

Relationship between Persymmetric Solutions and Minimal Persymmetric Solutions of $AXA^{(*)} = B$

S. Guerarra

Dynamic Systems and Control Laboratory, Department of Mathematics and Informatics,
University of Oum El Bouaghi,
Mathematics and Computer Science Department, Ghardaia University, Algeria.

Received: January 26, 2024; Revised: September 8, 2024

Abstract: The minimal rank persymmetric solution of the quaternion matrix equation $AXA^{(*)}=B$ is defined as the matrix X that minimizes the rank of the difference $AXA^{(*)}-B$ or, equivalently, $r(AXA^{(*)}-B)=\min$, where B is persymmetric. In this paper, we focus on the quaternion matrix equation $AXA^{(*)}=B$. Our aim is to investigate the inclusion relationships between two sets, Ω_1 and Ω_2 , where Ω_1 , Ω_2 are, respectively, the set of persymmetric solutions and the set of minimal rank persymmetric solutions of the quaternion matrix equation $AXA^{(*)}=B$. Then, we deduce the necessary and sufficient conditions for the following relations to hold: $\Omega_1 \cap \Omega_2 \neq \varnothing$, $\Omega_1 \subseteq \Omega_2$ and $\Omega_1 \supseteq \Omega_2$.

 $\textbf{Keywords:}\ \ linear\ system;\ persymmetric\ solution;\ Moore-Penrose\ inverse;\ rank.$

Mathematics Subject Classification (2010): 15A24; 15A09; 15A03; 93B30; 93B25.

1 Introduction

Throughout this paper, \mathbb{R} and \mathbb{C} stand for the real number field and the complex number field, respectively. Let $\mathbb{H}^{m \times n}$ be the set of $m \times n$ matrices over the real quaternion algebra:

$$\mathbb{H} = \{a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \mid \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{i} \mathbf{j} \mathbf{k} = -1, \ a_0, a_1, a_2, a_3 \in \mathbb{R} \}.$$

The symbols A^* and r(A) stand for the conjugate transpose and the rank of A, respectively. I_m denotes the identity matrix of order m. The Moore-Penrose generalized

^{*} Corresponding author: mailto:guerarra.siham@univ-oeb.dz