f∥2L2
(0,1)

dt+ ∥ℑxφ∥2L2
(0,1)

. (17)

4.4 A priori bound

Theorem 4.1 If the assumption (A1) is satisfied, then for any function u ∈ D(L),
there exists a positive constant c independent of u such that

∥ℑxu∥2L2(Q) + ∥u∥2L2(Q) ≤ k

(
∥f∥2L2

(Q)
+

∫ T

0

Iα ∥f∥2L2
(0,1)

dt+ ∥ℑxφ∥2L2
(0,1)

)
(18)

for which D(L) is the domain of definition of the operator L defined by

D(L) = {u ∈ L2(Q) / ℑxu ∈ L2(Q)},

satisfying conditions (15).

Proof. By taking the scalar product in L2(Q) on (13) and the operator

Mu =

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ,
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where Qτ = Ω× (0, T ), we obtain

(£u,Mu)L2(Qτ ) =

(
cDα

t u,

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
L2(Q)

−
(

∂

∂x
(a(x, t)

∂u(x, t)

∂x
)

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
L(Q)

+

(
bu(x, t),

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
L2(Q)

=
(
f̃ , u

)
L2(Q)

.

(19)

The successive integration by parts of integrals on the right-hand side of (17) yields(
RDα

t u,Mu
)
L2(Q)

=

∫
Q

(
cDα

t u (x, t) .

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
dx

=

∫
Qτ

(
cDα

t

∫ x

0

u (ζ, t) dζ.

∫ 1

0

u (ζ, t) dζ

)
dxdt

=

∫
Qτ

(
cD

α
2
t

∫ x

0

u (ζ, t) dζ.cD
α
2
t

∫ x

0

u (ζ, t) dζ

)
dxdt

=
∥∥∥cD α

2
t ℑxu

∥∥∥2
L2(Qτ )

(20)

and

−
(

∂

∂x
(a

∂u

∂x
),Mu

)
L(Q)

= −
∫
Qτ

−
(

∂

∂x
(a(x, t)

∂u(x, t)

∂x
)

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
dxdt

=

∫
Qτ

((
a(x, t)

∂u(x, t)

∂x

)(∫ x

0

u (ζ, t) dζ

))
dxdt

=

∫
Qτ

a (x, t) (u(x, t))
2
dxdt− 1

2

∫
Qτ

(
∂2a (x, t)

∂x2

)(∫ x

0

u (ζ, t) dζ

)
dxdt

≥ a0 ∥u∥2L2(Qτ ) −
a3
2

∥ℑxu∥2L2(Qτ ) .

(21)
Consequently, we have

(bu,Mu)L(Q) =

∫
Qτ

(
b (x, t)u (x, t)

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
dxdt

≥ b

∫
Qτ

(
u (x, t)

∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
dxdt

≥ b

∫
Qτ

(∫ 1

0

u (ζ, t) dζ

)(∫ 1

0

u (ζ, t) dζ

)
dxdt

≥ b

∫
Qτ

(ℑxu(x, t)
2
dxdt

≥ b ∥ℑxu∥2L2
(0,1)

. (22)

Substituting (20), (21) and (22) into (19) gives∥∥∥cD α
2
t ℑxu

∥∥∥2
L2(Qτ )

+ a0 ∥u∥2L2(Qτ ) −
a3
2

∥ℑxu∥2L2(Qτ ) + b ∥u∥2L2(Qτ ) ≤
(
f̃ ,Mu

)
. (23)
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Now, we estimate the last term on the right-hand side of (23) by applying the Cauchy

inequality

(
|ab| ≤ a2

2ε
+

εb2

2

)
with ε. In other words, we have

∥∥∥cD α
2
t ℑxu

∥∥∥2
L2(Qτ )

+ a0 ∥u∥2L2(Qτ ) −
a3
2

∥ℑxu∥2L2(Qτ ) + b0 ∥u∥2L2(Qτ )

≤
∫
Qτ

f(x, t)

(∫ 1

x

(∫ ς

0

u (η, t) dη

)
dζ

)
dxdt

≤ 1

2ε

∫
Qτ

(∫ x

0

u(ζ, t)dζ

)2

dxdt+
ε

2

∫
Qτ

(∫ x

0

f(ζ, t)dζ

)2

dxdt. (24)

By using the Cauchy-Schwartz inequality, we obtain

1

2ε

∫
Qτ

(∫ x

0

u(ζ, t)dζ

)2

dxdt+
ε

2

∫
Qτ

(∫ x

0

f(ζ, t)dζ

)2

dxdt

≤ 1

2ε

∫
Qτ

(ℑxu (x, t))
2
dxdt+

ε

2

∫
Qτ

(ℑxf (x, t))
2
dxdt

≤ 1

4ε

∫
Qτ

(u(x, t))
2
dxdt+

ε

4

∫
Qτ

(f(x, t))
2
dxdt

=
1

4ε
∥u∥2L2(Qτ ) +

ε

4
∥f∥2L2(Qτ ) . (25)

This, consequently, yields∥∥∥cD α
2
t ℑxu

∥∥∥2
L2(Qτ )

+

(
a0 + b− 1

4ε

)
∥u∥2L2

(Qτ )
≤ ε

4
∥f∥2L2(Qτ )

and ∥∥∥cD α
2
t ℑxu

∥∥∥2
L2(Qτ )

+ ∥u∥2L2
(Qτ )

≤ ε

4min
{
1,
(
a0 + b− 1

4ε

)} ∥f∥2L2
(Qτ )

.

Now, we present

C =
ε

4min
{
1,
(
a0 + b− 1

4ε

)}
as

Iα (cDα
t u (x, t)) = u (x, t) + φ (x) .

This leads to

∥ℑxu∥2L2(Qτ ) + ∥u∥2L2
(0,1)

≤ CIα ∥f∥2L2
(0,1)

+ ∥ℑxφ∥2L2(0,1) .

Consequently, we have

∥ℑxu∥2L2(Qτ ) ≤ CIα ∥f∥2L2
(Qτ )

+ ∥ℑxφ∥2L2(Qτ ) .

So, finally, we get
∥u∥2L2

(Qτ )
≤ C ∥f∥2L2

(Qτ )
,

where
C1 = max {1, C}
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and

∥ℑxu∥2L2(Qτ ) + ∥u∥2L2
(0,1)

≤ C1

(
Iα ∥f∥2L2

(0,1)
+ ∥f∥2L2

(0,1)
+ ∥ℑxφ∥2L2(0,1)

)
.

With the use of successive integration (0, T ), we get

∥ℑxu∥2L2
(Qτ )

+∥u∥2L2
(Qτ )

≤ (C1 max {1, T})

(∫ T

0

Iα ∥f∥2L2
(Qτ )

dt+ ∥f∥2L2
(Qτ )

+ ∥ℑxφ∥2L2
(Qτ )

)
which implies

k = (C1 max {1, T})
1
2

for which
∥u∥E ≤ k ∥Lu∥F . (26)

Let R(L) be the range of the operator L. However, since we do not have any infor-
mation about R(L), except that R(L) ⊂ F , we must extend L so that (26) holds for the
extension, and its range is the whole space F . For this purpose, we state the following
proposition.

Proposition 4.1 The operator L : E −→ F has a closure.

Proof. Let (un)n∈N ⊂ D (L) be a sequence where

un −→ 0 in E

and
Lun −→

(
f̃ ; 0
)

in F . (27)

Herein, we must prove that
f ≡ 0.

The convergence of un to 0 in E leads to

un −→ 0 in D′ (Q) . (28)

According to the continuity of the derivation ofD′ (Q) inD′ (Q), the relation (28) involves

Lun −→ 0 in D′ (Q) . (29)

Moreover, the convergence of Lun to f in L2 (Q) gives

Lun −→ f in D′ (Q) . (30)

As we have the uniqueness of the limit in D′ (Q), we conclude from (29) and (30) that
f = 0. Then, L is closable of this operator with the domain of definition D(L).

Definition 4.1 A solution of the operator equation

L̄u = F

is called a strong solution to problems (13)-(15). The a priori estimate (18) can be
extended to strong solutions, i.e., we have the estimate

∥ℑxu∥2L2(Q) + ∥u∥2L2(Q) ≤ k

(
∥f∥2L2

(Q)
+

∫ T

0

Iα ∥f∥2L2
(0,1)

dt+ ∥ℑxφ∥2L2
(0,1)

)
.
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We deduce from the estimate (18) the subsequent result.

Corollary 4.1 The range R(L̄) of the operator L̄ is closed in F and is equal to the
closure R(L) of R(L), that is, R(L̄) = R(L).

Proof. Let z ∈ R(L). Then, there is a Cauchy sequence (zn)n∈N in F constituting
of the elements of the set R(L) such that

lim
n−→+∞

zn = z.

There is then a corresponding sequence un ∈ D(L) such that

zn = Lun.

With the use of estimate (18), we get

∥up − uq∥E ≤ C ∥Lup − Luq∥F → 0,

where p, q tend towards infinity. We can deduce that (un)n∈N is a Cauchy sequence in
E. So, as E is a Banach space, there exists u ∈ E such that

lim
n−→+∞

un = u in E.

By virtue of the definition of L̄ ( lim
n−→+∞

un = u in E, if lim
n−→+∞

Lun = lim
n−→+∞

zn = z,

then lim
n−→+∞

L̄un = z as L̄ is closed, so L̄u = z), the function u satisfies

v ∈ D
(
L̄
)
, L̄v = z.

Then z ∈ R(L̄), and so we have
R(L) ⊂ R(L̄).

Also, we conclude here that R(L̄) is closed because it is Banach (any complete subspace
of a metric space (not necessarily complete) is closed). Thus, it remains to show the
reverse inclusion. To this aim, it should be noted that either z ∈ R(L̄) and then there
exists a Cauchy sequence (zn)n∈N in F constituting of the elements of the set R(L̄) such
that

lim
n−→+∞

zn = z,

or z ∈ R(L̄) because R(L̄) is a closed subset of a completed F and so R(L̄) is complete.
There is then a corresponding sequence un ∈ D(L̄) such that

L̄un = zn.

As a result, we get from (18) that

∥up − uq∥E ≤ C
∥∥L̄up − L̄uq

∥∥
F
→ 0,

where p and q tend towards infinity. We can then deduce that (un)n∈N is a Cauchy
sequence in E, and so as E is a Banach space, there exists u ∈ E such that

lim
n−→+∞

un = u in E.
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Once again, there is a corresponding sequel (Lun)n∈N ⊂ R(L) such that

L̄un = Lun on R (L) , ∀n ∈ N.

So, we obtain
lim

n−→+∞
Lun = z.

Consequently, we obtain z ∈ R (L), and then we conclude that

R
(
L̄
)
⊂ R (L).

4.5 Existence of solution

Theorem 4.2 Let the assumptions (A1) be satisfied. Then for all F = (f, 0) ∈ F ,
there exists a unique strong solution u = L̄−1 F= L−1 F of the problem (2)-(4).

Proof. We have

(Lu,W )F =

∫
Q

Lu.wdxdt, (31)

where
W = (w, 0) .

So, for w ∈ L2 (Q) and for all u ∈ D0(L) = {u, u ∈ D (L) : ℓu = 0}, we have∫
Q

u.wdxdt = 0.

By putting w = u and using the same estimate as previously, we obtain∥∥∥cD α
2
t ℑxu

∥∥∥2
L2(0,1)

+ ∥u∥2L2
(0,1)

= 0,

which implies
∥u∥ ≤ 0 ⇒ u = 0.

So, we get u = w = 0.

Corollary 4.2 If for any function u ∈ D(L), we have the following estimate:

∥u∥E ≤ C ∥Lu∥F ,

then the solution of problem (P1), if it exists, is unique.

Proof. Let u1 and u2 be two solutions to problem (P1), i.e.,{
Lu1 = F
Lu2 = F =⇒ Lu1 − Lu2 = 0,

where L is a linear operator. As a result, we obtain

L (u1 − u2) = 0. (32)

Now, according to (32), we obtain

∥u1 − u2∥2E ≤ c ∥0∥2F = 0,

which, consequently, gives
u1 = u2.
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5 Solvability of the Weak Solution of the Nonlinear Problem

This section is devoted to the proof of the existence and uniqueness of the solution of
the nonlinear problem (Pr):

cDα
t u(x, t)− ∂

∂x (a(x, t)
∂u(x,t)

∂x ) + bu(x, t) = f(x, t, u, ∂u
∂x ),∀(x, t) ∈ Q,

u(x, 0) = 0 ∀x ∈ (−1, 1),∫
Ω
xku(x, t)dx = 0 ∀t ∈ (0, T ) and k = {0, 1},

(P2)

for which the function f is Lipchitzian. As a consequence, there is a positive constant k
such that ∥∥∥∥∥f

(
x, t, u1,

∂u1

∂x

)
− f

(
x, t, u2,

∂u1

∂x

)∥∥∥∥∥
L2(Q)

≤ k

(
∥u1 − u2∥L2(Q) +

∥∥∥∥∂u1

∂x
− ∂u1

∂x

∥∥∥∥
L2(Q)

)
.

(33)

Now, we shall prove that (P2) has a unique weak solution. To this end, we let u ∈ C̃1(Q)
and u ∈ C1(Q). Also, we shall compute the integral

∫
Q
(fℑ∗

xv)dxdt. For this purpose,

we assume u, v ∈ C̃1(Q),
∫
Q
xku(x, t)dx = 0, and

∫
Q
xku(x, t)dx = 0 for all k = {0, 1}.

By using the condition on u and v, we have∫
Q

(cDα
t u · ℑ∗

xv)dxdt = −
∫
Q

(v ·c Dα
t ℑ∗

xu)dxdt,

−
∫
Q

(
∂

∂x
(a(x, t)

∂u

∂x
) · ℑ∗

xv)dxdt =

∫
Q

(v · a(x, t)∂u
∂x

)dxdt,

and

b

∫
Q

(u · ℑ∗
xv)dxdt = −

∫
Q

(v · ℑ∗
xu)dxdt.

It then follows, from [24], that

A(u, v) = −
∫
Q

(v ·c Dα
t ℑ∗

xu)dxdt+

∫
Q

(v · a(x, t)∂u
∂x

)dxdt−
∫
Q

(v · ℑ∗
xu)dxdt.

Definition 5.1 A function u is called a weak solution of problem (P1) and u ∈
L2(0, T,H1(0, 1)).

By building a recurring sequence starting with u(0) = 0, we can define the sequence(
u(n)

)
n∈N as follows: given the element u(n−1), for n = 1, 2, 3, . . ., we will solve the

following problem:{
cDα

t u
(n)(x, t)− ∂

∂x (a(x, t)
∂u(n)(x,t)

∂x ) + b(x, t)u(n)(x, t) = f(x, t, u(n−1), ∂u(n−1)

∂x ),∫
Ω
xku(n)(x, t)dx = 0 ∀t ∈ (0, T ) and k = {0, 1}.

(P3)

Theorem 5.1 According to the study of the previous linear problem and by fixing n,
problem (P3) admits a unique solution u(n) (x, t).
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Now, by supposing

z(n) (x, t) = u(n+1) (x, t)− u(n) (x, t) ,

we might get a new problem, which has the form
cDα

t z
(n) −

(
a (x, t) z

(n)
x

)
x
+ b(x, t)z(n) = p(n−1)(x, t),

z(n) (x.0) = 0,∫
Ω
xkz(n)(x, t)dx = 0, ∀t ∈ (0, T ) , k = {0, 1},

(P4)

where

p(n−1)(x, t) = f

(
x, t, u(n),

∂u(n)

∂x

)
− f

(
x, t, u(n−1),

∂u(n−1)

∂x

)
with the condition

z(n) (x.0) = 0 and

∫
Ω

xkz(n)(x, t)dx = 0 ∀t ∈ (0, T ) , k = {0, 1}. (34)

Lemma 5.1 Assume that condition (34) holds, then for the linearized problem (P4),
we have the following a priori estimate:∥∥∥Z(n)

∥∥∥
L2(0,1,H1(0,1))

≤ λ
∥∥∥Z(n−1)

∥∥∥
L2(0,1,H1(0,1))

,

where λ is a positive constant given by

λ =

√
5ϕ2

2ε
,

for which ε ≺≺ 1.

Proof. Multiplying equation (P4) by
∫ 1

x

(∫ ς

0
zn (η, t) dη

)
dζ and integrating the result

over Q yield ∫
Q

(
(RDα

t z
(n)(x, t) ·

∫ 1

x

(∫ ς

0

zn (η, t) dη

)
dζ

)
dxdt

−
∫
Q

(
∂

∂x

(
a (x, t)

∂z(n) (x, t)

∂x

)
·
∫ 1

x

(∫ ς

0

zn (η, t) dη

)
dζ)dxdt

+

∫
Q

bz(n)(x, t) ·
∫ 1

x

(∫ ς

0

zn (η, t) dη

)
dζdxdt

=

∫
Q

(
p(n−1)(x, t) ·

∫ 1

x

(∫ ς

0

zn (η, t) dη

)
dζ

)
dxdt. (35)

By using the standard integration by parts for each term in (P4) coupled with condition
(34), we obtain ∫ c

Qτ

(
cDα

t

∫ x

0

zn (ζ, t) dζ

)2

dxdt+ a1

∫
Qτ

(zn (x, t))
2
dxdt

≤
∫
Qτ

(
a3
2

+
ε

2
+

b

2

)
(zn (x, t))

2
dxdt+

1

2ε

∫
Qτ

(
p(n−1)

)2
dxdt. (36)
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On the other hand, by applying the operator ℑ∗
x to equation (36), we get

cDα
t (ℑ∗

xZ
n) + a(x, t)

∂Z(n)(x, t)

∂x
= ℑ∗

x

(
p(n−1)

)
. (37)

Consequently, by taking into account condition (37), multiplying the obtained equality
by ∂Zn

∂x , and then integrating the result over Ωτ = (0, 1) × (0, τ), where 0 ≤ τ ≤ T , we
obtain ∫

Qτ

(cDα
t Z

n) · Zndxdt+

∫
Qτ

a(x, t)

(
∂Z(n)(x, t)

∂x

)2

dxdt

=

∫
Qτ

ℑ∗
x

(
p(n−1)(x, t)

) ∂Zn

∂x
dxdt.

(38)

Now, by using Lemmas 2.2, 2.3, 2.4, and 5.1 coupled with the Cauchy inequality with ε,
we obtain ∫

Qτ

(
cD

α
2
t Zn

)2
dxdt+

∫
Qτ

a(x, t)

(
∂Z(n)(x, t)

∂x

)2

dxdt

≤ 1

2ε

∫
Qτ

ℑ∗
x

(
p(n−1)(x, t)

)2
dxdt+

ε

2

∫
Qτ

(
∂Zn

∂x

)2

dxdt. (39)

Combining the last two inequalities (38) and (39) gives∫ c

Qτ

(
cDα

t

∫ x

0

zn (ζ, t) dζ

)2

dxdt+

∫
Qτ

(
cD

α
2
t Zn

)2
dxdt

+ a1

∫
Qτ

(zn (x, t))
2
dxdt+

∫
Qτ

a(x, t)

(
∂Z(n)(x, t)

∂x

)2

dxdt

≤ 1

2ε

∫
Qτ

(
p(n−1)

)2
dxdt+

1

2ε

∫
Qτ

ℑ∗
x

(
p(n−1)(x, t)

)2
dxdt

+

∫
Qτ

(
a3
2

+
ε

2
+

b

2

)
(zn (x, t))

2
dxdt+

ε

2

∫
Qτ

(
∂Zn

∂x

)2

dxdt. (40)

By eliminating two first integrals on the left-hand-side of inequality (40) and using the
Cauchy inequality with ε, we get(

a(x, t)− a3
2

− ε

2
− b

2

){∫
Qτ

(
(zn (x, t))

2
+

(
∂Z(n)(x, t)

∂x

)2
)
dxdt

}

≤ 1

2ε

∫
Qτ

(
p(n−1)

)2
dxdt+

∫
Qτ

ℑ∗
x

(
p(n−1)(x, t)

)2
dxdt

 . (41)

Therefore, we have the estimate∥∥∥ℑ∗
xp

(n−1)
∥∥∥2
L2(0,1)

≤ 1

4
(1− 0)

2
∥∥∥p(n−1)

∥∥∥2
L2(0,1)

≤ 1

4

∥∥∥p(n−1)
∥∥∥2
L2(0,1)

(42)
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and ∫
Qτ

(
p(n−1)

)2
dxdt

≤ ϕ2

∫
Qτ

(∣∣∣z(n−1) (x, t)
∣∣∣+ ∣∣∣∣∂Z(n−1)(x, t)

∂x

∣∣∣∣)2

dxdt

≤ ϕ2

∫ τ

0

∥∥∥z(n−1) (·, t)
∥∥∥2
L2(0,1)

+

∥∥∥∥∂Z(n−1)(·, t)
∂x

∥∥∥∥2
L2(0,1)

dtdx. (43)

Now, substituting (41) and (42) into (44) yields(
a(x, t)− a3

2
− ε

2
− b

2

)∫ τ

0

{∥∥∥z(n) (·, t)∥∥∥2
L2(0,1)

+

∥∥∥∥∂Z(n)(·, t)
∂x

∥∥∥∥2
L2(0,1)

}
dtdx

≤ 5ϕ2

2ε

∫ τ

0

{∥∥∥z(n−1) (·, t)
∥∥∥2
L2(0,1)

+

∥∥∥∥∂Z(n−1)(·, t)
∂x

∥∥∥∥2
L2(0,1)

}
dtdx. (44)

Since a(x, t)− a3

2 − ε
2 − b

2 ≥ 0, we find∫ τ

0

{∥∥∥z(n) (·, t)∥∥∥2
L2(0,1)

+

∥∥∥∥∂Z(n)(·, t)
∂x

∥∥∥∥2
L2(0,1)

}
dt

5ϕ2

2ε

∫ τ

0

{∥∥∥z(n−1) (·, t)
∥∥∥2
L2(0,1)

+

∥∥∥∥∂Z(n−1)(·, t)
∂x

∥∥∥∥2
L2(0,1)

}
dtdx.

The right-hand side here is independent of τ , and hence we shall replace the left-hand
side by the upper bound with respect to τ to obtain the desired inequality, i.e.,∥∥∥Z(n)

∥∥∥2
L2(0,1,H1(0,1))

≤ 5ϕ2

2ε

∥∥∥Z(n−1)
∥∥∥2
L2(0,1,H1(0,1))

.

This forms the criteria of convergence of the series
∞∑

n=1
z(n), which converges if 5ϕ2

2ε < 1,

that is, if ϕ =
√

2ε
5 . Since Z

(n)(x, t) = u(n+1)(x, t)−un(x, t), it follows that the sequence

(un)n∈N will be defined by

u(n) (x, t) =

n−1∑
n=1

z(i) + u(0) (x, t) ,

which converges to an element u ∈ L2
(
0, 1, H1 (0, 1)

)
.

Therefore, we have established the following result.

Theorem 5.2 Under the condition (34), the solution for problem (P2) is unique.

Proof. Suppose that u1 and u2 in L2
(
0, 1, H1 (0, 1)

)
are two solutions of (P4), then

Z = u1 − u2 satisfies Z ∈ L2
(
0, 1, H1 (0, 1)

)
. As a result, we have

cDα
t u(x, t)−

∂

∂x
(a(x, t)

∂u(x, t)

∂x
) + bu(x, t) = ϑ(x, t)
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and ∫
Ω

xkz(n)(x, t)dx = 0 ∀t ∈ (0, T ) , k = {0, 1},

where

ϑ(x, t) = f

(
x, t, u1,

∂u1

∂x

)
− f

(
x, t, u2,

∂u1

∂x

)
.

Following the same procedure as in establishing the proof of Lemma 5.1, we get∥∥∥Z(n)
∥∥∥
L2(0,1,H1(0,1))

≤ λ
∥∥∥Z(n−1)

∥∥∥
L2(0,1,H1(0,1))

,

where λ is the same constant as in Lemma 5.1. Since λ < 1, then we obtain

(1− λ)
∥∥∥Z(n−1)

∥∥∥
L2(0,1,H1(0,1))

,

form which we conclude that u1 = u2 in L2
(
0, 1, H1 (0, 1)

)
.

6 Conclusion

This paper has explained the important factors needed to ensure a solution stands out
and fits well within a certain type of mathematical space. This is particularly relevant
to a set of problems involving equations with fractions and reactions that change over
time. We have figured out these factors by using certain mathematical estimates and
techniques. By building upon previous work and using a step-by-step method, we have
confirmed that there is indeed a unique solution to these tricky equations. There will be
future research and applications on fractional partial differential equations.
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