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Abstract: In this work, we propose a mathematical model of malaria which takes
into account the vector class represented by Sv, Iv and humans class represented by
Sh, Eh, Ih and Rh. The basic reproduction number R0 of the model is determined.
We introduce two controls in our initial model. Therefore, the model with control
will be presented and studied. The objective of the model with optimal control is to
observe the effect of preventive measures, represented here by control u1, and curative
measures, represented by control u2, on the evolution of malaria disease. The controls
u1 and u2 will be characterized. Then we use the Python software for the numerical
simulation of the model.
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1 Introduction

Malaria is an acute febrile illness caused by Plasmodium parasites, which are spread to
people through the bites of infected female Anopheles mosquitoes. It is preventable and
curable. Malaria is a life-threatening disease primarily found in tropical countries. It
was first discovered in India in the 15th century. However, without prompt diagnosis and
effective treatment, a case of uncomplicated malaria can progress to a severe form of the
disease, which is often fatal without treatment. Malaria is not contagious and cannot
spread from one person to another; the disease is transmitted through the bites of female
Anopheles mosquitoes. The world’s population is at risk of exposure to malaria [9]. In
2021, an estimated 247 million people contracted malaria in 85 countries. That same
year, the disease claimed approximately 619000 lives [9]. The first symptoms of malaria
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usually appear within 10 to 15 days after the infectious bite of mosquitoes. Fever,
headache and chills are usually signs of malaria, although these symptoms can hardly be
attributed to malaria. WHO recommends rapid diagnostic testing for anyone suspected
of having malaria. If Plasmodium falciparum malaria is not treated within 24 hours, the
infection can progress to severe illness and death [9]. Malaria can be diagnosed using
tests that determine the presence of the parasites causing the disease. There are two main
types of tests, firstly, microscopic examination of blood smears and rapid diagnostic test
called (TDR). Artemisinin based combination therapies (ACT) are the most effective
antimalarial medicines available today. The resistance of the parasite to the different
treatments leads to an endemic situation. Given all these threats, a mathematical model
of malaria has been proposed to eradicate the disease. The most used means are the
preventive ones. A number of recent studies of malaria show the significant direct effect of
climatic factors such as temperature and rainfall on the transmission dynamics of vectors
[11, 13–16, 18, 19]. B. Traore et al. [20] studied a mathematical model of malaria taking
into account mosquito larvae and transmission of malaria in a periodic environment with a
constant recruitment of vector and human population. Abba B. Gumel et al. [11] studied
a malaria model taking into account seasonality and temperature variation in the mode of
malaria transmission. Our model takes into account the preventive measures (distribution
of mosquito nets, preventive medicine for children under 5 years old, spraying of areas
etc.) represented by the control (u1) and taken during a year. We use a control of cured
persons (u2) in order to allow the government to support population.

The structure of the paper is as follows. We present the mathematical model in
Section 2. In Section 3, we present and study the mathematical model with control. We
conclude in Section 4.

2 The Formulation of Mathematical Model

In this model, the human population is divided into four classes: the susceptible Sh,
the exposed Eh, the infected Ih and cured Rh. The vector population (mosquitoes) is
subdivided into two classes: susceptible vectors Sv and infected Iv. µhNh is the dynamic
recruitment of the human population. γ1Sh, γ1Eh, γ1Ih and γ1Rh are the number of
susceptible, exposed, infected and cured individuals, respectively, that die naturally.
βIvSh

Nh
is the proportions of susceptible humans that can encounter female Anopheles

with a β rate.
αEh

EhSv

Nh
and

αEh
IhSv

Nh
are the respective proportions of Anopheles that

bite exposed (Eh) and infected humans (Ih) that can infect them. γEh is the total
exposed population that manifests malaria disease at time t (exposed individuals who
pass into the Ih class). θIh is the set of sick humans who recover from malaria (humans
who enter the Rh class). Λv is the recruitment of mosquitoes. µSv and µIv are the
mosquitoes that die naturally, respectively, in classes Sv and Iv. The individual cured
(α1R) of malaria disease recontacts malaria disease in recruitment.

Remark 2.1 In our model, mosquitoes do not recover from malaria. Each person
cured of malaria (Rh) is brought back into the susceptible population.
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Figure 1: Transfer diagram, the black dashed arrows indicate the direction of the infection,
the solid arrows represent the transition from one class to another.

The mathematical model without control is given

Ṡh = Λh + α1Rh − β
IvSh

Nh
− γ1Sh,

Ėh = β
IvSh

Nh
− γEh − γ1Eh,

İh = γEh − θIh − γ1Ih,

Ṙh = θIh − (γ1 + α1)Rh,

Ṡv = Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv,

İv = αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv

(1)

with the initial conditions

Sh(0) > 0, Sv(0) > 0, Eh(0) > 0, Ih(0) > 0,

Iv(0) > 0, Rh(0) > 0.

Total human population and the number of vectors are described by the following
equations:

Ṅh = Λh − γ1Nh(t) (2)

and

Ṅv = Λv − µNv(t). (3)



638 L.OUATTARA, D. OUEDRAOGO, O. DIOP AND A. GUIRO

Symbols Description values Sources
Λh Constant recruitment rate for humans 5000 [20]
γ1 Natural mortality rate of humans 0.00167 [20]
µ Natural mortality rate of mosquitoes 0.01 estimate
Λv Constant recruitment rate for mosquitoes 150 [20]
θ Transfer rate of humans from Ih to Rh 0.3 estimate
αIh Contact rate of susceptible mosquitoes

with humans infected with malaria 0.05 estimate
αEh

Contact rate of susceptible mosquitoes
with humans exposed to malaria 0.07 estimate

β Contact rate of infected mosquitoes
with susceptible humans 0.425 estimate

γ Transition rate from Eh to Ih. 0.52 estimate

Table 1: The parameters of model (1).

Estimation of the total vector population at time t. Let us consider equations (3) and
(2). The total vector population is estimated at time t by

Nv =
Λv

µ
+

(
Nv(0)−

Λv

µ

)
exp(−µt).

The total human population is estimated at time t by

Nh =
Λh

γ1
+

(
Nh(0)−

Λh

γ1

)
exp(−γ1t); t ≥ 0.

3 The Optimal Control Problem

In this section, we introduce two controls u1 (prevention) and u2 (treatment) into the
model (1). Furthermore, we first prove the existence of two optimal controls u∗

1, u
∗
2 and

then give the characterization of these two controls. So far, there is no preventive vaccine
against malaria. In our study, we use the means of prevention other than vaccine.
The basic reproduction number R0 is given by

R0 =

√
βΛvγ1

Λhµ2(γ + γ1)

(
αEh

+
αIhγ

θ + γ1

)
.

3.1 Presentation of the problem

The controls u1 and u2 are defined as follows:

• u1(t) ∈ [0, 1] is the control corresponding to the distribution of mosquito nets,
preventive medication for children under five years and other means to prevent
malaria. The rate of people sleeping under mosquito nets or protecting themselves
against mosquitoes and/or preventing malaria is denoted by u1(t) ∈ [0, 1] with
t ∈ [0, tf ]. The ideal is to get the entire population to sleep under a mosquito net
and to warn all children, in this case u1 = 1. In reality, this is not possible, we seek
to protect the maximum number of people (u1 = u1max).
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• The second control u2(t) ∈ [0, 1] represents the treatment of patients over the
interval [0; tf ]. The control u2 that we consider here can therefore represent the
treatment of symptoms or the isolation of patients in hospitals to avoid possible
new infection. If all patients are treated, then u2 = 1.
For all positive t, we unambiguously denote ui(t) simply by ui for i = 1, 2.

By inserting the controls into the model (1), we get the following controlled equations:

Ṡh = Λh + α1Rh − β(1− u1)
IvSh

Nh
− γ1Sh,

Ėh = β(1− u1)
IvSh

Nh
− γEh − γ1Eh,

İh = γEh − (θ + u2)Ih − γ1Ih,

Ṙh = (θ + u2)Ih − γ1Rh,

Ṡv = Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv,

İv = αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv

(4)

with the initial conditions

Sh(0) > 0, Sv(0) > 0, Eh(0) > 0, Ih(0) > 0,

Iv(0) > 0, Rh(0) > 0.

The basic reproduction number (Rc
0) of the model (4) is the number of cases generated

by the primary infected individual under controls u1 and u2. This demonstrates that
controls u1 and u2 play a role in combating malaria disease. We observe that if u1 =
u2 = 0 (absence of all malaria control strategies), then we recover the same reproduction
number R0 as in the model (1) without control (Rc

0 = R0, if u1 = u2 = 0),

Rc
0 =

√
βΛvγ1(1− u1)

Λhµ2(γ + γ1)

(
αEh

+
αIhγ

θ + u2 + γ1

)
.

Remark 3.1 The objective of these controls is to observe the effect of malaria treat-
ments and the effect of preventive measures in the fight against malaria. Furthermore,
we aim to propose strategies to minimize the infected population (Ih) while maximizing
the recovered population (Rh) and the susceptible population (Sh).

3.2 Study of optimal control problem

In this section, we define the Hamiltonian associated with the control problem (4). Then
we characterize the solutions of control problem (4) after proving their existence. Mathe-
matically, for a fixed terminal time tf , the problem is to minimize the functional objective
J on [0, tf ] .

J(u1, u2) =

∫ tf

0

(
Ih(t)− Sh(t)−Rh(t) +

A1

2
u2
1(t) +

A2

2
u2
2(t)

)
dt. (5)



640 L.OUATTARA, D. OUEDRAOGO, O. DIOP AND A. GUIRO

The first terms represent the gain for the Ih that we wish to reduce. The constants
A1 and A2 are positive, and correspond to the weights that regularize the control for
prevention and treatment, respectively. As given in the literature, the costs are assumed
to be quadratic functions. Indeed, costs are rarely linear, and are often presented as non
-linear functions of control. Other types of functions exist in the literature [2, 4, 6, 10].
The most natural thing to do is to consider quadratic functions. These also allow us to
make the analogy with the energy that is expanded here for all these measurements. Our
objective is to limit the transmission of the disease by reducing the number of mosquitoes
and infected humans.

We determine the optimal control (u∗
1, u

∗
2) such that

J(u∗
1, u

∗
2) = min {J(u1, u2) : (u1, u2) ∈ Γ} , (6)

where

Γ =
{

(u1, u2),
{
ui(t) is a continuous function by pieces on [0,tf ]

ai≤ui(t)≤bi

}
(7)

is the set of controls and ai, bi are constants belonging to [0;1], i = 1, 2. The optimal
control problem is then solved when we determine (u∗

1, u
∗
2) ∈ Γ which minimizes the

function (5).

Definition 3.1 (the Hamiltonian of the minimization problem) Pontryagin’s maxi-
mum principle [12] converted (4), (5) and (6) into the problem of minimizing the Hamil-
tonian H defined by

H = −Sh −Rh + Ih +
A1

2
u2
1 +

A2

2
u2
2 +

6∑
i=1

λifi, (8)

where



f1

f2

f3

f4

f5

f6


=



Λh + α1Rh − β(1− u1)
IvSh

Nh
− γ1Sh

β(1− u1)
IvSh

Nh
− γEh − γ1Eh

γEh − (θ + u2)Ih − γ1Ih

(θ + u2)Ih − (γ1 + α1)Rh

Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv

αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv


is the righ-hand side of the differential equation (1), the state variable and λi,
i = 1, ..., 6, are the adjoint variables associated with their respective states.

Theorem 3.1 Consider the optimal control problem (4) subject to (5). Then
there exist an optimal pair of controls (u∗

1, u
∗
2) and corresponding optimal states

(Sh, Eh, Ih, Rh, Sv, Iv) that minimize the objective function J(u1, u2) over the set of ad-
missible controls Γ.
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Proof. The existence of optimal control can be proved by using the results from
[7] (see Theorem 2.1) and Fleming’s results [3] (Theorem III.4.1), we must check the
following conditions:

• the set of controls and solutions present is nonempty,

• the admissible set Γ is convex and closed,

• the vector field of the state system is bounded by a linear function of control,

• the objective function is convex,

• there exist constants c1, c2 > 0 such that the integrated part of the objective
function is bounded by c1(|u1|2 + |u2|2)

p
2 − c2.

(1) We verify these conditions thanks to a result of Lukes et al. [8], which assures the
existence of solutions for the state system (1).

(2) The set Γ is convex and bounded by definition.

(3) The right-hand side of the state system (4) is bounded by a linear function in the
state and control variables.

(4) The integrated part of the objective functional is

f0(X,u1, u2) = Ih − Sh −Rh +
A1

2
u2
1 +

A2

2
u2
2.

The Hessian matrix of f0(X,u1, u2) is given by

Mf0 =

(
A1 0
0 A2

)
,

Spec(Mf0) = {A1, A2} ⊂ R∗
+.

So, by using [1], f0 is strictly convex over U .

(5) We have

f0(X,u1, u2) = Ih(t)− Sh(t)−Rh(t) +
A1

2
u2
1(t) +

A2

2
u2
2(t),

= Nh − Eh − 2Rh − 2Sh +
A1

2
u2
1(t) +

A2

2
u2
2(t),

≥ −Eh − 2Rh − 2Sh +
A1

2
u2
1(t) +

A2

2
u2
2(t),

≥ 1

2
min {A1, A2}

(
|u1(t)|2 + |u2(t)|2

)k/2 − (Eh + 2Rh + 2Sh),

≥ c1
(
|u1(t)|2 + |u2(t)|2

)k
2 − c2,

where c1 =
1

2
min {A1, A2} > 0, c2 = Eh + 2Rh + 2Sh and k ≥ 1, so the last

assertion is verified.
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Since the state variables are bounded, we deduce the existence of an optimal control
(u∗

1, u
∗
2) which minimizes the objective function J(u1, u2) in (5). 2

We are now interested in the characterization of a control u∗ = (u∗
1, u

∗
2), the solution

of (7). Pose Z = (Sh, Eh, Ih, Rh, Sv, Iv), U = (u1, u2) and L = (λ1, λ2, λ3, λ4, λ5, λ6),
being the adjoint variables. We define the Lagrangian associated with the problem (this
one corresponds to the Hamiltonian increased by the penalties).

L(Z,U,L) = Ih −Rh − Sh +
A1

2
u2
1 +

A2

2
u2
2

+ λ1

(
Λh + α1Rh − β(1− u1)

IvSh

Nh
− γ1Sh

)
+ λ2

(
β(1− u1)

IvSh

Nh
− γEh − γ1Eh

)
(9)

+ λ3 (γEh − (θ + u2)Ih − γ1Ih) + λ4 ((θ + u2)Ih − (γ1 + α1)Rh)

+ λ5

(
Λv − αEh

EhSv

Nh
− αIh

IhSv

Nh
− µSv

)
+ λ6

(
αEh

EhSv

Nh
+ αIh

IhSv

Nh
− µIv

)
− w11(u1 − a1)− w12(b1 − u1)

− w21(u2 − a2)− w22(b1 − u2),

where wij(t) ≥ 0, i, j = 1, 2, are the penalty coefficients verifying

w11(u1 − a1) = w12(b1 − u1) = 0 for optimal control u∗
1 and

w21(u2 − a2) = w22(b2 − u2) = 0 for optimal control u∗
2.

(10)

Theorem 3.2 Consider an optimal control u∗ = (u∗
1, u

∗
2) ∈ Γ and corresponding

states X = (Sh, Eh, Ih, Rh, Sv, Iv) of system (4), there exist adjoint functions (λi,
i = 1, ..., 6) satisfying

λ̇1 = −
(
−1− λ1

(
(1− u1)

βIv
Nh

− γ1

)
+ β(1− u1)

Iv
Nh

λ2

)
,

λ̇2 = −
(
−(γ1 + γ)λ2 + γλ3 −

αEh
Sv

Nh
λ5 +

αEh
Sv

Nh
λ6

)
,

λ̇3 = −
(
1− λ3(θ + u2 + γ1) + λ4(θ + u2)−

αIhSv

Nh
λ5 +

αIhSv

Nh
λ6

)
,

λ̇4 = − (α1λ1 − (γ1 + α1)λ4 − 1) ,

λ̇5 = −
(
−λ5

(
µ+

αEh
Eh

Nh
+

αIhIh
Nh

)
+ λ6

(
αEh

Eh

Nh
+

αIhIh
Nh

))
,

λ̇6 = −
(
−βSh

Nh
λ1 +

βSh

Nh
λ2 − µλ6

)

(11)

with the transversality conditions given by λi(tf ) = 0, i = 1, ..., 6. Furthermore, the
optimal controls are characterized by

u∗
1 = max

{
a1,min

{
b1,

(
λ2(t)− λ1(t)

A1

)
β
Sh

Nh

}}
,

u∗
2 = max

{
a2,min

{
b2,

(λ3(t)− λ4(t))

A2
Ih

}}
.

(12)
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Proof. The differential equations for the adjoint variables are standard results from
Pontryagin’s maximum principle [17]. The right-hand sides of the differential equations
can be easily computed. Let w∗ = (u∗

1, u
∗
2) be the corresponding solution

X = (Sh, Eh, Ih, Rh, Sv, Iv) that minimizes J(u1, u2) over Γ. By Pontryagin’s maximum
principle [17], there exist adjoint functions

p(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)), t ∈ [0, tf ]),

verifying the following conditions:

dp(t)

dt
= −∂H

∂X
, (13)

dX(t)

dt
=

∂H

∂p
, (14)

∂L
∂u1

=
∂L
∂u2

= 0. (15)

The condition (13) yields the system (11) and condition (14) yields the system (4). The
optimality condition (15) gives the following system:

∂L
∂u1

∣∣∣∣(u1=u∗
1)

= A1u
∗
1 + λ1β

IvSh

Nh
− λ2β

IvSh

Nh
− w11 + w12 = 0,

∂L
∂u2

∣∣∣∣(u2=u∗
2)

= A2u
∗
2 + λ1β

IvSh

Nh
− λ2β

IvSh

Nh
− w21 + w22 = 0.

(16)

By solving (16) and using (10), we obtain the result (12) 2

3.3 Numerical simulation

First, note that the optimality system is a problem with two boundary conditions. Indeed,
the state system is solved in the direction with the initial conditions
X(0) = (100, 90, 70, 100, 60). The adjoint functions are solved in the opposite direction
[5], with the transversality conditions λi(tf ) = 0, i = 1, ..., 6, where tf = 12 months.
The numerical simulations are obtained by using Python. The control curves in Figure

Figure 2: u1 and u2 control curves.

2 show the period of application for the controls u1 and u2. The curve of u1 shows
that the period of implementation for control u1 are the first nine months of the year.
The measurement control has no effect during the last quarter (October, November and
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December) of the year. The best period for implementing preventive measures (u1) is
the month of June. Furthermore, the government’s efforts should be focused on the
month of June. The best time of the year for distributing mosquito nets, spraying public
space and vaccinating the susceptible human population is June. For better prevention
results, 50% of the population should be involved. The curve of (u2) in Figure 2 shows
that the control (u2) of malaria patient care should be applied continuously throughout
the year. For better results, over +70% of malaria patients should be supported by the
government.

Figure 3: Sh(t) Figure 4: Eh(t)

Figure 5: Ih(t) Figure 6: Rh(t)

Figure 7: Sv(t) Figure 8: Iv(t),

Population dynamics with different control aspects u1 and u2.

Comment

The curves of Figure 3 describe the dynamics of the susceptible human population (Sh)
by using the treatment (u2) and prevention (u1) controls. This proves that treating only
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malaria patients (control u2) has a negligible effect in the fight against malaria. If we ap-
ply only treatment (control u2), we observe a smaller effect on the susceptible population.
Preventive measures are the best way to preserve the susceptible population (Sh) from
malaria disease. Furthermore, if prevention and treatment are applied simultaneously,
the susceptible population remains protected from malaria.

The curves of Figure 4 describe the dynamics of Eh by using u1 and u2 controls. This
proves that treating malaria patients has a great effect in the exposed population (Eh).
We have found that if all the controls are applied, the number of malaria exposed cases
(Eh) falls and comes to zero after two months. We also note that if all the controls are
applied, no individual is exposed to the disease after two month. Providing treatment is
the most effective control strategy (control u2) to be applied to the exposed population.
Moreover, if we simultaneously apply treatment (u2) and preventive measures (u1) to the
exposed population, then the number of the exposed individuals decreases to zero after
two months.

The curves in Figure 5 show the dynamics of Ih by using u1 and u2 controls. This
proves that treating malaria patients and using preventive measures have a great effect in
the fight against malaria. We have found that if all the controls are applied, the number
of malaria infected (Ih) cases falls and becomes zero after three months. We also note
that if all the controls are applied, no individual is infected with the disease after three
months. To observe the effect of controls on the infected human population (Ih), we need
to simultaneously apply both treatment (control u2) and preventive measures (control
u1).

The curves of Figure 6 show the dynamics of Rh by using u1 and u2 controls. This
proves that treating malaria patients (control u2) has a great effect in the fight against
malaria. We have found that if all the controls are applied, the number of malaria
cured persons increases. Treatment (control u2) has a significant effect on the recovery
of malaria patients. Preventive measures (control u1) have a less considerable effect on
recovered individuals (Rh).

The curves of Figure 7 describe the dynamics of Sv by using u1 and u2 controls.
This proves that treating (u2) malaria patients and using preventive measures (u1) have
a great effect in the fight against malaria. We have found that if all the controls are
applied, the number of susceptible vectors increases. If preventive measures (u1) are
applied, susceptible mosquitoes cannot become infected from the infected human popu-
lation (Ih, Eh).

The curves of Figure 8 describe the dynamics of (Iv) by using u1 and u2 controls. This
proves that treating malaria patients (Ih) has a great effect in the evolution of infected
vectors (Iv). We have found that if all the controls are applied, the number of infected
falls and becomes zero after ten months.

4 Conclusion

In this paper, we have developed a SEIRS malaria mathematical model. We considered
model (1), in which we introduced two controls, u1 and u2. The control u1 in our
model shows that the best way to prevent malaria disease is to prevent contact between
susceptible people (Sh) and infected vectors (Iv) by using impregnated mosquito nets
and spraying public spaces. If all these preventive measures are followed, malaria will
disappear after a long period of application of measures. The government should support
the susceptible population (by distributing mosquito nets, spraying public areas and
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distributing preventive pharmaceutical products to children under the age of five years).
The control u1 in our model proves that, in order to fight against malaria, it is necessary
to develop diverse strategies:

• Subsidize the access of malaria patients to hospitals or take care of all malaria
patients or take care of 90% of malaria patients. Otherwise, through the infected
people who are not treated for malaria, many Anopheles become infected and then
spread the malaria disease.

• Reduce the population’s exposure to malaria through awareness raising, free distri-
bution of impregnated mosquito nets, access to preventive care for children under
five years of age, free access to anti-malarial treatment, malaria testing, etc. We can
also, in the framework of the fight against malaria, take into account the mortality
rate of mosquitoes, that is to say, increase the mortality of mosquitoes by killing
infected Anopheles around the population (by using insecticides or other means).
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