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Abstract: In 2023, the author [6] introduced a new integral transform called the
Khalouta transform which is a generalization of many well-known integral transforms.
In this paper, our aim is to generalize the formula of the Khalouta transform to the
conformable fractional order. Moreover, we present and prove some main properties
and theorems related to the conformable fractional Khalouta transform. In order to
illustrate the validity, efficiency, and applicability of the proposed technique, we apply
the conformable fractional Khalouta transform to solve some fractional differential
equations. Finally, the results show that our new technique is powerful, effective, and
applicable for the both conformable fractional problems.
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1 Introduction

Fractional differential equations are a very important mathematial tool for modeling
many applications in real life sciences and engineering such as fluid dynamics, mathe-
matical biology, electrical circuits, optics, quantum mechanics, biophysics, wave theory,
polymers, continuum mechanics, etc. [1, 4, 5, 7, 11–13]. There are many definitions of
fractional derivatives and integrals used in many applications and natural phenomena
such as Riemann–Liouville [10], Liouville–Caputo [9], Caputo–Fabrizio [3], Atangana–
Baleanu [2] derivatives and so on. In 2014, Khalil et al. [8] introduced a new definition
of the fractional derivative which is called the conformable fractional derivative, and it
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is very easily computed compared with other previous definitions. In recent years, many
mathematics researchers have been interested in solving fractional differential equations
using different fractional integral transform. The main objective of this paper is to ex-
tend the definition of the Khalouta transform [6] to a fractional order in the sense of the
conformalble derivative and to give new interesting results for solving various types of
conformalble fractional differential equations.

2 Basic Notions and Preliminaries

Definition 2.1 [8] The conformable fractional derivative of order α is defined for a
function u : [0,+∞) −→ R by

C(nα)u(t) =
dnα

dtnα
u(t) = lim

ε→0

u[α]−1(t+ εt[α]−α)− u[α]−1(t)

ε
, t > 0,

where n− 1 < nα ≤ n, n ∈ N and [α] is the smallest integer greater than or equal to α,
provided C(nα)u(0) = lim

t→0+
C(nα)u(t) is n−differentiable and lim

t→0+
C(nα)u(t) exists.

As a special case, if 0 < α ≤ 1, then we have

C(α)u(t) =
dα

dtα
u(t) = lim

ε→0

u(t+ εt1−α)− u(t)

ε
, t > 0,

provided C(α)u(0) = lim
t→0+

C(α)u(t) is α−differentiable and lim
t→0+

C(α)u(t) exists.

The most important and useful rule is that: If u(t) is an n−differentiable function at
t > 0 and n− 1 < nα ≤ n, n ∈ N, then

C(nα)u(t) = t[α]−αu[α](t).

Definition 2.2 [8] The conformable fractional integral of order α is defined for a
function u : [0,+∞) −→ R by

I(α)u(t) =

∫ t

0

u(t)dαt =

∫ t

0

u(t)tα−1dt, 0 < α ≤ 1, t > 0.

If u : [0,+∞) −→ is an α−differentiable function and 0 < α ≤ 1, then

C(α)u(t) = t1−αu′(t), (1)

and

C(α)I(α)u(t) = u(t).

3 Conformable Fractional Khalouta Transform

Definition 3.1 The conformable fractional Khalouta transform of a piecewise con-
tinuous function u : [0,+∞) −→ R of exponential order is defined on the set

Sα =
{
u(t) : ∃K,ϑ1, ϑ2 > 0, |u(t)| < K exp (αϑj |tα|) , if tα ∈ (−1)

j × [0,∞)
}
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by the following integral:

KHα [u(t)] = Kα(s, γ, η) =
s

γη

∫ ∞

0

exp

(
− stα

γηα

)
u(t)tα−1dt

= lim
σ→∞

s

γη

∫ σ

0

exp

(
− stα

γηα

)
u(t)tα−1dt,

where s > 0, γ > 0 and η > 0 are the Khalouta transform variables, σ is a real number
and the integral is taken along the line t = σ.

Theorem 3.1 Let u : [0,+∞) −→ R be a real value function such that

KHα [u(t)] = Kα(s, γ, η),

and 0 < α ≤ 1, then

Kα(s, γ, η) = KH
[
u
(
(αt)

1
α

)]
.

Proof. Using Definition 3.1, we get

Kα(s, γ, η) =
s

γη

∫ ∞

0

exp

(
− stα

γηα

)
u(t)tα−1dt

x =
tα

α
=⇒ dx = tα−1dt and t = (αx)

1
α

=
s

γη

∫ ∞

0

exp

(
− sx

γη

)
u((αx)

1
α )dx

= KH
[
u
(
(αt)

1
α

)]
.

Theorem 3.2 Let u : [0,+∞) −→ R be an α−differentiable function and 0 < α ≤ 1,
then

KHα

[
C(α)u(t)

]
=

s

γη
KHα [u(t)]− s

γη
u(0).

Proof. Using Definition 3.1 and equation (1), we have

KHα

[
C(α)u(t)

]
=

s

γη

∫ ∞

0

exp

(
− stα

γηα

)
C(α)u(t)tα−1dt

=
s

γη

∫ ∞

0

exp

(
− stα

γηα

)
t1−αu′(t)tα−1dt

=
s

γη

∫ ∞

0

exp

(
− stα

γηα

)
u′(t)dt.

With integration by parts, we get

KHα

[
C(α)u(t)

]
=

s

γη

(
lim
σ→∞

[
exp

(
− stα

γηα

)
u(t)

]σ
0

+
s

γη

∫ ∞

0

exp

(
− stα

γηα

)
u(t)tα−1dt

)
=

s

γη
(−u(0) +KHα [u(t)])

=
s

γη
KHα [u(t)]− s

γη
u(0).
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Theorem 3.3 Let u : [0,+∞) −→ R be an n−differentiable function and 0 < α ≤ 1,
then

KHα

[
C(nα)u(t)

]
=

sn

γnηn
KHα [u(t)]− sn

γnηn
u(0).

Proof. The proof follows using the induction process on n and Theorem 3.2.

4 Conformable Fractional Khalouta Transform for Some Functions

Theorem 4.1 Let a, b, c ∈ R and 0 < α ≤ 1, then

1) KHα [b] = b.

2) KHα [tc] =
(αγη

s

) c
α

Γ
( c
α
+ 1
)
.

3) KHα

[
tnα

αn

]
=
(γη

s

)n
Γ (n+ 1) .

4) KHα

[
exp

(
a
tα

α

)]
=

s

s− aγη
.

5) KHα

[
sin

(
a
tα

α

)]
=

asγη

s2 + a2γ2η2
.

6) KHα

[
sinh

(
a
tα

α

)]
=

asγη

s2 − a2γ2η2
.

7) KHα

[
cos

(
a
tα

α

)]
=

s2

s2 + a2γ2η2
.

8) KHα

[
cosh

(
a
tα

α

)]
=

s2

s2 − a2γ2η2
.

Proof. Using Theorem 3.1, we get
1)

KHα [b] = KH [b] = b.

2)

KHα [tc] = KH
[
(αt)

c
α

]
= α

c
αKH

[
t

c
α

]
=

(αγη
s

) c
α

Γ
( c
α
+ 1
)
.

3) If we put c = nα, then

KHα [tnα] = KH
[
(αt)

nα
α

]
= αnKH [tn] .

So

KHα

[
tnα

αn

]
= KH [tn] =

(γη
s

)n
Γ (n+ 1) .
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4)

KHα

[
exp

(
a
tα

α

)]
= KH

exp
a

(
(αt)

1
α

)α
α


= KH [exp (at)] =

s

s− aγη
.

5)

KHα

[
sin

(
a
tα

α

)]
= KH

sin
a

(
(αt)

1
α

)α
α


= KH [sin (at)] =

asγη

s2 + a2γ2η2
.

6)

KHα

[
sinh

(
a
tα

α

)]
= KH

sinh
a

(
(αt)

1
α

)α
α


= KH [sinh (at)] =

asγη

s2 − a2γ2η2
.

7)

KHα

[
cos

(
a
tα

α

)]
= KH

cos
a

(
(αt)

1
α

)α
α


= KH [cos (at)] =

s2

s2 + a2γ2η2
.

8)

KHα

[
cosh

(
a
tα

α

)]
= KH

cosh
a

(
(αt)

1
α

)α
α


= KH [cosh (at)] =

s2

s2 − a2γ2η2
.

5 Properties of Conformable Fractional Khalouta Transform

Theorem 5.1 Let u, v : [0,+∞) −→ R be given functions such that

KHα [u(t)] = Kα(s, γ, η),

and
KHα [v(t)] = Hα(s, γ, η),

and let λ, µ ∈ R and 0 < α ≤ 1, then we have
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1) Linear property

KHα [λu(t)± µv(t)] = λKHα [u(t)]± µKHα [v(t)] .

2) Shifting property

KHα

[
exp

(
−a

tα

α

)
u(t)

]
=

s

s+ aγη
Kα(s,

s

s+ aγη
, η).

3) Integral property

KHα

[
I(α)u(t)

]
=

γη

s
KHα [u(t)] .

4) Convolution property

KHα [(u ∗ v) (t)] = γη

s
Kα(s, γ, η)Hα(s, γ, η),

where u ∗ v is a convolution of two functions defined by

(u ∗ v) (t) =
∫ t

0

u(τ)v(t− τ)dτ =

∫ t

0

u(t− τ)v(τ)dτ.

Proof. 1) Using Definition 3.1, we get

KHα [λu(t)± µv(t)] =
s

γη

∫ ∞

0

exp

(
− st

γη

)
(λu(t)± µv(t))tα−1dt

=
s

γη

∫ ∞

0

exp

(
− st

γη

)
λu(t)tα−1dt

± s

γη

∫ ∞

0

exp

(
− st

γη

)
µv(t))tα−1dt

= λ

(
s

γη

∫ ∞

0

exp

(
− st

γη

)
u(t)tα−1dt

)
±µ

(
s

γη

∫ ∞

0

exp

(
− st

γη

)
v(t))tα−1dt

)
= λKHα [u(t)]± µKHα [v(t)] .

2) Using Theorem 3.1, we get

KHα

[
exp

(
−a

tα

α

)
u(t)

]
= KH

exp
−a

(
(αt)

1
α

)α
α

u((αt)
1
α )


= KH

[
exp (−at)u((αt)

1
α )
]

=
s

γη

∫ ∞

0

exp

(
− st

γη

)
exp (−at)u((αt)

1
α )dt

=
s

γη

∫ ∞

0

exp

(
−
(

s

γη
+ a

)
t

)
u((αt)

1
α )dt

=
s

γη

∫ ∞

0

exp

(
−
(
s+ aγη

γη

)
t

)
u((αt)

1
α )dt. (2)
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If (s+ aγη) t = sx and t = sx
s+aγη , then we have dt = s

s+aγηdx, so equation (2)
becomes

KHα

[
exp

(
−a

tα

α

)
u(t)

]
=

s

γη

∫ ∞

0

exp

(
− sx

γη

)
u

((
αsx

s+ aγη

) 1
α

)
s

s+ aγη
dx

=
s

s+ aγη

(
s

γη

∫ ∞

0

exp

(
− sx

γη

)
u

((
αsx

s+ aγη

) 1
α

)
dx

)
=

s

s+ aγη
Kα(s,

s

s+ aγη
, η).

3) Using Theorem 3.2, we get

KHα

[
C(α)I(α)u(t)

]
=

s

γη
KHα

[
I(α)u(t)

]
− s

γη
I(α)u(0).

But C(α)I(α)u(t) = u(t) and I(α)u(0) = 0, so we have

KHα

[
I(α)u(t)

]
=

γη

s
KHα [u(t)] .

4) Using Theorem 3.1 and the convolution definition, we get

KHα [(u ∗ v) (t)] = KH
[
(u ∗ v)

(
(αt)

1
α

)]
=

s

γη

∫ ∞

0

exp

(
− st

γη

)
(u ∗ v)

(
(αt)

1
α

)
dt (3)

=
s

γη

∫ ∞

0

exp

(
− st

γη

)(∫ t

0

u
(
α (t− τ)

1
α

)
v
(
(ατ)

1
α

)
dτ

)
dt.

From the region R = {(τ, t) ∈ R2 : 0 ≤ τ ≤ t and 0 ≤ t ≤ +∞}, we can change the
order of integration, i.e., equation (3) becomes

KHα [(u ∗ v) (t)] = s

γη

∫ ∞

0

∫ ∞

τ

exp

(
− st

γη

)
u
(
α (t− τ)

1
α

)
v
(
(ατ)

1
α

)
dτdt. (4)

Substituting x = t− τ and dx = dt in equation (4), we get

KHα [(u1 ∗ u2) (t)] =
s

γη

∫ ∞

0

∫ ∞

0

exp

(
−s(x+ τ)

γη

)
u
(
(αx)

1
α

)
v
(
(ατ)

1
α

)
dτdx

=
s

γη

(∫ ∞

0

exp

(
− sx

γη

)
u
(
(αx)

1
α

)
dx

)
×
(∫ ∞

0

exp

(
− sτ

γη

)
v
(
(ατ)

1
α

)
dτ

)
=

γη

s

(
s

γη

∫ ∞

0

exp

(
− sx

γη

)
u
(
(αx)

1
α

)
dx

)
×
(

s

γη

∫ ∞

0

exp

(
− sτ

γη

)
v
(
(ατ)

1
α

)
dτ

)
=

γη

s
Kα(s, γ, η)Hα(s, γ, η).
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6 Applications

Application 1 Consider the linear conformable fractional differential equation

C(α)u(t)− u(t) = 1, 0 < α ≤ 1, (5)

subject to the initial condition
u(0) = 0. (6)

Applying the conformable fractional Khalouta transform on both sides of equation
(5) and using Theorem 5.1, we get

KHα

[
C(α)u(t)

]
−KHα [u(t)] = KHα [1] . (7)

When using Theorems 3.2 and 4.1, equation (7) becomes

s

γη
KHα [u(t)]− s

γη
u(0)−KHα [u(t)] = 1. (8)

Substituting the initial condition (6) and simplifying equation (8), we have

KHα [u(t)] =
γη

s− γη

=
s

s− γη
− 1. (9)

Taking the inverse conformable fractional Khalouta transform of both sides of equa-
tion (9), we get

u(t) = exp

(
tα

α

)
− 1. (10)

For α = 1, the result in equation (10) reduces to the exact solution for the standard
form of equations (5) and (6) as follows:

u(t) = exp (t)− 1.

Application 2 Consider the linear conformable fractional differential equation

C(2α)u(t)− u(t) = sin

(
2tα

α

)
, 0 < α ≤ 1, (11)

subject to the initial conditions

u(0) = 2, C(α)u(0) = 0. (12)

Applying the conformable fractional Khalouta transform on both sides of equation
(11) and using Theorem 5.1, we get

KHα

[
C(2α)u(t)

]
−KHα [u(t)] = KHα

[
sin

(
2tα

α

)]
. (13)

When using Theorems 3.3 and 4.1, equation (13) becomes

s2

γ2η2
KHα [u(t)]− s2

γ2η2
u(0)−KHα [u(t)] =

2sγη

s2 + 4γ2η2
. (14)
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Substituting the initial conditions (12) and simplifying equation (14), we have

KHα [u(t)] =
2sγ3η3

(s2 + 4γ2η2) (s2 − γ2η2)
+

2s2

s2 − γ2η2

= −1

5

2sγη

s2 + 4γ2η2
+

2

5

sγη

s2 − γ2η2
+

2s2

s2 − γ2η2
. (15)

Taking the inverse conformable fractional Khalouta transform of both sides of equa-
tion (15), we get

u(t) = −1

5
sin

(
2tα

α

)
+

2

5
sinh

(
tα

α

)
+ 2 cosh

(
tα

α

)
. (16)

For α = 1, the result in equation (16) reduces to the exact solution for the standard
form of equations (11) and (12) as follows:

u(t) = −1

5
sin (2t) +

2

5
sinh (t) + 2 cosh (t) .

Application 3 Consider the linear conformable fractional differential equation

C(3α)u(t) + C(α)u(t) =
tα

α
, 0 < α ≤ 1, (17)

subject to the initial conditions

u(0) = 0, C(α)u(0) = 0, C(2α)u(0) = 0. (18)

Applying the conformable fractional Khalouta transform on both sides of equation
(17) and using Theorem 5.1, we get

KHα

[
C(3α)u(t)

]
+KHα

[
C(α)u(t)

]
= KHα

[
tα

α

]
. (19)

When using Theorems 3.3 and 4.1, equation (19) becomes

s3

γ3η3
KHα [u(t)]− s3

γ3η3
u(0) +

s

γη
KHα [u(t)]− s

γη
u(0) =

γη

s
Γ (2) . (20)

Substituting the initial conditions (18) and simplifying the equation (20), we have

KHα [u(t)] =
γ4η4

s2 (s2 + γ2η2)

=
γ2η2

s2
+

s2

s2 + γ2η2
− 1

=
1

2

γ2η2

s2
Γ (3) +

s2

s2 + γ2η2
− 1. (21)

Taking the inverse conformable fractional Khalouta transform of both sides of equa-
tion (21), we get

u(t) =
t2α

2α2
+ cos

(
tα

α

)
− 1. (22)

For α = 1, the result in equation (22) reduces to the exact solution for the standard
form of equations (17) and (18) as follows:

u(t) =
t2

2
+ cos (t)− 1.
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7 Conclusion

In this paper, we carefully proposed a new conformable fractional integral transform
known as the conformable fractional Khalouta transform which presents a promising
tool for solving fractional differential equations. The conformable fractional Khalouta
transform was successfully applied to find solutions of conformable fractional differen-
tial equations. It can be concluded that the proposed methodology is very powerful
and effective in finding analytical solutions for wide categories of fractional differential
equations.
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