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Abstract: We consider a dynamic contact problem with friction in thermo-
viscoelasticity with long memory body. The body is in contact with an obstacle.
The contact is frictional and bilateral with a moving rigid foundation which results
in the wear of the contacting surface. The problem is formulated as a coupled system
of an elliptic variational inequality for the displacement and the heat equation for the
temperature. We establish a variational formulation for the model and we prove the
existence of a unique weak solution to the problem. The proof is based on a classical
existence and uniqueness result for parabolic inequalities, differential equations and
fixed point arguments.
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1 Introduction

Scientific research and recent papers in mechanics are articulated around two main com-
ponents, one devoted to the laws of behavior and the other devoted to boundary condi-
tions imposed on the body. The boundary conditions reflect the binding of the body with
the outside world. Recent researches use coupled laws of behavior between mechanical
and electric effects or between mechanical and thermal effects. For the case of coupled
laws of behavior between mechanical and electric effects, general models can be found
in [5,6]. For the case of coupled laws of behavior between mechanical and thermal effects,
the transmission problem in thermo-viscoplasticity is studied in [3], the contact problem
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with adhesion for thermo-viscoplasticity is considered in [1]. Situations of contact be-
tween deformable bodies are very common in the industry and everyday life. Contact
of braking pads with wheels, tires with roads, pistons with skirts or the complex metal
forming processes are just a few examples. The constitutive laws with internal variables
have been used in various publications in order to model the effect of internal variables
in the behavior of real bodies like metals, rocks, polymers and so on, for which the rate
of deformation depends on the internal variables. Some of the internal state variables
considered by many authors are the spatial display of dislocation, the work-hardening of
materials. In this paper, we consider a general model for the dynamic process of bilat-
eral frictional contact between a deformable body and an obstacle, which results in the
wear of the contacting surface. The material obeys a thermo-viscoelasticity constitutive
law with long memory body. We derive a variational formulation of the problem which
includes a variational second order evolution inequality. We establish the existence of
a unique weak solution of the problem. The idea is to reduce the second order nonlin-
ear evolution inequality of the system to the first order evolution inequality. After this,
we use classical results for first order nonlinear evolution inequalities and equation, a
parabolic variational inequality and the fixed point arguments.

The paper is structured as follows. In Section 2, we present the thermo-visco-elastic
contact model with friction and provide comments on the contact boundary conditions.
In Section 3, we list the assumptions on the data and derive the variational formulation.
In Section 4, we present our main existence and uniqueness results.

2 Problem Statement

Problem P: Find a displacement field u : Ω×[0.T ] → Rd, a stress field σ : Ω×[0.T ] → Sd,
the temperature θ : Ω× [0.T ] → R+ and the wear ω : Γ3 × [0.T ] → R+ such that

σ = A(ε(u(t))) + G(ε(u̇(t))) +
t∫
0

B(t− s)ε(u(s))ds− θ(t)M,

in Ω× [0.T ] ,

(1)

ρ
..
u = Div σ + f0, in Ω× [0.T ], (2)

θ̇ − div(K∇θ) = −M.∇u̇+ q, in Ω× [0.T ] , (3)

u = 0, on Γ1 × [0.T ] , (4)

σν = h, on Γ2 × [0.T ], (5){
σν = −α

∣∣ .uν∣∣ , |στ | = −µσν ,
στ = −λ

( .
uτ − v∗

)
, λ ≥ 0,

.
ω = −kυ∗σν , k > 0. on Γ3 × [0.T ],

(6)

−kij ∂θ
∂ν νj = ke(θ − θR)− hτ (|u̇τ |), onΓ3 × [0.T ] , (7)

θ = 0, in Γ1 ∪ Γ2 × [0.T ] , (8)

u(0) = u0, u̇(0) = u1, θ(0) = θ0, ω(0) = ω0, in Ω, (9)

where (1) is the thermo-visco-elastic constitutive law with long memory, we denote ε(u)
(respectively, A,G, ξ, ξ∗ ) the linearized strain tensor (respectively, the elasticity tensor,
the viscosity nonlinear tensor, the third order piezoelectric tensor and its transpose), (2)
represents the equation of motion, where ρ represents the mass density, we mention that
Divσ is the divergence operator, (3) represents the evolution equation of the heat field,
(4) and (5) are the displacement and traction boundary conditions, (6) describes the
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bilateral frictional contact with wear described above on the potential contact surface
Γ3, (7) is the pointwise heat exchange condition on the contact surface, where kij are
the components of the thermal conductivity tensor, vj are the normal components of the
outward unit normal v, ke is the heat exchange coefficient, θR is the known temperature
of the foundation. (8) represents the temperature boundary conditions. Finally, (9)
represents the initial conditions.

3 Variational Formulation and Preliminaries

For a weak formulation of the problem, first, we introduce some notation. The indices i,
j, k, l range from 1 to d and summation over repeated indices is implied. An index that
follows the comma represents the partial derivative with respect to the corresponding
component of the spatial variable, e.g., ui.j = ∂ui

∂xj
. We also use the following notations:

H = L2(Ω)d = {u = (ui)/ui ∈ L2(Ω)},
H = σ = (σij)/σij = σji ∈ L2(Ω),

H1 = u = (ui)/ε(u) ∈ H = H1 (Ω)
d

H1 = σ ∈ H/Divσ ∈ H.

The operators of deformation ε and divergence Div are defined by

ε(u) = (εij(u)), εij(u) =
1
2 (ui,j + uj,i), Divσ = (σij,j).

The spaces H,H, H1 and H1 are real Hilbert spaces endowed with the canonical inner
products given by

(u, v)H =
∫
Ω
uividx,∀u, v ∈ H,

(σ, τ)H =
∫
Ω
σijτijdx,∀σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H,∀u, v ∈ H1,

(σ, τ)H1 = (σ, τ)H + (Divσ,Divτ)H , σ, τ ∈ H1.

We denote by |·|H (respectively, | · |H, | · |H1
and | · |H1) the associated norm on the space

H ( respectively, H, H1 and H1 ).
Let HΓ = (H1/2(Γ))d and γ : H1(Γ)d → HΓ be the trace map. For every element v

∈ (H1(Γ))d, we also use the notation v to denote the trace map γv of v on Γ, and we
denote by vν and vτ the normal and tangential components of v on Γ given by

vν = v.ν, vτ = v − vν .

Similarly, for a regular (say C1) tensor field σ : Ω → Sd, we define its normal and
tangential components by

σν = (σν) .ν, στ = σν − σν .

We use standard notation for the Lp and the Sobolev spaces associated with Ω and Γ
and, for a function ψ ∈ H1 (Ω), we still write ψ to denote its trace on Γ. We recall that
the summation convention applies to a repeated index.

When σ is a regular function, the following Green’s type formula holds:

(σ, ε (v))H + (Divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1. (10)

Next, we define the space
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V = {u ∈ H1/ u = 0 on Γ1}.

Since meas (Γ1) > 0, the following Korn’s inequality holds:

|ε(u)|H ≥ cK |v|H1
∀v ∈ V, (11)

where cK > 0 is a constant which depends only on Ω and Γ1. On the space V , we use
the inner product

(u, v)V = (ε(u), ε(v))H, (12)

let |.|V be the associated norm. It follows by (12) that the norms |.|H1
and |.|V are

equivalent norms on V and therefore, (V, |.|V ) is a real Hilbert space. Moreover, by the
Sobolev trace theorem, there exists a constant c0 depending only on the domain Ω, Γ1

and Γ3 such that
|v|L2(Γ3)

d ≤ c0 |v|V ∀v ∈ V. (13)

Finally, for a real Banach space (X, |.|X), we use the usual notation for the space
Lp (0.T,X) and W k.p (0.T,X), where 1 ≤ p ≤ ∞, k = 1, 2......; we also denote by
C (0.T,X) and C1 (0.T,X) the spaces of continuous and continuously differentiable func-
tion on [0.T ] with values in X, with the respective norms:

|x|C(0.T,X) = max
t∈[0.T ]

|x (t)|X ,

|x|C1(0.T,X) = max
t∈[0.T ]

|x (t)|X + max
t∈[0.T ]

∣∣ .x (t)∣∣
X
.

In what follows, we assume the following assumptions on the problem P . The elasticity
operator A : Ω× Sd → Sd satisfies

(a)∃ LA > 0 such that : |A (x, ε1)−A (x, ε2)| ≤ LA |ε1 − ε2|
∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(c) The mapping x→ A (x, ε) is Lebesgue measurable in Ω for all ε ∈ Sd,
(d) The mapping x→ A (x, 0) ∈ H.

(14)

The viscosity operator G : Ω× Sd ×Sd → Sd satisfies
(a) ∃ LG > 0 : |G(x, ε1)− G(x, ε2)| ≤ LG |ε1 − ε1|,∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(b) ∃mG > 0 : (G (x, ε1)− G (x, ε2) , ε1 − ε2) ≥ mG |ε1 − ε2|2 ,∀ε1, ε2 ∈ Sd,
(c) the mapping x→ G (x, ε) is Lebesgue measurable in Ω fo rall ε ∈ Sd,
(d) the mapping x 7→ G(x, 0) ∈ H.

(15)

The relaxation tensor B : [0.T ] × Ω × Sd → Sd such that (t, x, τ) 7→ (Bijkh (t, x) τkh)
satisfies {

(a)Bijkh ∈W 1.∞(0.T,L∞(Ω)),

(b)B (t)σ · τ = σ · B (t) τ,∀σ, τ ∈ Sd, p.p.t ∈ [0.T ] , a.e.in Ω.
(16)

The function hτ : Γ3 × R+ −→ R+ satisfies{
(a) ∃ Lτ > 0 : |hτ (x, r1)− hτ (x, r2)| ≤ Lh|r1 − r2| ∀r1, r2 ∈ R+, a.e.x ∈ Γ3,

(b) x −→ hτ (x, r) ∈ L2(Γ3) is Lebesgue measurable inΓ3,∀r ∈ R+.

(17)
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The mass density ρ satisfies

ρ ∈ L∞(Ω) there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗, a.e.x ∈ Ω. (18)

The body forces, surface tractions, the densities of electric charges, and the functions α
and µ satisfy

f0 ∈ L2(0.T,H), h ∈ L2(0.T,L2(Γ2)
d),

q ∈W 1.∞(0.T,L2(Ω)), θR ∈W 1.∞(0.T,L2(Γ3)), ke ∈ L∞(Ω,R+),

M = (mij),mij = mji ∈ L∞(Ω),{
K = (ki,j); kij = kji ∈ L∞(Ω),

∀ck > 0,∀(ξi) ∈ Rd, kijξiξj ≥ ckξiξi.

α ∈ L∞(Γ3), α(x) ≥ α∗ > 0, a.e.on Γ3,

µ ∈ L∞(Γ3), µ(x) > 0, a.e.on Γ3.

(19)

The initial data satisfies

u0 ∈ V, u1 ∈ L2(Ω), θ0 ∈ L2(Ω), ω0 ∈ L∞(Γ3). (20)

We use a modified inner product on H = L2(Ω)d given by

((u, v)) = (ρu, v)L2(Ω)d ,∀u.v ∈ H.

That is, it is weighted with ρ. We let H be with the associated norm

∥v∥H = (ρv, v)
1
2

L2(Ω)d
, ∀v ∈ H.

We use the notation (., .)V ′×V to represent the duality pairing between V ′ and V . Then
we have

(u, v)V ′×V = ((u, v)),∀u ∈ H,∀v ∈ V.

It follows from assumption (18) that ∥.∥H and |.|H are equivalent norms on H, and also,
the inclusion mapping of (V, |.|V ) into (H, ∥.∥H) is continuous and dense. We denote by
V ′ the dual space of V . Identifying H with its own dual, we can write the Gelfand triple
V ⊂ H = H ′ ⊂ V ′ .

We define the space

E = {γ ∈ H1(Ω)/γ = 0 on Γ1 ∪ Γ2}. (21)

We define the function f(t) ∈ V by

(f(t), v)V =
∫
Ω
f0(t)vdx+

∫
Γ2
h(t)vda,∀v ∈ V, t ∈ [0.T ],

for all u, v ∈ V, ψ ∈ W and t ∈ [0.T ], and note that condition (19) implies that

f ∈ L2(0.T, V ′). (22)

We consider the wear functional j : V × V → R,

j(u, v) =

∫
Γ3

α |uν | (µ |vτ − v∗|)da. (23)
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Finally, we consider ϕ : V × V → R,

ϕ(u, v) =

∫
Γ3

α |uν | vνda,∀v ∈ V. (24)

We define for all ε > 0,

jε(g, v) =
∫
Γ3
α |gν | (µ

√
|vτ − v∗|2 + ε2)da,∀v ∈ V.

We define Q : [0, T ] → E
′
; K : E → E

′
and R : V → E

′
by

(Q(t), µ)E′×E =
∫
Γ3
keθR(t)µds+

∫
Ω
qµdx,∀µ ∈ E, (25)

(Kτ, µ)E′×E =
d∑

i,j=1

∫
Ω
kij

∂τ
∂xj

∂µ
∂xi

dx+
∫
Γ3
keτµds,∀µ ∈ E, (26)

(Rv, µ)E′×E =
∫
Γ3
hτ (|vτ |)µdx−

∫
Ω
(M.∇v)µdx,∀v ∈ V, τ, µ ∈ E. (27)

Using the above notation and Green’s formula, we derive the following variational for-
mulation of mechanical problem P .

Problem PV : Find a displacement field u : Ω × [0.T ] → V, a stress field σ :
Ω× [0.T ] → Sd , the temperature θ : Ω× [0.T ] → R+ and the wear ω : Γ3 × [0.T ] → R+

such that

(ü(t), w − u̇(t))V ′×V + (σ(t), ε(w − .
u(t)))H + j(

.
u,w)− j(

.
u,

.
u(t))+

ϕ(
.
u,w)− ϕ(

.
u,

.
u(t)) ≥

(
f(t), w − .

u(t)
)
, ∀u,w ∈ V,

(28)

θ̇(t) +Kθ(t) = Ru̇(t) +Q(t), on E′ (29)
.
ω = −kυ∗σν . (30)

4 Existence and Uniqueness Result

Our main result which states the unique solvability of Problem PV is the following.

Theorem 4.1 Let the assumptions (14)−(20) hold. Then Problem PV has a unique
solution (u, σ, θ, ω) which satisfies

u ∈ C1(0.T,H) ∩W 1.2(0.T, V ) ∩W 2.2(0.T, V ′), (31)

σ ∈ L2(0.T,H1), Divσ ∈ L2(0.T, V ′), (32)

θ ∈W 1.2(0.T, E′) ∩ L2(0.T, E) ∩ C(0.T,L2(Ω)), (33)

ω ∈ C1(0.T,L2(Γ3)). (34)

We conclude that under the assumptions (14) − (20), the mechanical problem (1) − (9)
has a unique weak solution with the regularity (31) − (34). The proof of this theorem
will be carried out in several steps. It is based on the arguments of first order nonlinear
evolution inequalities, evolution equations, a parabolic variational inequality, and fixed
point arguments.

First step: Let g ∈ L2(0.T, V ) and η ∈ L2(0.T, V ′) be given, we deduce a variational
formulation of Problem PV .

Problem PVgη : Find a displacement field ugη : [0.T ] → V such that
(ügη(t), w − u̇gη(t))V ′×V + (Gε(u̇gη(t)), w − u̇gη(t))V ′×V + (η(t), w − u̇gη)V ′×V

j(g, w)− j(g, u̇gη(t)) ≥ (f(t), w − u̇gη(t))V ′×V , ∀ w ∈ V, t ∈ [0.T ],

ugη(0) = u0, u̇gη(0) = u1.

(35)
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We define fη(t) ∈ V for a.e.t ∈ [0.T ] by

(fη(t), w)V ′×V = (f(t)− η(t), w)V ′×V ,∀w ∈ V. (36)

From (22), we deduce that
fη ∈ L2(0.T, V ′). (37)

Let now ugη : [0.T ] → V be the function defined by

ugη(t) =

t∫
0

vgη(s)ds+ u0,∀t ∈ [0.T ]. (38)

We define the operator G : V ′ → V by

(Gv,w)V ′×V = (Gε(v(t)), ε(w))H,∀v, w ∈ V. (39)

Lemma 4.1 For all g ∈ L2(0.T, V ) and η ∈ L2(0.T, V ′), PVgη has a unique solution
with the regularity

vgη ∈ C(0.T,H) ∩ L2(0.T, V ) and v̇gη ∈ L2(0.T, V ′). (40)

Proof. The proof from (35) nonlinear second order evolution inequalities is given
in [2, 4, 7, 8].

In the second step, we use the displacement field ugη to consider the following varia-
tional problem.

Second step: We use the displacement field ugη to consider the following variational
problem.

Problem Pθgη : Find θgη ∈ E such that

θ̇gη(t) +Kθgη(t) = Ru̇gη(t) +Q(t), on E
′
. (41)

Lemma 4.2 Under the assumptions (14) − (20), the problem Pθgη has a unique so-
lution

θgη ∈W 1.2(0.T, E
′
) ∩ L2(0.T, E) ∩ C(0.T,L2(Ω)).

Proof. Since we have the Gelfand triple E ⊂ L2(Ω) ⊂ E
′
, we use a classical result for

first order evolution equations given in [9] to prove the unique solvability of (41). Now,
we have θ0 ∈ L2(Ω). The operator K is linear and continuous, so a(τ, µ) = (Kτ, µ)E′×E

is bilinear, continuous and coercive, we use the continuity of a(., .) and from (19), we
deduce that

a(τ, µ) = (Kτ, µ)E′×E ≤ |k|L∞(Ω)d×d |∇τ |E |∇µ|E + |ke|L∞(Γ3)
|τ |L2(Γ3)

|µ|L2(Γ3)

≤ C |τ |E |µ|E .

We have

a(τ, τ) = (Kτ, τ)E′×E =
d∑

i,j=1

∫
Ω
kij

∂τ
∂xj

∂τ
∂xi

dx+
∫
Γ3
keτ

2ds.
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By(19), there exists a constant C > 0 such that

(Kτ, τ)E′×E ≥ C |τ |2E .

We have θ0 ∈ L2(Ω). Let

F (t) ∈ E′ : (F (t), τ)E′×E = (Ru̇gη(t) +Q(t), τ) ∀τ ∈ E.

Under the assumptions (17), (19), we have∫ T

0
|Ru̇|2E′ dt <∞,

∫ T

0
|Q(t)|2E′ dt <∞,

∫ T

0
|F |2E′ dt <∞.

We find

F ∈ L2(0.T, E
′
).

By a classical result for first order evolution equations,

∃!θgη ∈W 1.2(0.T, E
′
) ∩ L2(0.T, E) ∩ C(0.T,L2(Ω)).

Consider the operator

Λ : L2(0.T, V × V ′) → L2(0.T, V × V ′),
Λ(g, η) = (Λ1(g),Λ2(η)),∀g ∈ L2(0.T, V ),∀η ∈ L2(0.T, V ′),
Λ1(g) = vgη,

(Λ2(η), w)V ′×V = (A(ε(u(t))), ε(w))H + (
∫ t

0
B(t− s)ε(u(s))ds− θ(t)M, ε(w))H

+ϕ(g, w),

|Λ(g2, η2)− Λ(g1, η2)|2L2(0.T ;V×V ′) = |(Λ1(g2),Λ2(η2))− (Λ1(g1),Λ2(η1))|2L2(0.T ;V×V ′) ,

= |Λ1(g2)− Λ1(g1)|2L2(0.T ;V×V ′) + |Λ2(η2)− Λ2(η1)|2L2(0.T ;V×V ′) .

(42)
We have the following result.

Lemma 4.3 The mapping Λ : L2(0.T, V × V ′) → L2(0.T, V × V ′) has a unique
element (g∗, η∗) ∈ L2(0.T, V × V ′) such that

Λ(g∗, η∗) = (g∗, η∗). (43)

Proof. Let (gi, ηi) ∈ L2(0.T, V × V ′). We use the notation (ui, φi). For (g, η) =
(gi, ηi), i = 1.2, let t ∈ [0.T ]. We have

Λ1(g) = vgη. (44)

So
|g1(t)− g2(t)|2V ≤ |v1(t)− v2(t)|2V . (45)

It follows that

(v̇1(t)− v̇2(t), v1(t)− v2(t)) + (Gε(v1(t))− Gε(v2(t)), ε(v1(t))− ε(v2(t)))+
(η1(t)− η2(t), v1(t)− v2(t)) + j(g1, v1(t))− j(g1, v2(t))− j(g2, v1(t)) + j(g2, v2(t)) ≤ 0.

(46)
From the definition of the functional j given by (23), and using (13), (19), we have

j(g2, v2(t))− j(g2, v1(t))− j(g1, v2(t)) + j(g1, v1(t)) ≤ C |g1 − g2|V |v1 − v2|V . (47)
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Integrating inequality (46) with respect to time, using the initial conditions v2(0) =
v1(0) = v0, using (13), (15), using Cauchy-Schwartz’s inequality and the inequalities
2ab ≤ C

mG
a2 + mG

C b2 and 2ab ≤ 1
mG

a2 +mGb
2 , by Gronwall’s inequality, we find

|v1(t)− v2(t)|2V ≤ C(

∫ t

0

|g1(s)− g2(s)|2V ds+
∫ t

0

|η1(s)− η2(s)|2V ′ ds). (48)

So

|g1 − g2|2V ≤ C(

∫ t

0

|g1(s)− g2(s)|2V ds+
∫ t

0

|η1(s)− η2(s)|2V ′ ds). (49)

And we have

(Λ2(η), w)V ′×V = (A(ε(u(t))), ε(w))H+(

∫ t

0

B(t−s)ε(u(s))ds−θ(t)M, ε(w))H+ϕ(g, w).

(50)
From the definition of the functional ϕ given by (24), and using (13), (19), we have

ϕ(g1, v2(t))− ϕ(g1, v1(t))− ϕ(g2, v2(t)) + ϕ(g2, v1(t)) ≤ C |g1 − g2|V |v1 − v2|V . (51)

So
|η1(t)− η2(t)|2V ′ ≤ C(|u1(t)− u2(t)|2V +

∫ t

0
|u1(s)− u2(s)|2V ds+

|θ1(t)− θ2(t)|2L2(Ω) + |g1(t)− g2(t)|2V ).
(52)

By (46), using the inequalities 2ab ≤ 2C
mG

a2 + mG
2C b

2 and 2ab ≤ 2
mG

a2 + mG
2 b2, we find

1
2 |v1(t)− v2(t)|2V +mG

∫ t

0
|v1(s)− v2(s)|2V ds ≤

1
mG

∫ t

0
|η1(s)− η2(s)|2V ′ ds+

+mG
4

∫ t

0
|v1(s)− v2(s)|2V ds+ C × C

mG

∫ t

0
|g1(s)− g2(s)|2V ds+

C × mG
4C

∫ t

0
|v1(s)− v2(s)|2V ds.

(53)

So ∫ t

0

|v1(s)− v2(s)|2V ds ≤ C(

∫ t

0

|η1(s)− η2(s)|2V ′ ds+

∫ t

0

|g1(s)− g2(s)|2V ds). (54)

By (41), we find(
θ̇1(t)− θ̇2(t), θ1(t)− θ2(t)

)
E′×E

+ (K(θ1)−K(θ2), θ1(t)− θ2(t))E′×E

= (R(v1)−R(v2), θ1(t)− θ2(t))E′×E .
(55)

We integrate (55) over [0.T], we use the initial conditions θ1 (0) = θ2 (0) = θ0, and we
use the coercive of K and the Lipschitz continuity of R to deduce that

1
2 |θ1 (t)− θ2 (t)|2L2(Ω) + C

∫ t

0
|θ1 (s)− θ2 (s)|2L2(Ω) ds ≤

C
(∫ t

0
|v1 (s)− v2 (s)|V |θ1 (s)− θ2 (s)|L2(Ω) ds

)
.

Using the inequality 2ab ≤ 1
2a

2 + 2b2, we find

1
2 |θ1 (t)− θ2 (t)|2L2(Ω) + C

∫ t

0
|θ1 (s)− θ2 (s)|2L2(Ω) ds ≤

C
4

∫ t

0
|v1 (s)− v2 (s)|V ds+ C |θ1 (s)− θ2 (s)|L2(Ω) ds.
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Also,

|θ1 (t)− θ2 (t)|2L2(Ω) ≤ C

∫ t

0

|v1 (s)− v2 (s)|2V ds. (56)

By (54) , we find

|θ1 (t)− θ2 (t)|2L2(Ω) ≤ C

(∫ t

0

|η1 (s)− η2 (s)|2V ′ ds+

∫ t

0

|g1 (s)− g2 (s)|2V ds
)
. (57)

So,

|η1 (t)− η2 (t)|2V ′ ≤ C

(∫ t

0

|g1 (s)− g2 (s)|2V ds+
∫ t

0

|η1 (s)− η2 (s)|2V ′ ds

)
. (58)

Also,

|u1(t)−u2(t)|2V +
∫ t

0

|u1(s)−u2(s)|2V ds ≤ C(

∫ t

0

|v1(s)− v2(s)|2V +
∫ t

0

|u1(s)− u2(s)|2V )ds.

(59)
And

|u1(t)− u2(t)|2V ≥ 0.∫ t

0

∫ s

0
|u1(r)− u2(r)|2V drds ≥ 0.

So,

|u1 − u2|2V +

∫ t

0

|u1 − u2|2V ds ≤ C

∫ t

0

(|v1(s)− v2(s)|2V + |u1(s)− u2(s)|2V +

+

∫ s

0

|u1(r)− u2(r)|2V dr)ds.

By Gronwall’s inequality, and using (54), we have

|u1 − u2|2V +

∫ t

0

|u1 − u2|2V ds ≤ C(

∫ t

0

|η1(s)− η2(s)|2V ′ ds+

∫ t

0

|g1(s)− g2(s)|2V ds).

(60)
And using (49) and (58), we find

|Λ(g1, η1)− Λ(g2, η2)|2L2(0.T ;V×V ′) ≤ C

∫ t

0

|(g1, η1)− (g2, η2)|2V×V ′ ds. (61)

Thus, for m sufficiently large, Λm is a contraction on L2(0.T, V × V ′) and so Λ has a
unique fixed point in this Banach space. We consider the operator L : C(0.T,L2(Γ3)) →
C(0.T,L2(Γ3)),

Lω(t) = −kυ∗
∫ t

0

σν(s)ds,∀t ∈ [0.T ]. (62)

Lemma 4.4 The operator L : C(0.T,L2(Γ3)) → C(0.T,L2(Γ3)) has a unique ele-
ment ω∗ ∈ C(0.T,L2(Γ3)) such that

Lω∗ = ω∗.
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Proof. Using (62), we have

|Lω1(t)− Lω2(t)|2L2(Γ3)
≤ kυ∗

∫ t

0

|σ1(s)− σ2(s)|2H ds. (63)

From (1), we have

|Lω1(t)− Lω2(t)|2L2(Γ3)
≤ C

∫ t

0
(|u1(t)− u2(t)|2V +

∫ t

0
|u1(s)− u2(s)|2V ds+

+ |θ1(t)− θ2(t)|2L2(Ω))ds.
(64)

By (56) and (59), we find

|u1 − u2|2V +

∫ t

0

|u1 − u2|2V ds+ |θ1(t)− θ2(t)|2L2(Ω) ≤
∫ t

0

|v1(s)− v2(s)|2V ds. (65)

So,

|u1 − u2|2V +
∫ t

0
|u1 − u2|2V ds+ |θ1(t)− θ2(t)|2L2(Ω) ≤ C(

∫ t

0
|v1(s)− v2(s)|2V ds+

+ |ω1(t)− ω2(t)|2L2(Γ3)
).

So, we have

|u1 − u2|2V +

∫ t

0

|u1 − u2|2V ds+ |θ1(t)− θ2(t)|2L2(Ω) ≤ C |ω1(t)− ω2(t)|2L2(Γ3)
. (66)

By (64), we find |Lω1(t)− Lω2(t)|L2(Γ3)
≤ C

∫ t

0
|ω1(s)− ω2(s)|L2(Γ3)

ds. Thus, for m

sufficiently large, Lm is a contraction on C(0.T,L2(Γ3)) and so L has a unique fixed
point in this Banach space. Now, we have all the ingredients to prove Theorem 4.1.

Existence. Let (g∗, η∗) ∈ L2(0.T, V × V ′) be the fixed point of Λ defined by (42),
let ω∗ ∈ C(0.T,L2(Γ3)) be the fixed point of Lω∗ defined by (62), and let (u, θ) =
(ug∗η∗ , θg∗η∗) be the solutions of Problems PVg∗η∗ and Pθgη. It results from (35), (41)
that (ug∗η∗ , θg∗η∗) is the solution of Problem PV. Properties (31) − (34) follow from
Lemmas 4.1 and 4.2.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of
the fixed point of the operators Λ,L defined by (42), (62), and the unique solvability of
the Problems PVgη and Pθgη. This completes the proof.

5 Concluding Remarks and Perspectives

This paper studies electromechanical and thermomechanical contact problems with or
without friction within the framework of the mechanics of continuous media. This in-
volves extending the previous results on the existence and uniqueness of the solution by
new techniques. We will also try to obtain the properties of the solution for different
boundary conditions (traction displacement, contact with or without friction, contact
with adhesion, etc.) In the study of this type of problem, there is also a question of
developing numerical methods for the resolution of the nonlinear equations concerned.
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