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Abstract: The minimal rank persymmetric solution of the quaternion matrix equa-
tion AXA(∗) = B is defined as the matrix X that minimizes the rank of the difference
AXA(∗) − B or, equivalently, r

(
AXA(∗) − B

)
= min, where B is persymmetric. In

this paper, we focus on the quaternion matrix equation AXA(∗) = B. Our aim is
to investigate the inclusion relationships between two sets, Ω1 and Ω2, where Ω1,
Ω2 are, respectively, the set of persymmetric solutions and the set of minimal rank
persymmetric solutions of the quaternion matrix equation AXA(∗) = B. Then, we
deduce the necessary and sufficient conditions for the following relations to hold:
Ω1 ∩ Ω2 ̸= ∅, Ω1 ⊆ Ω2 and Ω1 ⊇ Ω2.
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1 Introduction

Throughout this paper, R and C stand for the real number field and the complex number
field, respectively. Let Hm×n be the set ofm×nmatrices over the real quaternion algebra:

H =
{
a0 + a1i+ a2j + a3k | i2 = j2 = ijk = −1, a0, a1, a2, a3 ∈ R

}
.

The symbols A∗ and r (A) stand for the conjugate transpose and the rank of A,
respectively. Im denotes the identity matrix of order m. The Moore-Penrose generalized
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inverse of a given matrix A ∈ Hm×n is defined to be the unique matrix A+ ∈ Hn×m

which satisfies the following four matrix equations:

(a) AXA = A, (b) XAX = X, (c) (AX)
∗
= AX, (d) (XA)

∗
= XA.

The Moore-Penrose inverse has been the subject of many studies (see [1], [8]).
Furthermore, FA and EA stand for the two projectors FA = In − A+A and EA =

Im − AA+ induced by A ∈ Hm×n. We denote the n × n permutation matrix whose
elements along the southwest–northeast diagonal are ones and whose remaining elements
are zeros by Vn.

In 1843, Irish mathematician Sir William Rowan Hamilton made a significant con-
tribution when he introduced quaternions. However, it is important to note that the
quaternion algebra H is an associative noncommutative division algebra over the real
number field R. It has applications in diverse fields such as computer science, orbital me-
chanics, signal and color image processing, and control theory, see e.g. [7], [10], [16], [19].

Consider the quaternion matrix equation

AXA(∗) = B, (1)

where A ∈ Hm×n, B = B(∗) ∈ Hm×m are given matrices, and X ∈ Hn×n is an unknown
matrix.

The two main objectives of matrix theory, which has focused on matrix equations,
are first to establish the conditions in which a solution exists and then to provide a
general solution for the problems. The efforts are focused on defining the behaviors of
the solutions based on the identification of the general solution. Numerous criteria are
included in this, namely, ranks, ranges, norms, definiteness, etc.

In information theory, engineering systems, linear estimation theory, linear system
theory, and other fields, persymmetric and perskew-symmetric matrices are just as help-
ful as symmetric and skew-symmetric matrices. For example, in [14], Wang et al. pro-
vided symmetric, persymmetric, and centrosymmetric solutions for certain systems of
quaternion matrix equations, in [17], Xie and Sheng presented the problem of generating
a matrix A with specified eigenpair, where A is an anti-symmetric and persymmetric
matrix, in [15], Wang et al. derived the expressions of the least squares Hermitian
persymmetric and bisymmetric solution for the quaternion matrix equation AXB = C
by using the semi-tensor product of matrices and the real vector representation of the
quaternion matrix. For further related works, one may refer to [9], [4], [10].

Wang et al. in [13] gave the following definition.

Definition 1.1 Let A = (aij) ∈ Hm×n, A∗ = (aji) ∈ Hn×mand A(∗) =
(am−j+1,n−i+1) ∈ Hn×m, where aji is the conjugate of the quaternion aji. Then
A(∗) = VnA

∗Vm. We say that the matrix A = (aij) ∈ Hn×n is symmetric if A = A∗, the
matrix A = (aij) ∈ Hn×n is persymmetric if A = A(∗) and the matrix A = (aij) ∈ Hn×n

is perskew-symmetric if A = −A(∗).

The rank of a matrix is a quantity that plays an important role in characterizing the
algebraic properties of matrices, this concept has been the subject of research by many
authors, Tian proposed the notion of least-rank solutions to matrix equations in [11,12]
based on the minimal rank of the linear matrix function A−BXC over the field C. In [2],
Guerarra studied positive and negative definite submatrices in an Hermitian least-rank
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solution of the matrix equation AXA∗ = B. Further, in [3], she investigated neces-
sary and sufficient conditions for the matrix equation AXB = C to have a Hermitian
Re-positive or Re-negative definite solution. In [18], Xu et al. used the Moore-Penrose
inverse to deduce the necessary and sufficient conditions for the existence of Hermi-
tian (skew-Hermitian), Re-nonnegative (Re-positive) definite, and Re-nonnegative (Re-
positive) definite least-rank solutions to AXB = C and presented explicit representations
of the general solutions in cases for which the solvability conditions were satisfied.

Motivated by the works mentioned above, and in view of the applications of and
interest in quaternion matrices, in this study, we investigate the inclusion relationships
between two sets, as well as the set of persymmetric solutions and the set of minimal
rank persymmetric solutions of the quaternion matrix equation (1).

The following lemma is due to Matsagalia and Styan [8], and can be easily generalized
to H.

Lemma 1.1 Let A ∈ Hs×r, B ∈ Hs×k, C ∈ Hl×r, D ∈ Hl×k. Then

r
[
A, B

]
= r (A) + r (EAB) = r (B) + r (EBA) , (2)

r

[
A
C

]
= r (A) + r (CFA) = r (C) + r (AFC) , (3)

r

[
A B
C 0

]
= r (B) + r (C) + r (EBAFC) . (4)

The following formulas are derived from (2), (3), and (4):

r

[
A BFN

ERC 0

]
= r

 A B 0
C 0 R
0 N 0

− r (N)− r (R) .

r

[
M L

ERA ERB

]
= r

[
M L 0
A B R

]
− r (R) ,

r

[
M AFN

L BFN

]
= r

 M A
L B
O N

− r (N) .

2 Relationship between Persymmetric Solutions and Minimal Persymmetric
Solutions of AXA(∗) = B

It is well known that the persymmetric solution and the minimal persymmetric solution
of the quaternion equation (1) are not necessarely unique, throughout this section, we
adopt the following notations:

Ω1 =
{
X ∈ Hn×n / AXA(∗) = B

}
, (5)

Ω2 =
{
Xm ∈ Hn×n / r

(
B −AXA(∗)

)
= min

}
. (6)

Notably, the two sets equations in (5) and (6) may not necessarily be equal. In this
section, we focus on the necessary and sufficient conditions for the following relations to
hold:

Ω1 ∩ Ω2 ̸= ∅, Ω1 ⊆ Ω2 and Ω1 ⊇ Ω2.
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We need the following lemmas.

Lemma 2.1 [5] Let A ∈ Hm×n, B = B(∗) ∈ Hm×m. Then the matrix equation
(1) has a persymmetric solution if and only if R (B) ⊆ R (A). In this case, the general
persymmetric solution can be expressed as

X = A+BA+(∗)
+ FAV + V (∗)F

(∗)
A ,

where V ∈ Hn×n is arbitrary.

Lemma 2.2 [5] Let A ∈ Hm×n, B = B(∗) ∈ Hm×m be given. Then the expression
of general minimal rank persymmetric solution of (1) is given by

X = −S(∗)M+S + S
(∗)
1 U (∗) + US1, (7)

where

M =

[
A B
0 A(∗)

]
, S =

[
0
In

]
, S1 = EMS,

and U ∈ Hn×n is arbitrary.

Khan et al. in [5] [Theorem 2.4], derived the minimal rank formula of the quaternion
matrix expression

p(X,Y ) = G− LX − (LX)
(∗) − CY C(∗)

with respect to the pair of matrices X and Y = Y (∗), where G ∈ Hm×m, L ∈ Hm×n and
C ∈ Hm×m are given, X ∈ Hn×m and Y = Y (∗) ∈ Hm×m are variable matrices, and then
derived the following result.

Lemma 2.3 [5] Let G = G(∗) ∈ Hm×m, L ∈ Hm×n be given, and X ∈ Hn×m be a
variable matrix. Then

min
X∈Hn×m

r
[
G− LX − (LX)

(∗)
]
= r

[
L G
0 L(∗)

]
− 2r (L) . (8)

The following lemma is due to Liu and Tian in [6], and can be easily generalized to
H.

Lemma 2.4 Let D ∈ Hs×r, N ∈ Hs×l and K ∈ Hk×r be matrices such that
R

(
K(∗)) ⊂ R (N). Then

max
X∈Cl×k

r
(
D −NXK − (NXK)

(∗)
)
= min

{
r
[
D N

]
, r

[
K D
0 K(∗)

]}
, (9)

min
X∈Cl×k

r
(
D −NXK − (NXK)

(∗)
)
= 2r

[
D N

]
+ r

[
K D
0 K(∗)

]
− 2r

[
D N
K 0

]
.

(10)

The main result of this work is the following theorem.
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Theorem 2.1 Let A ∈ Hm×n and B = B(∗) ∈ Hm×m be given, and suppose that X,
Xm are persymmetric solutions and minimal persymmetric solution of Eq. (1), respec-
tively, and let Ω1 and Ω2 be as given in (5) and (6), respectively. Then the following
hold:
(a) Eq. (1) has persymmetric solutions and minimal rank solutions, that is, Ω1 ∩Ω2 ̸= ∅
if and only if

r


A B 0 0 0
0 A(∗) 0 0 0
A 0 0 0 B
0 0 B A 0
0 0 A(∗) 0 A(∗)

 = 2r (A) + 2r

[
B

A(∗)

]
.

(b) All the persymmetric solutions of Eq. (1) are minimal rank persymmetric solutions
of Eq. (1), that is, Ω1 ⊆ Ω2 if and only if

r


A B 0 0
0 A(∗) 0 A(∗)

A 0 0 −B
0 0 A B

 = r (A) + 2r
[
A B

]
or r

[
A B

]
= r

[
A B
0 A(∗)

]
.

(c) All the minimal rank persymmetric solutions of Eq. (1) are persymmetric solutions
of Eq. (1), that is, Ω1 ⊇ Ω2 if and only if

r


A B 0 0 0
0 A(∗) 0 0 0
A 0 0 0 B
0 0 A B 0
0 0 0 A(∗) 0

 = 2r

[
A B
0 A(∗)

]
or A = 0.

Proof. (a) The intersection Ω1 ∩ Ω2 ̸= ∅ means that Eq. (1) has minimal rank
persymmetric solutions and persymmetric solutions, which implies the minimum rank of
the matrix expression X −Xm is zero, that is,

min
X∈Ω1, Xm∈Ω2

r (X −Xm) = 0. (11)

According to Lemmas 2.1 and 2.2, the expressions for the general persymmetric solution
and the minimal-rank solution of the matrix equation (1) can be written as follows:

X = A+BA+(∗)
+ FAV + V (∗)F

(∗)
A ,

Xm = −S(∗)M+S + S
(∗)
1 U (∗) + US1.

We can write the expression X −Xm as follows:

X −Xm = A+BA+(∗)
+ FAV + V (∗)F

(∗)
A + S(∗)M+S − S

(∗)
1 U (∗) − US1

= A+BA+(∗)
+ S(∗)M+S +

[
FA −S

(∗)
1

] [ V
U (∗)

]
+

([
FA −S

(∗)
1

] [ V
U (∗)

])(∗)

= G+HW + (HW )
(∗)

, (12)
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where G = A+BA+(∗)
+ S(∗)M+S, H =

[
FA −S

(∗)
1

]
and W =

[
V

U (∗)

]
is arbitrary

with appropriate size.
Applying (8) in Lemma 2.3 to (12) yields

min
X∈Ω1, Xm∈Ω2

r (X −Xm) = min
W

r
(
G+HW + (HW )

(∗)
)
= r

[
H G
0 H(∗)

]
− 2r (H) .

By applying Lemma 1.1 and three elementary block matrix operations and simplifying
by AA+B = B, we obtain

r

[
H G
0 H(∗)

]
= r

 FA −S
(∗)
1 A+BA+(∗)

+ S(∗)M+S

0 0 F
(∗)
A

0 0 −S1


= r

 A+BA+(∗)
+ S(∗)M+S FA S(∗)FM(∗)

EA(∗) 0 0
EMS 0 0



=


0 In S(∗) 0 0
In 0 0 A(∗) 0
S 0 0 0 M

AA+BA+(∗)
A 0 0 0

MM+S 0 M 0 0

− 2r (A)− 2r (M)

=


0 In S(∗) 0 0
In 0 0 A(∗) 0
S 0 0 0 M
0 A 0 B 0
0 0 M 0 M

− 2r (A)− 2r (M)

= r



0 In In 0 0 0 0
In 0 0 0 A(∗) 0 0
0 0 0 0 0 A B
In 0 0 0 0 0 A(∗)

0 A 0 0 B 0 0
0 0 A B 0 A B
0 0 0 A(∗) 0 0 A(∗)


− 2r (A)− 2r (M)

= r



0 In 0 0 0 0 0
In 0 0 0 0 0 0
0 0 0 0 0 A B
0 0 0 0 −A(∗) 0 A(∗)

0 0 A 0 B 0 0
0 0 −A B 0 A B
0 0 0 A(∗) 0 0 A(∗)


− 2r (A)− 2r (M)

= 2n+


A B 0 0 0
0 A(∗) 0 0 0
A 0 0 0 B
0 0 B A 0
0 0 A(∗) 0 A(∗)

− 2r (A)− 2r (M) , (13)
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and

r (H) = r
[
FA S

(∗)
1

]
= r

 In S(∗)

A 0
0 M

− r (A)− r (M)

= n+ r (A) + r

[
B

A(∗)

]
− r (A)− r (M)

= n+ r

[
B

A(∗)

]
− r (M) . (14)

By substituting (13) and (14) into (11), we obtain (a).
b) Note that Ω1 ⊆ Ω2 means that all the persymmetric solutions of Eq. (1) are

minimal rank persymmetric solutions, hence the inclusion Ω1 ⊆ Ω2 is equivalent to

max
X∈Ω1

min
Xm∈Ω2

r (X −Xm) = 0. (15)

Applying (8) in Lemma 2.3 to the matrix expression X −Xm yields

min
Xm∈Ω2

r (X −Xm) = min
Xm∈Ω2

r
(
X + S(∗)M+S − S

(∗)
1 U (∗) − US1

)
= r

[
S
(∗)
1 X + S(∗)M+S
0 S1

]
− 2r (S1) . (16)

The 2× 2 block matrix in (16) can be written as[
S
(∗)
1 X + S(∗)M+S
0 S1

]
=

[
S
(∗)
1 A+BA+(∗)

+ FAV + V (∗)F
(∗)
A + S(∗)M+S

0 S1

]

=


[

S
(∗)
1 A+BA+(∗)

+ S(∗)M+S
0 S1

]
+

[
FA

0

]
V
[
0 In

]
+

([
FA

0

]
V
[
0 In

])(∗)

 . (17)

Applying (9) to (17) yields

max
X∈Ω1

[
S
(∗)
1 X + S(∗)M+S
0 S1

]

= min


r

[
S
(∗)
1 A+BA+(∗)

+ S(∗)M+S FA

0 S1 0

]
,

r

 In S
(∗)
1 A+BA+(∗)

+ S(∗)M+S
0 0 S1

0 0 In




= min

2n+ r


A B 0 0
0 A(∗) 0 A(∗)

A 0 0 −B
0 0 A B

− r (A)− 2r (M) , 2n

 . (18)
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Furthermore we have

r (S1) = r (EMS)

=
[
S M

]
− r (M)

=

[
0 A B
In 0 A(∗)

]
− r (M)

= n+ r
[
A B

]
− r (M) . (19)

Substituting (19) into (16) and combining (18) and (16) yield

max
X∈Ω1

min
Xm∈Ω2

r (X −Xm)

= min


r


A B 0 0
0 A(∗) 0 A(∗)

A 0 0 −B
0 0 A B

− r (A)− 2r
[
A B

]
,

−2r
[
A B

]
+ 2r (M)

 . (20)

Finally, by substituting (20) into (15), we obtain the desired results in (b).
c) The inclusion Ω1 ⊇ Ω2 means that all the minimal rank persymmetric solutions of

Eq. (1) are persymmetric solutions, then the inclusion Ω1 ⊇ Ω2 is equivalent to

max
Xm∈Ω2

min
X∈Ω1

r (X −Xm) = 0. (21)

Then we have

min
X∈Ω1

r (X −Xm) = min
V

(
A+BA+(∗)

−Xm + FAV + V (∗)F
(∗)
A

)
. (22)

Applying (8) to (22) yields

min
X∈Ω1

r (X −Xm) = r

[
FA A+BA+(∗) −Xm

0 F
(∗)
A

]
− 2r (FA) . (23)

From Lemma 1.1, we have

r (FA) = r

[
In
A

]
− r (A) = n− r (A) . (24)

The 2× 2 block matrix on the right-hand side of (23) can be rewritten as

r

[
FA A+BA+(∗) −Xm

0 F
(∗)
A

]
= r

[
FA A+BA+(∗)

+ S(∗)M+S − S
(∗)
1 U (∗) − US1

0 F
(∗)
A

]

= r

[
FA A+BA+(∗)

+ S(∗)M+S

0 F
(∗)
A

]
+

[
−S

(∗)
1

0

]
U (∗) [ 0 In

]
+

([
−S

(∗)
1

0

]
U (∗) [ 0 In

])(∗)

. (25)
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Hence, by applying (9) to (25), we obtain

max
Xm∈Ω2

r

[
FA A+BA+(∗) −Xm

0 F
(∗)
A

]

= min


r

[
FA A+BA+(∗)

+ S(∗)M+S −S
(∗)
1

0 F
(∗)
A 0

]
, In FA A+BA+(∗)

+ S(∗)M+S

0 0 F
(∗)
A

0 0 In




= min

2n+ r


A B 0 0 0
0 A(∗) 0 0 0
A 0 0 0 B
0 0 A B 0
0 0 0 A(∗) 0

− 2r (A)− 2r (M) , 2n

 . (26)

Substituting (24) into (23) and combining (26) and (23) yield

max
Xm∈Ω2

min
X∈Ω1

r (X −Xm)

= min

r


A B 0 0 0
0 A(∗) 0 0 0
A 0 0 0 B
0 0 A B 0
0 0 0 A(∗) 0

− 2r (M) , r (A)

 . (27)

By substituting (27) into (21), we obtain the desired results in (c).

3 Conclusion

In the previous sections, we have studied some algebraic characterizations of relationships
between two sets consisting of two types of solutions for the same quaternion matrix
equation AXA(∗) = B. These two types are, respectively, the persymmetric solutions
and the minimal rank persymmetric solutions. Further, the persymmetric solutions exist
under the solvability conditions where the matrix equations will be consistent, otherwise,
the minimal rank persymmetric solutions always exist. Also, the results obtained clearly
illustrate the fundamental characteristics and attributes of some prominent linear matrix
equations and their relationships when we have used the matrix rank method, which is
considered a useful and effective approach for solving various matrix equality and matrix
set inclusion problems.
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